CY8C24094, CY8C24794 CY8C24894, CY8C24994 PSoC® Programmable System-on-Chip 1. Features ■ XRES Pin to Support In-System Serial Programming (ISSP) and External Reset Control in CY8C24894 ■ Powerful Harvard Architecture Processor ❐ M8C Processor Speeds to 24 MHz ❐ Two 8x8 Multiply, 32-Bit Accumulate ❐ Low Power at High Speed ❐ 3V to 5.25V Operating Voltage ❐ Industrial Temperature Range: -40°C to +85°C ❐ USB Temperature Range: -10°C to +85°C ■ Advanced Peripherals (PSoC® Blocks) ❐ 6 Rail-to-Rail Analog PSoC Blocks Provide: • Up to 14-Bit ADCs • Up to 9-Bit DACs • Programmable Gain Amplifiers • Programmable Filters and Comparators ❐ Four Digital PSoC Blocks Provide: • 8 to 32-Bit Timers, Counters, and PWMs • CRC and PRS Modules • Full-Duplex UART • Multiple SPI™ Masters or Slaves • Connectable to all GPI/O Pins ❐ Complex Peripherals by Combining Blocks ❐ Capacitive Sensing Application Capability Logic Block Diagram Full Speed USB (12 Mbps) ❐ Four Uni-Directional Endpoints ❐ One Bi-Directional Control Endpoint ❐ USB 2.0 Compliant ❐ Dedicated 256 Byte Buffer ❐ No External Crystal Required ■ Flexible On-Chip Memory ❐ 16K Flash Program Storage 50,000 Erase and Write Cycles ❐ 1K SRAM Data Storage ❐ In-System Serial Programming (ISSP) ❐ Partial Flash Updates ❐ Flexible Protection Modes ❐ EEPROM Emulation in Flash ■ Programmable Pin Configurations ❐ 25 mA Sink, 10 mA Source on all GPIO ❐ Pull Up, Pull Down, High Z, Strong, or Open Drain Drive Modes on all GPI/O ❐ Up to 48 Analog Inputs on GPI/O ❐ Two 33 mA Analog Outputs on GPI/O ❐ Configurable Interrupt on all GPI/O ■ Precision, Programmable Clocking ❐ Internal ±4% 24 and 48 MHz Oscillator ❐ Internal Oscillator for Watchdog and Sleep ❐ 0.25% Accuracy for USB with no External Components Additional System Resources 2 ❐ I C Slave, Master, and Multi-Master to 400 kHz ❐ Watchdog and Sleep Timers ❐ User Configurable Low Voltage Detection ■ P o rt 5 P o rt 7 System Bus ■ P o rt 4 P o rt 3 G lo b a l D ig ita l In t e r c o n n e c t P o rt 2 P o rt 1 P o rt 0 A n a lo g D r iv e r s G lo b a l A n a lo g In te r c o n n e c t PSoC C O R E SR AM 1K SR O M F la s h 1 6 K S le e p a n d W a tc h d o g C P U C o re (M 8 C ) In te rru p t C o n tr o lle r C lo c k S o u r c e s ( I n c lu d e s IM O a n d I L O ) D IG IT A L S Y S TEM A N A LO G SYSTEM A n a lo g R e f. D ig ita l B lo c k A rra y D ig ita l C lo c k s 2 M AC s D e c im a to r Type 2 A n a lo g B lo c k A rra y I2 C PO R and LVD S y s te m R e s e ts In te rn a l V o lta g e R e f. U S B A n a lo g In p u t M u x in g SY S TE M R E S O U R C E S Cypress Semiconductor Corporation Document Number: 38-12018 Rev. *U • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised March 30, 2010 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 2. Contents Features ...............................................................................1 Logic Block Diagram ..........................................................1 Contents ..............................................................................2 PSoC Functional Overview ................................................3 The PSoC Core .............................................................3 The Digital System ........................................................3 The Analog System .......................................................4 Additional System Resources .......................................5 PSoC Device Characteristics ........................................5 Getting Started ....................................................................5 Application Notes ..........................................................5 Development Kits ..........................................................5 Training .........................................................................5 CyPros Consultants .......................................................5 Solutions Library ............................................................5 Technical Support .........................................................5 Development Tools ............................................................6 PSoC Designer Software Subsystems ..........................6 In-Circuit Emulator .........................................................6 Designing with PSoC Designer .........................................7 Select Components .......................................................7 Configure Components .................................................7 Organize and Connect ..................................................7 Generate, Verify, and Debug .........................................7 Document Conventions .....................................................8 Acronyms Used .............................................................8 Units of Measure ...........................................................8 Numeric Naming ............................................................8 Pin Information ...................................................................9 56-Pin Part Pinout ........................................................9 56-Pin Part Pinout (with XRES) ..................................10 68-Pin Part Pinout .......................................................11 Document Number: 38-12018 Rev. *U 68-Pin Part Pinout (On-Chip Debug) ...........................12 100-Ball VFBