MAXIM MAX11044ECB+

19-5036; Rev 5; 1/11
KIT
ATION
EVALU
E
L
B
A
AVAIL
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
Features
The MAX11044/MAX11045/MAX11046 16-bit and
MAX11054/MAX11055/MAX11056 14-bit ADCs offer 4, 6,
or 8 independent input channels. Featuring independent
track and hold (T/H) and SAR circuitry, these parts provide simultaneous sampling at 250ksps for each channel.
The MAX11044/MAX11045/MAX11046 and MAX11054/
MAX11055/MAX11056 accept a ±5V input. All inputs
are overrange protected with internal ±20mA input
clamps providing overrange protection with a simple
external resistor. Other features include a 4MHz T/H
input bandwidth, internal clock, and internal or external
reference. A 20MHz, bidirectional, parallel interface
provides the conversion results and accepts digital
configuration inputs.
The MAX11044/MAX11045/MAX11046 and MAX11054/
MAX11055/MAX11056 operate with a 4.75V to 5.25V
analog supply and a separate flexible 2.7V to 5.25V
digital supply for interfacing with the host without a level
shifter. The MAX11044/MAX11045/MAX11046
are available in a 56-pin TQFN and 64-pin TQFP packages while the MAX11054/MAX11055/MAX11056 are
available in TQFP only and operate over the extended
-40°C to +85°C temperature range.
o 16-Bit ADC (MAX11044/MAX11045/MAX11046) and
14-Bit ADC (MAX11054/MAX11055/MAX11056)
Applications
Automatic Test Equipment
Power-Factor Monitoring and Correction
Power-Grid Protection
Multiphase Motor Control
Vibration and Waveform Analysis
8-Channel ADC (MAX11046/MAX11056)
6-Channel ADC (MAX11045/MAX11055)
4-Channel ADC (MAX11044/MAX11054)
o Single Analog and Digital Supply
o High-Impedance Inputs Up to 1GΩ
o On-Chip T/H Circuit for Each Channel
o Fast 3µs Conversion Time
o High Throughput: 250ksps for Each Channel
o 16-Bit/14-Bit, High-Speed, Parallel Interface
o Internal Clocked Conversions
o 10ns Aperture Delay
o 100ps Channel-to-Channel T/H Matching
o Low Drift, Accurate 4.096V Internal Reference
Providing an Input Range of ±5V
o External Reference Range of 3.0V to 4.25V,
Allowing Full-Scale Input Ranges of ±4.0V to ±5.2V
o 56-Pin (8mm x 8mm) TQFN and 64-Pin
(10mm x 10mm) TQFP Packages
o Evaluation Kit Available
Functional Diagram
AVDD
CLAMP
S/H
S/H
16-/14-BIT ADC
16-/14-BIT ADC
BIDIRECTIONAL DRIVERS
CH7†
CLAMP
AGNDS
CONFIGURATION
REGISTERS
AGND
INTERFACE
AND
CONTROL
BANDGAP
REFERENCE
REFIO
10kΩ
4
64 TQFP-EP*
4
DB4
MAX11045ETN+
56 TQFN-EP*
6
DB3/CR3
MAX11045ECB+
64 TQFP-EP*
6
DB0/CR0
MAX11046ETN+
56 TQFN-EP*
8
MAX11046ECB+
64 TQFP-EP*
8
MAX11054ECB+
64 TQFP-EP*
4
MAX11055ECB+
64 TQFP-EP*
6
MAX11056ECB+
64 TQFP-EP*
8
WR
RD
CONVST
SHDN
DGND
REF
BUF
EXT REF
CHANNELS
MAX11044ECB+
EOC
INT REF
PIN-PACKAGE
56 TQFN-EP*
CS
MAX11044/MAX11045/MAX11046/
MAX11054/MAX11055/MAX11056
PART
MAX11044ETN+
DB15**
8 x 16-/14-BIT REGISTERS
CH0
DVDD
Ordering Information
RDC
Note: All devices are specified over the -40°C to +85°C operating
temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
RDC_SENSE*
Pin Configurations appear at end of data sheet.
*CONNECTED INTERNALLY TO RDC ON THE TQFN PARTS
**MAX11044/MAX11045/MAX11046
†MAX11046/MAX11056
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
General Description
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
ABSOLUTE MAXIMUM RATINGS
AVDD to AGND ........................................................-0.3V to +6V
DVDD to AGND and DGND .....................................-0.3V to +6V
DGND to AGND.....................................................-0.3V to +0.3V
AGNDS to AGND...................................................-0.3V to +0.3V
CH0–CH7 to AGND ...............................................-7.5V to +7.5V
REFIO, RDC to AGND ..................................-0.3V to the lower of
(VAVDD + 0.3V) and +6V
EOC, WR, RD, CS, CONVST to AGND.........-0.3V to the lower of
(VDVDD + 0.3V) and +6V
DB0–DB15 to AGND ....................................-0.3V to the lower of
(VDVDD + 0.3V) and +6V
Maximum Current into Any Pin Except AVDD, DVDD, AGND,
DGND ...........................................................................±50mA
Continuous Power Dissipation
56-Pin TQFN (derate 47.6mW/°C above +70°C) ....3809.5mW
64-Pin TQFP (derate 43.5mW/°C above +70°C)........3478mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VAVDD = +4.75V to +5.25V, VDVDD = +2.70V to +5.25V, VAGNDS = VAGND = VDGND = 0V, VREFIO = internal reference, CRDC = 4 x
33µF, CREFIO = 0.1µF, CAVDD = 4 x 0.1µF || 10µF, CDVDD = 3 x 0.1µF || 10µF; all digital inputs at DVDD or DGND, unless otherwise
noted, fSAMPLE = 250ksps. TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
STATIC PERFORMANCE (Note 1)
Resolution
N
Integral Nonlinearity
INL
Differential Nonlinearity
DNL
No Missing Codes
MAX11044/MAX11045/MAX11046
MAX11054/MAX11055/MAX11056
MAX11044/MAX11045/MAX11046
MAX11054/MAX11055/MAX11056
MAX11044/MAX11045/MAX11046
MAX11054/MAX11055/MAX11056
MAX11044/MAX11045/MAX11046
MAX11054/MAX11055/MAX11056
16
14
> -2
-0.8
> -1
-0.6
16
14
Bits
±0.4
±0.13
±0.4
±0.15
< +2
+0.8
< +1.2
+0.6
LSB
LSB
Bits
Offset Error
±0.001
±0.015
%FSR
Channel Offset Matching
±0.001
±0.015
%FSR
Gain Error
±0.015
%FSR
Positive Full-Scale Error
±0.015
%FSR
Negative Full-Scale Error
±0.015
%FSR
Positive Full-Scale Error Matching
±0.01
%FSR
±0.01
%FSR
±0.01
%FSR
Offset Temperature Coefficient
±0.8
Negative Full-Scale Error Matching
Channel Gain-Error Matching
Between all channels
Gain Temperature Coefficient
±0.5
µV/°C
ppm/°C
DYNAMIC PERFORMANCE
Signal-to-Noise Ratio
Signal-to-Noise and Distortion
Ratio
2
SNR
SINAD
MAX11044/MAX11045/
MAX11046
fIN = 10kHz,
full-scale input MAX11054/MAX11055/
MAX11056
MAX11044/MAX11045/
MAX11046
fIN = 10kHz,
full-scale input MAX11054/MAX11055/
MAX11056
91
92.3
dB
84.5
85.2
90.5
92
84.5
85.2
dB
_______________________________________________________________________________________
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
(VAVDD = +4.75V to +5.25V, VDVDD = +2.70V to +5.25V, VAGNDS = VAGND = VDGND = 0V, VREFIO = internal reference, CRDC = 4 x
33µF, CREFIO = 0.1µF, CAVDD = 4 x 0.1µF || 10µF, CDVDD = 3 x 0.1µF || 10µF; all digital inputs at DVDD or DGND, unless otherwise
noted, fSAMPLE = 250ksps. TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
Spurious-Free Dynamic Range
Total Harmonic Distortion
SYMBOL
CONDITIONS
SFDR
MAX11044/MAX11045/
MAX11046
fIN = 10kHz,
full-scale input MAX11054/MAX11055/
MAX11056
THD
MIN
TYP
98
104
UNITS
dB
95
MAX11044/MAX11045/
MAX11046
fIN = 10kHz,
full-scale input MAX11054/MAX11055/
MAX11056
104
-105
-98
-104
-95
-126
-100
dB
±1.22 x
VREFIO
V
+1
µA
+20
mA
1
250
ksps
1
1000
µs
dB
fIN = 60Hz, full scale and ground on
adjacent channel (Note 2)
Channel-to-Channel Crosstalk
MAX
ANALOG INPUTS (CH0–CH7)
Input Voltage Range
(Note 3)
Input Leakage Current
-1
Input Capacitance
15
Input-Clamp Protection Current
Each input simultaneously
-20
pF
TRACK AND HOLD
Throughput Rate
Per channel
Acquisition Time
tACQ
-3dB point
Full-Power Bandwidth
4
-0.1dB point
MHz
> 0.2
Aperture Delay
10
ns
Aperture-Delay Matching
100
ps
Aperture Jitter
50
psRMS
INTERNAL REFERENCE
REFIO Voltage
VREF
4.08
REFIO Temperature Coefficient
4.096
4.112
±5
V
ppm/°C
EXTERNAL REFERENCE
Input Current
REF Voltage-Input Range
VREF
-10
+10
µA
3.00
4.25
V
REF Input Capacitance
15
pF
DIGITAL INPUTS (CR0–CR3, RD, WR, CS, CONVST)
Input Voltage High
VIH
VDVDD = 2.7V to 5.25V
Input Voltage Low
VIL
VDVDD = 2.7V to 5.25V
Input Capacitance
CIN
Input Current
IIN
2
V
0.8
10
VIN = 0V or VDVDD
V
pF
±10
µA
_______________________________________________________________________________________
3
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
ELECTRICAL CHARACTERISTICS (continued)
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
ELECTRICAL CHARACTERISTICS (continued)
(VAVDD = +4.75V to +5.25V, VDVDD = +2.70V to +5.25V, VAGNDS = VAGND = VDGND = 0V, VREFIO = internal reference, CRDC = 4 x
33µF, CREFIO = 0.1µF, CAVDD = 4 x 0.1µF || 10µF, CDVDD = 3 x 0.1µF || 10µF; all digital inputs at DVDD or DGND, unless otherwise
noted, fSAMPLE = 250ksps. TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
DIGITAL OUTPUTS (DB0–DB15, EOC)
Output Voltage High
VOH
ISOURCE = 1.2mA
Output Voltage Low
VOL
ISINK = 1mA
VDVDD 0.4
V
0.25
DB0–DB15, VRD ≥ VIH or VCS ≥ VIH
Three-State Leakage Current
DB0–DB15, VRD ≥ VIH or VCS ≥ VIH
Three-State Output Capacitance
0.4
V
10
µA
15
pF
Analog Supply Voltage
AVDD
4.75
5.25
V
Digital Supply Voltage
DVDD
2.70
5.25
V
Analog Supply Current
IAVDD
Digital Supply Current (Note 9)
Shutdown Current
Power-Supply Rejection
IDVDD
MAX11046/MAX11056, VAVDD = 5V
MAX11045/MAX11055, VAVDD = 5V
39
48
MAX11044/MAX11054, VAVDD = 5V
30
MAX11046/MAX11056, VDVDD = 3.3V
7.0
MAX11045/MAX11055, VDVDD = 3.3V
6.5
MAX11044/MAX11054, VDVDD = 3.3V
5.5
IDVDD
10
IAVDD
10
PSR
VAVDD = 4.9V
to 5.1V
(Note 5)
MAX11044/MAX11045/
MAX11046
mA
mA
µA
±1
LSB
MAX11054/MAX11055/
MAX11056
±0.25
TIMING CHARACTERISTICS (Note 4)
CONVST Rise to EOC
tCON
Acquisition Time
tACQ
Conversion time (Note 6)
1
3
µs
1000
µs
CS Rise to CONVST Rise
tQ
CONVST Rise to EOC Rise
t0
EOC Fall to CONVST Fall
t1
CONVST mode B0 = 0 only (Note 7)
0
CONVST Low Time
t2
CONVST mode B0 = 1 only
20
ns
CS Fall to WR Fall
t3
0
ns
WR Low Time
t4
20
ns
CS Rise to WR Rise
t5
0
ns
Input Data Setup Time
t6
10
ns
Input Data Hold Time
t7
1
ns
CS Fall to RD Fall
t8
0
ns
RD Low Time
t9
30
ns
4
Sample quiet time (Note 6)
500
ns
47
_______________________________________________________________________________________
140
ns
ns
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
(VAVDD = +4.75V to +5.25V, VDVDD = +2.70V to +5.25V, VAGNDS = VAGND = VDGND = 0V, VREFIO = internal reference, CRDC = 4 x
33µF, CREFIO = 0.1µF, CAVDD = 4 x 0.1µF || 10µF, CDVDD = 3 x 0.1µF || 10µF; all digital inputs at DVDD or DGND, unless otherwise
noted, fSAMPLE = 250ksps. TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
RD Rise to CS Rise
t10
0
RD High Time
t11
10
RD Fall to Data Valid
t12
RD Rise to Data Hold Time
t13
TYP
MAX
UNITS
ns
ns
35
(Note 7)
ns
5
ns
See the Definitions section at the end of the data sheet.
Tested with alternating channels modulated at full scale and ground.
See the Input Range and Protection section for more details.
CLOAD = 30pF on DB0–DB15 and EOC. Inputs (CH0–CH7) alternate between full scale and zero scale. fCONV = 250ksps.
All data is read out.
Note 5: Defined as the change in positive full scale caused by a ±2% variation in the nominal supply voltage.
Note 6: It is recommended that RD, WR, and CS are kept high for the quiet time (tQ) and conversion time (tCON).
Note 7: Guaranteed by design.
Note 1:
Note 2:
Note 3:
Note 4:
Typical Operating Characteristics
(VAVDD = 5V, VDVDD = 3.3V, TA = +25°C, fSAMPLE = 250ksps, internal reference, unless otherwise noted.)
DIFFERENTIAL NONLINEARITY vs. CODE
(MAX1104_)
0.800
0.600
0.400
0.2
0.200
INL (LSB)
0.4
0
-0.2
VAVDD = 5.0V
VDVDD = 3.3V
fSAMPLE = 250ksps
TA = +25°C
VRDC = 4.096V
-0.4
-0.6
-0.8
0
-0.200
VAVDD = 5.0V
VDVDD = 3.3V
fSAMPLE = 250ksps
TA = +25°C
VRDC = 4.096V
-0.400
-0.600
-0.800
MIN INL
-0.2
MIN DNL
-1.0
65536
57344
49152
40960
32768
24576
16384
8192
0
65536
57344
49152
40960
32768
24576
16384
8192
0
OUTPUT CODE (DECIMAL)
VDVDD = 3.3V
fSAMPLE = 250ksps
TA = +25°C
VRDC = 4.096V
MAX DNL
0.2
-0.6
-1.000
-1.0
MAX INL
0.6
INL AND DNL (LSB)
0.6
1.0
MAX11044 toc02
0.8
INL (LSB)
1.000
MAX11044 toc01
1.0
INL AND DNL vs. ANALOG SUPPLY VOLTAGE
(MAX1104_)
MAX11044 toc03
INTEGRAL NONLINEARITY vs. CODE
(MAX1104_)
4.75
4.85
4.95
5.05
5.15
5.25
VAVDD (V)
OUTPUT CODE (DECIMAL)
_______________________________________________________________________________________
5
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
ELECTRICAL CHARACTERISTICS (continued)
Typical Operating Characteristics (continued)
(VAVDD = 5V, VDVDD = 3.3V, TA = +25°C, fSAMPLE = 250ksps, internal reference, unless otherwise noted.)
INL AND DNL vs. TEMPERATURE
(MAX1104_)
45
1.0
MAX11046 CONVERTING
40
MAX11045 CONVERTING
MIN INL
MAX DNL
35
MAX11046 STATIC
30
-0.5
TA = +25°C,
fSAMPLE = 250ksps
MAX11045 STATIC
VAVDD = 5.0V
VDVDD = 3.3V
fSAMPLE = 250ksps
VRDC = 4.096V
MIN DNL
25
MAX11044 CONVERTING
MAX11044 STATIC
20
-1.5
-15
10
35
60
4.75
85
4.85
4.95
5.05
5.15
TEMPERATURE (°C)
VAVDD (V)
ANALOG SUPPLY CURRENT
vs. TEMPERATURE
DIGITAL SUPPLY CURRENT
vs. SUPPLY VOLTAGE
45
MAX11046 CONVERTING
40
12
MAX11044 toc06
-40
10
5.25
MAX11044 toc07
0
IAVDD (mA)
0.5
-1.0
TA = +25°C
fSAMPLE = 250ksps
MAX11046 CONVERTING
MAX11045 CONVERTING
35
8
30
IDVDD (mA)
MAX11046 STATIC
MAX11045 STATIC
VAVDD = 5.0V
fSAMPLE = 250ksps
6
MAX11045 CONVERTING
4
MAX11044 CONVERTING
25
2
MAX11044 CONVERTING
20
-40
-15
10
MAX11044/MAX11045/MAX11046 STATIC
MAX11044 STATIC
35
TEMPERATURE (°C)
6
MAX11044 toc05
MAX INL
INL AND DNL (LSB)
ANALOG SUPPLY CURRENT
vs. SUPPLY VOLTAGE
MAX11044 toc04
1.5
IAVDD (mA)
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
60
85
0
2.75
3.25
3.75
4.25
VDVDD (V)
_______________________________________________________________________________________
4.75
5.25
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
VDVDD = 3.3V
fSAMPLE = 250ksps
CDBxx = 15pF
2.4
MAX11044 CONVERTING
3
TA = +25°C
IAVDD
2
IDVDD
4
IAVDD
3
2
IDVDD
1
1
1.2
MAX11044/MAX11045/MAX11046 STATIC
0
0
0
10
35
-40
85
60
-15
10
35
2.75
85
60
3.75
4.25
4.75
5.25
VAVDD OR VDVDD (V)
INTERNAL REFERENCE VOLTAGES
vs. SUPPLY VOLTAGE
INTERNAL REFERENCE VOLTAGE
vs. TEMPERATURE
4.112
MAX1960 toc10
4.09630
TA = +25°C
4.09625
VAVDD = 5.0V
4.108
4.09620
4.104
4.09615
4.100
VREFIO (V)
VREF (V)
3.25
TEMPERATURE (°C)
TEMPERATURE (°C)
VRDC
4.09610
4.09605
MAX1960 toc11
-15
UPPER TYPICAL LIMIT
4.096
4.092
4.09600
LOWER TYPICAL LIMIT
4.088
VREFIO
4.09595
4.084
4.09590
4.080
4.75
4.85
4.95
5.05
5.15
5.25
-40
-15
10
35
60
VAVDD (V)
TEMPERATURE (°C)
OFFSET ERROR AND OFFSET ERROR
MATCHING vs. SUPPLY VOLTAGE
OFFSET ERROR AND OFFSET ERROR
MATCHING vs. TEMPERATURE
fSAMPLE = 250ksps
TA = +25°C
VRDC = 4.096V
0.006
fSAMPLE = 250ksps
VAVDD = 5.0V
VREFIO = 4.096V
0.006
OFFSET ERROR MATCHING
ERRORS (%FS)
OFFSET ERROR MATCHING
0.002
-0.002
0.010
MAX11044 toc12
0.010
85
MAX11044 toc13
-40
ERRORS (%FS)
IDVDD (mA)
4.8
3.6
4
5
SHUTDOWN CURRENT (µA)
MAX11045 CONVERTING
VAVDD = 5.0V
VDVDD = 3.3V
SHUTDOWN CURRENT (µA)
MAX11046 CONVERTING
MAX11044 toc09
5
MAX11044 toc08
7.2
6.0
ANALOG AND DIGITAL SHUTDOWN
CURRENT vs. SUPPLY VOLTAGE
ANALOG AND DIGITAL SHUTDOWN
CURRENT vs. TEMPERATURE
MAX11044 toc09a
DIGITAL SUPPLY CURRENT
vs. TEMPERATURE
OFFSET ERROR
0.002
-0.002
OFFSET ERROR
-0.006
-0.006
-0.010
-0.010
4.75
4.85
4.95
5.05
VAVDD (V)
5.15
5.25
-40
-15
10
35
60
85
TEMPERATURE (°C)
_______________________________________________________________________________________
7
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
Typical Operating Characteristics (continued)
(VAVDD = 5V, VDVDD = 3.3V, TA = +25°C, fSAMPLE = 250ksps, internal reference, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VAVDD = 5V, VDVDD = 3.3V, TA = +25°C, fSAMPLE = 250ksps, internal reference, unless otherwise noted.)
GAIN ERROR AND GAIN ERROR
MATCHING vs. TEMPERATURE
0.002
-0.002
0.006
GAIN ERROR MATCHING
0.002
-0.002
fIN = 10kHz
fSAMPLE = 250ksps
TA = +25°C
VAVDD = 5.0V
-20
GAIN ERROR
ERRORS (%FS)
GAIN ERROR
fSAMPLE = 250ksps
VAVDD = 5.0V
VREFIO = 4.096V
MAGNITUDE (dB)
0.006
0
MAX11044 toc15
fSAMPLE = 250ksps
TA = +25°C
VRDC = 4.096V
FFT PLOT (MAX1104_)
0.010
MAX11044 toc14
0.010
GAIN ERROR MATCHING
-40
MAX11044 toc16
GAIN ERROR AND GAIN ERROR
MATCHING vs. SUPPLY VOLTAGE
ERRORS (%FS)
-60
-80
-100
-0.006
-0.006
-120
-0.010
4.85
4.95
5.05
-140
-40
5.25
5.15
-15
10
35
85
60
50
-60
-80
-100
fIN = 10kHz
fSAMPLE = 250ksps
TA = +25°C
VAVDD = 5.0V
VRDC = 4.096V
VIN = -0.025dB FROM FS
94
SNR AND SINAD (dB)
-40
100
95
MAX11044 toc17
fIN1 = 9838Hz
fIN2 = 10235Hz
fSAMPLE = 250ksps
TA = +25°C
VAVDD = 5.0V
VRDC = 4.096V
VIN = -0.01dBFS
-20
75
FREQUENCY (kHz)
TWO-TONE IMD PLOT (MAX1104_)
93
SNR
92
SINAD
91
-120
-140
90
7.2
8.0
8.8
9.6
10.4
11.2
12.0
-15
10
35
85
60
TOTAL HARMONIC DISTORTION
vs. TEMPERATURE (MAX1104_)
SNR AND SINAD vs. ANALOG SUPPLY
VOLTAGE (MAX1104_)
MAX11044 toc19
93.0
SNR
SNR AND SINAD (dB)
-104.5
-40
TEMPERATURE (°C)
fIN = 10kHz
fSAMPLE = 250ksps
TA = +25°C
VAVDD = 5.0V
VRDC = 4.096V
VIN = -0.025dB FROM FS
-104.0
12.8
FREQUENCY (kHz)
-103.5
-105.0
-105.5
92.5
92.0
SINAD
fIN = 10kHz
fSAMPLE = 250ksps
TA = +25°C
VRDC = 4.096V
VIN = -0.025dB FROM FS
91.5
-106.0
-106.5
91.0
-40
-15
10
35
TEMPERATURE (°C)
8
25
SIGNAL-TO-NOISE RATIO AND
SIGNAL-TO-NOISE AND DISTORTION
RATIO vs. TEMPERATURE (MAX1104_)
0
MAGNITUDE (dB)
0
TEMPERATURE (°C)
VAVDD (V)
MAX11044 toc20
4.75
MAX11044 toc18
-0.010
THD (dB)
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
60
85
4.75
4.85
4.95
5.05
VAVDD (V)
_______________________________________________________________________________________
5.15
5.25
125
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
SIGNAL-TO-NOISE AND DISTORTION RATIO
vs. FREQUENCY (MAX1104_)
92
THD (dB)
SINAD (dB)
88
-106
-100
fSAMPLE = 250ksps
TA = +25°C
VAVDD = 5.0V
VRDC = 4.096V
VIN = -0.025dB from FS
86
84
-105
82
-107
4.85
4.95
5.05
5.15
-110
0.1
5.25
1
100
10
100
10
OUTPUT NOISE HISTOGRAM WITH INPUT
CONNECTED TO AGNDS (MAX1104_)
200,000
MAX11044 toc24
-90
fIN = 60Hz
fSAMPLE = 250ksps
TA = +25°C
VAVDD = 5.0V
VRDC = 4.096V
VIN = -0.025dB FROM FS
INACTIVE CHANNEL AT GND
NUMBER OF OCCURANCES
CROSSTALK (dB)
1
FREQUENCY (kHz)
CROSSTALK vs. FREQUENCY
-110
0.1
FREQUENCY (kHz)
VAVDD (V)
-100
-95
-120
-130
VCH = 0V
VAVDD = 5.0V
VRDC = 4.096V
fSAMPLE = 250ksps
150,000
MAX11044 toc25
-105
4.75
fSAMPLE = 250ksps
TA = +25°C
VAVDD = 5.0V
VRDC = 4.096V
VIN = -0.025dB from FS
-90
90
-104
100,000
50,000
0
32771
32770
32769
FREQUENCY (kHz)
32768
100
10
32767
1
32766
0.1
32765
-140
OUTPUT CODE (DECIMAL)
CONVERSION TIME
vs. ANALOG SUPPLY VOLATAGE
MAX11044 toc26
TA = +25°C
2.99
3.00
CONVERSION TIME (µs)
2.98
VAVDD = 5.0V
2.99
2.97
2.96
2.95
2.94
MAX11044 toc27
CONVERSION TIME vs. TEMPERATURE
3.00
CONVERSION TIME (µs)
THD (dB)
-85
MAX11044 toc22
fIN = 10kHz
fSAMPLE = 250ksps
TA = +25°C
VRDC = 4.096V
VIN = -0.025dB FROM FS
-103
94
MAX11044 toc21
-102
THD vs. INPUT FREQUENCY
(MAX1104_)
MAX11044 toc23
THD vs. ANALOG SUPPLY VOLTAGE
(MAX1104_)
2.98
2.97
2.96
2.95
2.94
2.93
2.93
2.92
2.92
4.75
4.85
4.95
5.05
VAVDD (V)
5.15
5.25
-40
-15
10
35
60
85
TEMPERATURE(°C)
_______________________________________________________________________________________
9
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
Typical Operating Characteristics (continued)
(VAVDD = 5V, VDVDD = 3.3V, TA = +25°C, fSAMPLE = 250ksps, internal reference, unless otherwise noted.)
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
Pin Description
PIN
MAX11044
(TQFN-EP)
MAX11045
(TQFN-EP)
MAX11046
(TQFN-EP)
NAME
FUNCTION
1
1
1
DB13
16-Bit Parallel Data Bus Digital Output Bit 13
2
2
2
DB12
16-Bit Parallel Data Bus Digital Output Bit 12
3
3
3
DB11
16-Bit Parallel Data Bus Digital Output Bit 11
4
4
4
DB10
16-Bit Parallel Data Bus Digital Output Bit 10
5
5
5
DB9
16-Bit Parallel Data Bus Digital Output Bit 9
6
6
6
DB8
7, 21, 50
7, 21, 50
7, 21, 50
DGND
Digital Ground
16-Bit Parallel Data Bus Digital Output Bit 8
8, 20, 51
8, 20, 51
8, 20, 51
DVDD
Digital Supply. Bypass to DGND with a 0.1µF capacitor
at each DVDD input.
9
9
9
DB7
16-Bit Parallel Data Bus Digital Output Bit 7
10
10
10
DB6
16-Bit Parallel Data Bus Digital Output Bit 6
11
11
11
DB5
16-Bit Parallel Data Bus Digital Output Bit 5
12
12
12
DB4
16-Bit Parallel Data Bus Digital Output Bit 4
13
13
13
DB3/CR3
16-Bit Parallel Data Bus Digital Output Bit 3/
Configuration Register Input Bit 3
14
14
14
DB2/CR2
16-Bit Parallel Data Bus Digital Output Bit 2/
Configuration Register Input Bit 2
15
15
15
DB1/CR1
16-Bit Parallel Data Bus Digital Output Bit 1/
Configuration Register Input Bit 1
16
16
16
DB0/CR0
16-Bit Parallel Data Bus Digital Output Bit 0/
Configuration Register Input Bit 0
17
17
17
EOC
Active-Low End-of-Conversion Output. EOC goes low
when conversion is completed. EOC goes high when a
conversion is initiated.
CONVST
Convert Start Input. Rising edge of CONVST ends
sample and starts a conversion on the captured sample.
The ADC is in acquisition mode when CONVST is low
and CONVST mode = 0.
SHDN
Shutdown Input. If SHDN is held high, the entire device
will enter and stay in a low-current state. Contents of
the configuration register are not lost when in the
shutdown mode.
18
18
18
19
19
19
22, 28, 35, 43,
49
22, 28, 35, 43,
49
22, 28, 35, 43,
49
RDC
Reference Buffer Decoupling. Connect all RDC outputs
together. Bypass to AGND with at least an 80µF total
capacitance. See the Layout, Grounding, and Bypassing
section.
23, 27, 33, 38,
44, 48
23, 27, 33, 38,
44, 48
23, 27, 33, 38,
44, 48
AGNDS
Signal Ground. Connect all AGND and AGNDS inputs
together on PWB.
10
______________________________________________________________________________________
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
PIN
MAX11044
(TQFN-EP)
MAX11045
(TQFN-EP)
MAX11046
(TQFN-EP)
NAME
FUNCTION
24, 30, 41, 47
24, 30, 41, 47
24, 30, 41, 47
AVDD
25, 31, 40, 46
25, 31, 40, 46
25, 31, 40, 46
AGND
32
29
26
CH0
Channel 0 Analog Input
34
32
29
CH1
Channel 1 Analog Input
37
34
32
CH2
Channel 2 Analog Input
39
37
34
CH3
Channel 3 Analog Input
36
36
36
REFIO
—
39
37
CH4
Channel 4 Analog Input
—
42
39
CH5
Channel 5 Analog Input
—
—
42
CH6
Channel 6 Analog Input
—
—
45
CH7
Channel 7 Analog Input
52
52
52
WR
Active-Low Write Input. Drive WR low to write to the
ADC. Configuration registers are loaded on the rising
edge of WR.
53
53
54
CS
Active-Low Chip-Select Input. Drive CS low when
reading from or writing to the ADC.
54
54
54
RD
Active-Low Read Input. Drive RD low to read from the
ADC. Each rising edge of RD advances the channel
output on the data bus.
55
55
55
DB15
Analog Supply Input. Bypass AVDD to AGND with a
0.1µF capacitor at each AVDD input.
Analog Ground. Connect all AGND inputs together.
External Reference Input/Internal Reference Output.
Place a 0.1µF capacitor from REFIO to AGND.
16-Bit Parallel Data Bus Digital Output Bit 15
56
56
56
DB14
26, 29, 42, 45
26, 45
—
I.C.
Internally Connected. Connect to AGND.
16-Bit Parallel Data Bus Digital Output Bit 14
—
—
—
EP
Exposed Pad. Internally connected to AGND. Connect to
a large ground plane to maximize thermal performance.
Not intended as an electrical connection point.
______________________________________________________________________________________
11
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
Pin Description (continued)
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
Pin Description (continued)
PIN
MAX11044
(TQFP-EP)
MAX11045
(TQFP-EP)
MAX11046
(TQFP-EP)
NAME
FUNCTION
1
1
1
DB14
16-Bit Parallel Data Bus Digital Output Bit 14
2
2
2
DB13
16-Bit Parallel Data Bus Digital Output Bit 13
3
3
3
DB12
16-Bit Parallel Data Bus Digital Output Bit 12
4
4
4
DB11
16-Bit Parallel Data Bus Digital Output Bit 11
5
5
5
DB10
16-Bit Parallel Data Bus Digital Output Bit 10
6
6
6
DB9
16-Bit Parallel Data Bus Digital Output Bit 9
7
7
7
DB8
16-Bit Parallel Data Bus Digital Output Bit 8
8, 22, 59
8, 22, 59
8, 22, 59
DGND
Digital Ground
Digital Supply. Bypass to DGND with a 0.1µF capacitor
at each DVDD input.
9, 21, 60
9, 21, 60
9, 21, 60
DVDD
10
10
10
DB7
16-Bit Parallel Data Bus Digital Output Bit 7
11
11
11
DB6
16-Bit Parallel Data Bus Digital Output Bit 6
12
12
12
DB5
16-Bit Parallel Data Bus Digital Output Bit 5
13
13
13
DB4
16-Bit Parallel Data Bus Digital Output Bit 4
14
14
14
DB3/CR3
16-Bit Parallel Data Bus Digital Output Bit 3/
Configuration Register Input Bit 3
15
15
15
DB2/CR2
16-Bit Parallel Data Bus Digital Output Bit 2/
Configuration Register Input Bit 2
16
16
16
DB1/CR1
16-Bit Parallel Data Bus Digital Output Bit 1/
Configuration Register Input Bit 1
17
17
17
DB0/CR0
16-Bit Parallel Data Bus Digital Output Bit 0/
Configuration Register Input Bit 0
18
18
18
EOC
Active-Low End-of-Conversion Output. EOC goes low
when conversion is completed. EOC goes high when a
conversion is initiated.
CONVST
Convert Start Input. Rising edge of CONVST ends
sample and starts a conversion on the captured sample.
The ADC is in acquisition mode when CONVST is low
and CONVST mode = 0.
Shutdown Input. If SHDN is held high, the entire device
will enter and stay in a low-current state. Contents of
the configuration register are not lost when in the
shutdown mode.
19
19
19
20
20
20
SHDN
23, 28, 32, 38,
43, 49, 53, 58
23, 28, 32, 38,
43, 49, 53, 58
23, 28, 32, 38,
43, 49, 53, 58
AGNDS
24, 29, 35, 46,
52, 57
24, 29, 35, 46,
52, 57
24, 29, 35, 46,
52, 57
AVDD
Analog Supply Input. Bypass AVDD to AGND with a
0.1µF capacitor at each AVDD input.
25, 30, 36, 45,
51, 56
25, 30, 36, 45,
51, 56
25, 30, 36, 45,
51, 56
AGND
Analog Ground. Connect all AGND inputs together.
12
Signal Ground. Connect all AGND and AGNDS inputs
together on PWB.
______________________________________________________________________________________
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
PIN
MAX11044
(TQFP-EP)
MAX11045
(TQFP-EP)
MAX11046
(TQFP-EP)
NAME
FUNCTION
26, 55
26, 55
26, 55
RDC_SENSE
27, 33, 40, 48,
54
27, 33, 40, 48,
54
27, 33, 40, 48,
54
RDC
Reference Buffer Decoupling. Connect all RDC outputs
together. Bypass to AGND with at least an 80µF total
capacitance. See the Layout, Grounding, and Bypassing
section.
37
39
34
37
31
34
CH0
CH1
Channel 0 Analog Input
Channel 1 Analog Input
42
39
37
CH2
Channel 2 Analog Input
44
42
39
CH3
Channel 3 Analog Input
41
41
41
REFIO
—
44
42
CH4
—
47
44
CH5
Channel 5 Analog Input
—
—
47
CH6
Channel 6 Analog Input
—
—
50
CH7
Channel 7 Analog Input
61
61
61
WR
Active-Low Write Input. Drive WR low to write to the
ADC. Configuration registers are loaded on the rising
edge of WR.
62
62
62
CS
Active-Low Chip-Select Input. Drive CS low when
reading from or writing to the ADC.
63
63
63
RD
Active-Low Read Input. Drive RD low to read from the
ADC. Each rising edge of RD advances the channel
output on the data bus.
Reference Buffer Sense Feedback. Connect to RDC
External Reference Input/Internal Reference Output.
Place a 0.1µF capacitor from REFIO to AGND.
Channel 4 Analog Input
64
64
64
DB15
31, 34, 47, 50
31, 50
—
I.C.
Internally Connected. Connect to AGND.
16-Bit Parallel Data Bus Digital Output Bit 15
—
—
—
EP
Exposed Pad. Internally connected to AGND. Connect to
a large ground plane to maximize thermal performance.
Not intended as an electrical connection point.
______________________________________________________________________________________
13
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
Pin Description (continued)
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
Pin Description (continued)
PIN
MAX11054
(TQFP-EP)
MAX11055
(TQFP-EP)
MAX11056
(TQFP-EP)
NAME
FUNCTION
1
1
1
DB12
14-Bit Parallel Data Bus Digital Output Bit 12
2
2
2
DB11
14-Bit Parallel Data Bus Digital Output Bit 11
3
3
3
DB10
14-Bit Parallel Data Bus Digital Output Bit 10
4
4
4
DB9
14-Bit Parallel Data Bus Digital Output Bit 9
5
5
5
DB8
14-Bit Parallel Data Bus Digital Output Bit 8
6
6
6
DB7
14-Bit Parallel Data Bus Digital Output Bit 7
7
7
7
DB6
8, 22, 59
8, 22, 59
8, 22, 59
DGND
Digital Ground
9, 21, 60
9, 21, 60
9, 21, 60
DVDD
Digital Supply. Bypass to DGND with a 0.1µF capacitor
at each DVDD input.
10
10
10
DB5
14-Bit Parallel Data Bus Digital Output Bit 5
11
11
11
DB4
14-Bit Parallel Data Bus Digital Output Bit 4
12
12
12
DB3
14-Bit Parallel Data Bus Digital Output Bit 3
13
13
13
DB2
14-Bit Parallel Data Bus Digital Output Bit 2
14
14
14
DB1/CR3
14-Bit Parallel Data Bus Digital Output Bit 1/
Configuration Register Input Bit 3
15
15
15
DB0/CR2
14-Bit Parallel Data Bus Digital Output Bit 0/
Configuration Register Input Bit 2
16
16
16
CR1
Configuration Register Input Bit 1
17
17
17
CR0
Configuration Register Input Bit 0
18
18
18
EOC
Active-Low End-of-Conversion Output. EOC goes low
when conversion is completed. EOC goes high when a
conversion is initiated.
CONVST
Convert Start Input. Rising edge of CONVST ends
sample and starts a conversion on the captured sample.
The ADC is in acquisition mode when CONVST is low
and CONVST mode = 0.
Shutdown Input. If SHDN is held high, the entire device
will enter and stay in a low-current state. Contents of
the configuration register are not lost when in the
shutdown mode.
14-Bit Parallel Data Bus Digital Output Bit 6
19
19
19
22, 28, 35, 43,
49
22, 28, 35, 43,
49
22, 28, 35, 43,
49
SHDN
23, 28, 32, 38,
43, 49, 53, 58
23, 28, 32, 38,
43, 49, 53, 58
23, 28, 32, 38,
43, 49, 53, 58
AGNDS
24, 29, 35, 46,
52, 57
24, 29, 35, 46,
52, 57
24, 29, 35, 46,
52, 57
AVDD
Analog Supply Input. Bypass AVDD to AGND with a
0.1µF capacitor at each AVDD input.
25, 30, 36, 45,
51, 56
25, 30, 36, 45,
51, 56
25, 30, 36, 45,
51, 56
AGND
Analog Ground. Connect all AGND inputs together.
26, 55
26, 55
26, 55
RDC_SENSE
14
Signal Ground. Connect all AGND and AGNDS inputs
together on PWB.
Reference Buffer Sense Feedback. Connect to RDC plane.
______________________________________________________________________________________
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
PIN
NAME
FUNCTION
27, 33, 40, 48,
54
RDC
Reference Buffer Decoupling. Connect all RDC outputs
together. Bypass to AGND with at least an 80µF total
capacitance. See the Layout, Grounding, and Bypassing
section.
34
31
CH0
Channel 0 Analog Input
39
37
34
CH1
Channel 1 Analog Input
42
39
37
CH2
Channel 2 Analog Input
44
42
39
CH3
Channel 3 Analog Input
41
41
41
REFIO
—
44
42
CH4
—
47
44
CH5
Channel 5 Analog Input
—
—
47
CH6
Channel 6 Analog Input
—
—
50
CH7
Channel 7 Analog Input
61
61
61
WR
Active-Low Write Input. Drive WR low to write to the
ADC. Configuration registers are loaded on the rising
edge of WR.
62
62
62
CS
Active-Low Chip-Select Input. Drive CS low when
reading from or writing to the ADC.
63
63
63
RD
Active-Low Read Input. Drive RD low to read from the
ADC. Each rising edge of RD advances the channel
output on the data bus.
MAX11054
(TQFP-EP)
MAX11055
(TQFP-EP)
MAX11056
(TQFP-EP)
27, 33, 40, 48,
54
27, 33, 40, 48,
54
37
External Reference Input/Internal Reference Output.
Place a 0.1µF capacitor from REFIO to AGND.
Channel 4 Analog Input
64
64
64
DB13
31, 34, 47, 50
31, 50
—
I.C.
Internally Connected. Connect to AGND.
—
—
—
EP
Exposed Pad. Internally connected to AGND. Connect to
a large ground plane to maximize thermal performance.
Not intended as an electrical connection point.
Detailed Description
The MAX11044/MAX11045/MAX11046 and MAX11054/
MAX11055/MAX11056 are fast, low-power ADCs that
combine 4, 6, or 8 independent ADC channels in a single IC. Each channel includes simultaneously sampling
independent T/H circuitry that preserves relative phase
information between inputs making the MAX11044/
MAX11045/MAX11046 and MAX11054/MAX11055/
MAX11056 ideal for motor control and power monitoring. The MAX11044/MAX11045/MAX11046 and
MAX11054/MAX11055/MAX11056 are available with
±5V input ranges that feature ±20mA overrange, faulttolerant inputs. The MAX11044/MAX11045/MAX11046
14-Bit Parallel Data Bus Digital Output Bit 14
and MAX11054/MAX11055/MAX11056 operate with a
single 4.75V to 5.25V supply. A separate 2.7V to 5.25V
supply for digital circuitry makes the devices compatible
with low-voltage processors.
The MAX11044/MAX11045/MAX11046 and MAX11054/
MAX11055/MAX11056 perform conversions for all channels in parallel by activating independent ADCs. Results
are available through a high-speed, 20MHz, parallel
data bus after a conversion time of 3µs following the end
of a sample. The data bus is bidirectional and allows for
easy programming of the configuration register. The
MAX11044/MAX11045/MAX11046 and MAX11054/
MAX11055/MAX11056 feature a reference buffer, which
______________________________________________________________________________________
15
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
Pin Description (continued)
is driven by an internal bandgap reference circuit (VREFIO = 4.096V). Drive REFIO with an external reference or
bypass with 0.1µF capacitor to ground when using the
internal reference.
Analog Inputs
Track and Hold (T/H)
To preserve phase information across all channels,
each input includes a dedicated T/H circuitry. The input
tracking circuitry provides a 4MHz small-signal bandwidth, enabling the device to digitize high-speed transient events and measure periodic signals with
bandwidths exceeding the ADC’s sampling rate by
using undersampling techniques. Use anti-alias filtering
to avoid high-frequency signals being aliased into the
frequency band of interest.
Input Range and Protection
The full-scale analog input voltage is a product of the reference voltage. For the MAX11044/MAX11045/
MAX11046 and MAX11054/MAX11055/MAX11056, the
full-scale input is bipolar in the range of:
±(VREFIO x
5
)
4.096
When in external reference mode, drive VREFIO with a
3.0V to 4.25V source, resulting in an input range of
±3.662V to ±5.188V, respectively.
All analog inputs are fault-protected to up to ±20mA.
The MAX11044/MAX11045/MAX11046 and MAX11054/
MAX11055/MAX11056 include an input clamping circuit
that activates when the input voltage at the analog input
is above (VAVDD + 300mV) or below –(VAVDD + 300mV).
The clamp circuit remains high impedance while the
input signal is within the range of ±VAVDD and draws little or almost no current. However, when the input signal
exceeds ±V AVDD , the clamps begin to turn on and
shunt current to/from the AVDD supply. Consequently,
to obtain the highest accuracy, ensure that the input
voltage does not exceed ±(VAVDD + 0.3V).
To make use of the input clamps (see Figure 1), connect a resistor (RS) between the analog input and the
voltage source to limit the voltage at the analog input so
that the fault current into the MAX11044/MAX11045/
MAX11046 and MAX11054/MAX11055/MAX11056 does
not exceed ±20mA. Note that the voltage at the analog
input pin limits to approximately 7V during a fault condition so the following equation can be used to calculate
the value of RS:
PIN
VOLTAGE
INPUT
SIGNAL
AVDD
CH0
CLAMP
S/H
16-/14-BIT ADC
SOURCE
CH7†
CLAMP
S/H
16-/14-BIT ADC
BIDIRECTIONAL DRIVERS
RS
DVDD
DB15**
8 x 16-/14-BIT REGISTERS
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
AGNDS
CONFIGURATION
REGISTERS
AGND
INTERFACE
AND
CONTROL
DB4
DB3/CR3
DB0/CR0
WR
RD
CS
MAX11044/MAX11045/MAX11046/
MAX11054/MAX11055/MAX11056
INT REF
10kΩ
BANDGAP
REFERENCE
SHDN
EOC
REF
BUF
EXT REF
REFIO
CONVST
DGND
RDC
RDC_SENSE*
*CONNECTED INTERNALLY ON THE TQFN PARTS TO RDC
**MAX11044/MAX11045/MAX11046
†MAX11046/MAX11056
Figure 1. Required Setup for Clamp Circuit
16
______________________________________________________________________
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
where VFAULT_MAX is the maximum voltage that the
source produces during a fault condition.
Figures 2 and 3 illustrate the clamp circuit voltage-current characteristics for a source impedance R S =
1280Ω. While the input voltage is within the ±(VAVDD +
300mV) range, no current flows in the input clamps.
Once the input voltage goes beyond this voltage range,
the clamps turn on and limit the voltage at the input pin.
Applications Information
Digital Interface
The bidirectional, parallel, digital interface, CR0–CR3,
sets the 4-bit configuration register. This interface configures the following control signals: chip select (CS),
read (RD), write (WR), end of conversion (EOC), and
convert start (CONVST). Figures 6 and 7 and the
Timing Characteristics in the Electrical Characteristics
table show the operation of the interface.
DB0–DB15/DB13 output the 16-/14-bit conversion result.
All bits are high impedance when RD = 1 or CS = 1.
CR3 (Int/Ext Reference)
CR3 selects the internal or external reference. The POR
default = 0.
0 = internal reference, REFIO internally driven through a
10kΩ resistor, bypass with 0.1µF capacitor to AGND.
1 = external reference, drive REFIO with a high-quality
reference.
20
CR0 (CONVST Mode)
CR0 selects the acquisition mode. The POR default = 0.
0 = CONVST controls the acquisition and conversion.
Drive CONVST low to start acquisition. The rising edge
of CONVST begins the conversion.
1 = acquisition mode starts as soon as the previous
conversion is complete. The rising edge of CONVST
begins the conversion.
Programming the Configuration Register
To program the configuration register, bring the CS and
WR low and apply the required configuration data on
CR3–CR0 of the bus and then raise WR once to save
changes.
CAUTION: When the configuration register is not
being programmed, the host driving CR3–CR0 must
relinquish the bus when the conversion results of
the ADC are being read!
Table 1. Configuration Register
CR3
CR2
CR1
CR0
Int/Ext
Reference
Output
Data Format
Must be set
to 0
CONVST
Mode
30
MAX11044 fig02
30
CR1 (Reserved)
CR1 must be set to 0.
RS = 1280Ω
VAVDD = 5V
MAX11044 fig03
VFAULT _ MAX - 7V
20mA
RS = 1280Ω
VAVDD = 5V
20
AT CH_ INPUT
10
ICLAMP (mA)
ICLAMP (mA)
AT CH_ INPUT
AT SOURCE
0
10
AT SOURCE
0
-10
-10
-20
-20
-30
-30
-50
-30
-10
10
30
SIGNAL VOLTAGE AT SOURCE AND PIN (V)
Figure 2. Input Clamp Characteristics
50
-8
-6
-4
-2
0
2
4
6
8
SIGNAL VOLTAGE AT SOURCE AND PIN (V)
Figure 3. Input Clamp Characteristics (Zoom In)
______________________________________________________________________________________
17
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
RS =
CR2 (Output Data Format)
CR2 selects the output data format. The POR default = 0.
0 = offset binary.
1 = two’s complement.
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
Starting a Conversion
Reading Conversion Results
CONVST initiates conversions. The MAX11044/
MAX11045/MAX11046 and MAX11054/MAX11055/
MAX11056 provide two acquisition modes set through
the configuration register. Allow a quiet time (tQ) of
500ns prior to the start of conversion to avoid any noise
interference during readout or write operations from
corrupting a sample.
In default mode (CR0 = 0), drive CONVST low to place
the MAX11044/MAX11045/MAX11046 and MAX11054/
MAX11055/MAX11056 into acquisition mode. All the
input switches are closed and the internal T/H circuits
track the respective input voltage. Keep the CONVST
signal low for at least 1µs (tACQ) to enable proper settling of the sampled voltages. On the rising edge of
CONVST, the switches are opened and the
MAX11044/MAX11045/MAX11046 and MAX11054/
MAX11055/MAX11056 begin the conversion on all the
samples in parallel. EOC remains high until the conversion is completed.
In the second mode (CR0 = 1), the MAX11044/
MAX11045/MAX11046 and MAX11054/MAX11055/
MAX11056 enter acquisition mode as soon as the previous conversion is completed. CONVST rising edge initiates the next sample and conversion sequence.
CONVST needs to be low for at least 20ns to be valid.
Provide adequate time for acquisition and the requisite
quiet time in both modes to achieve accurate sampling
and maximum performance of the MAX11044/
MAX11045/MAX11046 and MAX11054/MAX11055/
MAX11056.
The CS and RD are active-low, digital inputs that control the readout through the 16-/14-bit, parallel, 20MHz
data bus (D0–D15/D13). After EOC transitions low, read
the conversion data by driving CS and RD low. Each
low period of RD presents the next channel’s result.
When CS or RD are high, the data bus is high impedance. CS may be driven high between individual channel readouts or left low during the entire 8-channel
readout.
CS
(USER SUPPLIED)
t5
t3
Reference
Internal Reference
The MAX11044/MAX11045/MAX11046 and MAX11054/
MAX11055/MAX11056 feature a precision, low-drift,
internal bandgap reference. Bypass REFIO with a 0.1µF
capacitor to AGND to reduce noise. The REFIO output
voltage may be used as a reference for other circuits. The
output impedance of REFIO is 10kΩ. Drive only high
impedance circuits or buffer externally when using REFIO
to drive external circuitry.
External Reference
Set the configuration register to disable the internal reference and drive REFIO with a high-quality external reference. To avoid signal degradation, ensure that the
integrated reference noise applied to REFIO is less
than 10µV in the bandwidth of up to 50kHz.
CS
(USER SUPPLIED)
t6
t13
t12
t7
DB0–DB15
Sn
CONFIGURATION
REGISTER
Figure 4. Programming Configuration-Register Timing
Requirements
18
t11
RD
(USER SUPPLIED)
WR
(USER SUPPLIED)
CR0–CR3
(USER SUPPLIED)
t10
t9
t8
t4
Figure 5. Readout Timing Requirements
______________________________________________________________________________________
Sn + 1
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
SAMPLE
tCON
tACQ
CONVST
t1
EOC
tO
tQ
CS
RD
DB0–DB15
S0
S1
S6
S7
Figure 6. Conversion Timing Diagram (CR0 = 0)
SAMPLE
tCON
tACQ
CONVST
t2
EOC
tO
tQ
CS
RD
DB0–DB15
S0
S1
S6
S7
Figure 7. Conversion Timing Diagram (CR0 = 1)
______________________________________________________________________________________
19
Reference Buffer
The MAX11044/MAX11045/MAX11046 and MAX11054/
MAX11055/MAX11056 have a built-in reference buffer
to provide a low-impedance reference source to the
SAR converters. This buffer is used in both internal and
external reference mode. The reference buffer output
feeds five RDC pins. The RDC pins should be all connected together on the PCB. The reference buffer is
externally compensated and requires at least 10µF on
the RDC node. For best performance, provide a total of
at least 80µF on the RDC outputs.
Transfer Functions
Figures 8 and 9 show the transfer functions for all the
formats and devices. Code transitions occur halfway
between successive-integer LSB values.
VLSB = (10/4.096) x (VREF/65,536)
VLSB = (10/4.096) x (VREF/65,536)
7FFF
FULL-SCALE
TRANSITION
+FS = 32,767 x VLSB
FFFF
0001
0000
V
OUTPUT CODE = IN + 32,768
VLSB
FFFF
FFFE
8001
7FFE
0001
0000
-FS
0
+32,766.5 x VLSB
INPUT VOLTAGE (LSB)
+FS
-FS
-32,767.5 x VLSB
Figure 8. Two’s Complement Transfer Function for 16-Bit Devices
+FS
VLSB = (10/4.096) x (VREF/16,384)
FULL-SCALE
TRANSITION
+FS = 8191 x VLSB
0
-32,767.5 x VLSB
+32,766.5 x VLSB
INPUT VOLTAGE (LSB)
Figure 9. Offset-Binary Transfer Function for 16-Bit Devices
VLSB = (10/4.096) x (VREF/16,384)
3FFF
1FFE
+FS = 8191 x VLSB
FULL-SCALE
TRANSITION
3FFE
OUTPUT CODE =
0000
OUTPUT CODE (hex)
-FS = -8192 x VLSB
VIN
+ 8192
VLSB
3FFF
3FFE
2001
-FS = -8192 x VLSB
V
OUTPUT CODE = IN
VLSB
2000
1FFF
1FFE
2001
0001
2000
0000
-FS
0
+FS
-8191.5 x VLSB
+8190.5 x VLSB
INPUT VOLTAGE (LSB)
Figure 8b. Two’s Complement Transfer Function for 14-Bit Devices
20
-FS = -32,768 x VLSB
VIN
OUTPUT CODE =
VLSB
7FFF
8000
0001
FULL-SCALE
TRANSITION
8000
8001
1FFF
+FS = 32,767 x VLSB
FFFE
-FS = -32,768 x VLSB
OUTPUT CODE (hex)
OUTPUT CODE (hex)
7FFE
OUTPUT CODE (hex)
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
-FS
0
-8191.5 x VLSB
+8190.5 x VLSB
INPUT VOLTAGE (LSB)
+FS
Figure 9b. Offset-Binary Transfer Function for 14-Bit Devices
______________________________________________________________________________________
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
VOLTAGE
TRANSFORMER
PHASE 1
OPT
ADC
OPT
ADC
CURRENT
TRANSFORMER
VN
ADC
IN
NEUTRAL
ADC
LOAD 1
LOAD 2
MAX11046/
MAX11056
LOAD 3
I3
V3
I2
ADC
ADC
PHASE 2
V2
ADC
ADC
PHASE 3
Figure 10. Power-Grid Protection
______________________________________________________________________________________
21
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
MAX11044/
MAX11045/
MAX11046/
MAX11054/
MAX11055/
MAX11056
DSP-BASED DIGITAL
PROCESSING ENGINE
16-/14-BIT
ADC
IGBT CURRENT DRIVERS
16-/14-BIT
ADC
16-/14-BIT
ADC
16-/14-BIT
ADC
16-/14-BIT
ADC
IPHASE1
IPHASE3
IPHASE2
3-PHASE ELECTRIC MOTOR
POSITION
ENCODER
Figure 11. DSP Motor Control
22
______________________________________________________________________________________
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
Bypass AVDD and DVDD to the ground plane with
0.1µF ceramic chip capacitors on each pin as close as
possible to the device to minimize parasitic inductance.
Add at least one bulk 10µF decoupling capacitor to
AVDD and DVDD per PCB. Interconnect all of the
AVDD inputs and DVDD inputs using two solid power
planes. For best performance, bring the AVDD power
plane in on the analog interface side of the MAX11044/
MAX11045/MAX11046 and MAX11054/MAX11055/
MAX11056 and the DVDD power plane from the digital
interface side of the device.
For acquisition periods near minimum (1µs) use a 1nF
C0G ceramic chip capacitor between each of the channel inputs to the ground plane as close as possible to
the MAX11044/MAX11045/MAX11046 and MAX11054/
MAX11055/MAX11056. This capacitor reduces the
inductance seen by the sampling circuitry and reduces
the voltage transient seen by the input source circuit.
Typical Application Circuits
Power-Grid Protection
Figure 10 shows a typical power-grid protection application.
DSP Motor Control
Figure 11 shows a typical DSP motor control application.
Definitions
Integral Nonlinearity (INL)
INL is the deviation of the values on an actual transfer
function from a straight line. For these devices, this
straight line is a line drawn between the end points of
the transfer function, once offset and gain errors have
been nullified.
Differential Nonlinearity (DNL)
DNL is the difference between an actual step width and
the ideal value of 1 LSB. For these devices, the DNL of
each digital output code is measured and the worst-case
value is reported in the Electrical Characteristics table. A
DNL error specification of greater than -1 LSB guarantees no missing codes and a monotonic transfer function. For example, -0.9 LSB guarantees no missing code
while -1.1 LSB results in missing code.
Offset Error
The offset error is defined as the input voltage required
to cause the MAX11044/MAX11045/MAX11046 digital
output to be centered on code 0X8000 (offset binary) or
0x0000 (two’s complement) and the MAX11054/
MAX11055/MAX11056 digital output to be centered on
code 0X2000 (offset binary) or 0x0000 (two’s complement). Ideally, this input voltage should be 0V with
respect to GND.
Gain Error
Gain error is defined as the difference between the
change in analog input voltage required to produce a top
code transition minus a bottom code transition, subtracted from the ideal change in analog input voltage on
(10/4.096) x V REF x (65,534/65,536) for 16-bit, or
(10/4.096) x VREF x (16,382/16,384) for 14-bit devices.
For the MAX11044/MAX11045/MAX11046, top code tran-
______________________________________________________________________________________
23
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
Layout, Grounding, and Bypassing
For best performance use PCBs with ground planes.
Ensure that digital and analog signal lines are separated
from each other. Do not run analog and digital lines parallel to one another (especially clock lines), and avoid running digital lines underneath the ADC package. A single
solid GND plane configuration with digital signals routed
from one direction and analog signals from the other provides the best performance. Connect DGND, AGND, and
AGNDS pins on the MAX11044/MAX11045/MAX11046
and MAX11054/MAX11055/MAX11056 to this ground
plane. Keep the ground return to the power supply for this
ground low impedance and as short as possible for noisefree operation.
To achieve the highest performance, connect all the
RDC pins (22, 28, 35, 43, 49 for the TQFN package, or
pins 27, 33, 40, 48, 54 for the TQFP package) to a local
RDC plane on the PCB. In addition, on the TQFP package, the RDC_SENSE pins 26 and 55 should be directly
connected to this RDC plane as well. Bypass the RDC
outputs with a total of at least 80µF of capacitance. If
two capacitors are used, place each as close as possible to pins 22 and 49 (TQFN) or pins 27 and 54 (TQFP).
If four capacitors are used, place each as close as possible to pins 22, 28, 43, and 49 (TQFN) or pins 27, 33,
48, and 54 (TQFP). For example, two 47µF, 10V X5R
capacitors in 1210 case size can be placed as close as
possible to pins 22 and 49 (TQFN package) will provide
excellent performance. Alternatively, four 22µF, 10V
X5R capacitors in 1210 case size placed as close as
possible to pins 22, 28, 43, and 49 (TQFN package) will
also provide good performance. Ensure that each
capacitor is connected directly into the GND plane with
an independent via.
If Y5U or Z5U ceramics are used, be aware of the highvoltage coefficient these capacitors exhibit and select
higher voltage rating capacitors to ensure that at least
80µF of capacitance is on the RDC plane when the
plane is driven to 4.096V by the built-in reference
buffer. For example, a 22µF X5R with a 10V rating is
approximately 20µF at 4.096V, whereas, the same
capacitor in Y5U ceramic is just 13µF. However, a Y5U
22µF capacitor with a 25V rating cap is approximately
20µF at 4.096V.
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
sition is 0x7FFE to 0x7FFF in two’s complement mode
and 0xFFFE to 0xFFFF in offset binary mode. The bottom
code transition is 0x8000 and 0x8001 in two’s complement mode and 0x0000 and 0x0001 in offset binary
mode. For the MAX11054/MAX11055/MAX11056, top
code transition is 0x1FFE to 0x1FFF in two’s complement
mode and 0x3FFE to 0x3FFF in offset binary mode. The
bottom code transition is 0x2000 and 0x2001 in two’s
complement mode and 0x0000 and 0x0001 in offset binary mode. For the MAX11044/MAX11045/MAX11046 and
MAX11054/MAX11055/MAX11056, the analog input voltage to produce these code transitions is measured and
the gain error is computed by subtracting (10/4.096) x
V REF x (65,534/65,536) or (10/4.096) x V REF x
(16,382/16,384), respectively from this measurement.
Total Harmonic Distortion (THD)
THD is the ratio of the RMS of the first five harmonics of
the input signal to the fundamental itself. This is:
expressed as:
⎡
⎤
V22 + V32 + V42 + V52 ⎥
THD = 20 × log ⎢
⎢
⎥
V1
⎢⎣
⎥⎦
Signal-to-Noise Ratio (SNR)
For a waveform perfectly reconstructed from digital
samples, SNR is the ratio of the full-scale analog input
(RMS value) to the RMS quantization error (residual
error). The ideal, theoretical minimum analog-to-digital
noise is caused by quantization noise error only and
results directly from the ADC’s resolution (N bits):
SNR = (6.02 x N + 1.76)dB
Aperture Delay
Aperture delay (tAD) is the time delay from the sampling
clock edge to the instant when an actual sample is
taken.
where N = 16/14 bits. In reality, there are other noise
sources besides quantization noise: thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which
includes all spectral components not including the fundamental, the first five harmonics, and the DC offset.
Channel-to-Channel Isolation
Channel-to-channel isolation indicates how well each
analog input is isolated from the other channels.
Channel-to-channel isolation is measured by applying
DC to channels 1 to 7, while a -0.4dBFS sine wave at
60Hz is applied to channel 0. A 10ksps FFT is taken for
channel 0 and channel 1. Channel-to-channel isolation
is expressed in dB as the power ratio of the two 60Hz
magnitudes.
Signal-to-Noise Plus Distortion (SINAD)
SINAD is the ratio of the fundamental input frequency’s
RMS amplitude to the RMS equivalent of all the other
ADC output signals:
⎡
⎤
SignalRMS
SINAD(dB) = 10 × log ⎢
⎥
(
+
)
Noise
Distortion
RMS ⎦
⎣
Effective Number of Bits (ENOB)
The ENOB indicates the global accuracy of an ADC at
a specific input frequency and sampling rate. An ideal
ADC’s error consists of quantization noise only. With an
input range equal to the full-scale range of the ADC,
calculate the ENOB as follows:
ENOB =
24
SINAD − 1.76
6.02
where V1 is the fundamental amplitude and V2 through
V5 are the 2nd- through 5th-order harmonics.
Spurious-Free Dynamic Range (SFDR)
SFDR is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value
of the next-largest frequency component.
Aperture Jitter
Aperture jitter (tAJ) is the sample-to-sample variation in
aperture delay.
Small-Signal Bandwidth
A small -20dBFS analog input signal is applied to an
ADC in a manner that ensures that the signal’s slew
rate does not limit the ADC’s performance. The input
frequency is then swept up to the point where the
amplitude of the digitized conversion result has
decreased 3dB.
Full-Power Bandwidth
A large -0.5dBFS analog input signal is applied to an
ADC, and the input frequency is swept up to the point
where the amplitude of the digitized conversion result
has decreased by 3dB. This point is defined as fullpower input bandwidth frequency.
______________________________________________________________________________________
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
Negative Full-Scale Error
The error in the input voltage that causes the first code
transition of 0000 to 0001 (hex) (in default offset binary
mode) or 8000 to 8001 (hex) for 16-bit or 2000 to 2001
(hex) for 14-bit devices (in two’s complement mode) from
the ideal input voltage of -32,767.5 x (10/4.096) x
(V REF /65,536) for 16-bit or -8191.5 x (10/4.096) x
(VREF/16,384) for 14-bit devices after correction for offset
error.
Chip Information
PROCESS: BiCMOS
RDC
CH1*/CH0†/I.C.‡
AVDD
CH2*/CH1†/CH0‡
AGND
AGNDS
CH3*/CH2†/CH1‡
RDC
REFIO
CH4*/CH3†/CH2‡
AGNDS
CH5*/CH4†/CH3‡
AGND
AVDD
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
32 AGNDS
AGNDS 49
42 41 40 39 38 37 36 35 34 33 32 31 30 29
31 CH0*/I.C.†‡
I.C.†‡/CH7* 50
28 RDC
RDC 43
CH6*/CH5†/I.C.‡
RDC
CH1*/CH0†/I.C.‡
AVDD
AGND
CH2*/CH1†/CH0‡
AGNDS
CH3*/CH2†/CH1‡
RDC
REFIO
CH4*/CH3†/CH2‡
AGNDS
CH5*/CH4†/CH3‡
AGND
TOP VIEW
AVDD
CH6*/CH5†/I.C.‡
Pin Configurations
AGND 51
30 AGND
AVDD 52
29 AVDD
25 AGND
AGNDS 53
28 AGNDS
AVDD 47
24 AVDD
RDC 54
AGNDS 48
23 AGNDS
27 AGNDS
26
21 DGND
AVDD 57
AGNDS 58
20 DVDD
21 DVDD
17 EOC
WR 61
20 SHDN
16 DB0/CR0
CS 62
15 DB1/CR1
RD 63
18 CONVST
17 DB0/CR0
*MAX11046
9
10 11 12 13 14 15 16
TQFP
10mm x 10mm
CR1/DB1
8
CR3/DB3
7
DB4
6
DB5
5
DB6
4
DB7
3
DVDD
2
CR2/DB2
‡MAX11044
†MAX11045
1
DGND
TQFN
8mm x 8mm
18 EOC
DB15 64
DB8
10 11 12 13 14
CR2/DB2
DB9
9
CR3/DB3
DB10
8
DB4
DB11
7
DB5
DB12
6
DB6
5
DB7
4
DVDD
3
DGND
2
DB8
1
DB13
DB14 56
19 CONVST
*EP
+
DB9
*EP
23 AGNDS
22 DGND
CS 53
+
24 AVDD
DVDD 60
19 SHDN
RD 54
25 AGND
DGND 59
WR 52
DB15 55
26 RDC_SENSE
MAX11044
MAX11045
MAX11046
DB10
DVDD 51
AGND 56
DB11
MAX11044
MAX11045
MAX11046
DGND 50
22 RDC
DB12
RDC 49
27 RDC
RDC_SENSE 55
DB13
45
AGND 46
CH0*/I.C.†‡
DB14
AGNDS 44
I.C.†‡/CH7*
______________________________________________________________________________________
25
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
Positive Full-Scale Error
The error in the input voltage that causes the last code
transition of FFFE to FFFF (hex) for 16-bit or 3FFE to 3FFF
(hex) for 14-bit devices (in default offset binary mode) or
7FFE to 7FFF (hex) for 16-bit or 1FFE to 1FFF (hex) for 14bit devices (in two’s complement mode) from the ideal
input voltage of 32,766.5 x (10/4.096) x (VREF/65,536) for
16-bit or 8190.5 x (10/4.096) x (VREF/16,384) for 14-bit
devices after correction for offset error.
RDC
CH1*/CH0†/I.C.‡
AVDD
AGND
CH2*/CH1†/CH0‡
AGNDS
CH3*/CH2†/CH1‡
RDC
REFIO
CH4*/CH3†/CH2‡
AGNDS
CH5*/CH4†/CH3‡
AGND
AVDD
CH6*/CH5†/I.C.‡
RDC
Pin Configurations (continued)
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
32 AGNDS
AGNDS 49
31 CH0*/I.C.†‡
I.C.†‡/CH7* 50
AGND 51
30 AGND
AVDD 52
29 AVDD
AGNDS 53
28 AGNDS
27 RDC
RDC 54
26 RDC_SENSE
RDC_SENSE 55
MAX11054
MAX11055
MAX11056
AGND 56
AVDD 57
AGNDS 58
25 AGND
24 AVDD
23 AGNDS
DGND 59
22 DGND
DVDD 60
21 DVDD
WR 61
20 SHDN
19 CONVST
CS 62
RD 63
*EP
+
18 EOC
17 CR0
TQFP
10mm x 10mm
‡MAX11054
†MAX11055
CR1
DB7
10 11 12 13 14 15 16
CR2/DB0
DB8
9
DB2
DB9
8
CR3/DB1
DB10
7
DB3
6
DB4
5
DB5
4
DVDD
3
DGND
2
DB6
1
DB11
DB13 64
DB12
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
*MAX11056
Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or
“-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
26
PACKAGE TYPE
PACKAGE CODE
OUTLINE NO.
LAND PATTERN NO.
56 TQFN-EP
T5688+3
21-0135
90-0047
64 TQFP-EP
C64E+6
21-0084
90-0328
______________________________________________________________________________________
4-/6-/8-Channel, 16-/14-Bit,
Simultaneous-Sampling ADCs
PAGES
CHANGED
REVISION
NUMBER
REVISION
DATE
0
10/09
Initial release
1
3/10
Added TQFP package to data sheet
1, 2, 8, 9, 19
2
5/10
Added 14-bit MAX11054/MAX11055/MAX11056
1–4, 7, 9–26
3
9/10
Style edits, specified part numbers in Typical Operating Characteristics, corrected
pin names, clarified layout
4
10/10
Released the TQFP versions of MAX11044, MAX11045, and MAX11046. Revised
the Electrical Characteristics, Typical Operating Characteristics, and the Input
Range and Protection section.
5
1/11
Released MAX11054, MAX11055, MAX11056. Revised the Electrical
Characteristics and Figures 8b and 9b.
DESCRIPTION
—
1, 3–8,
13–18, 22
1–8, 15
1, 2, 4, 20
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 27
© 2011 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX11044/MAX11045/MAX11046/MAX11054/MAX11055/MAX11056
Revision History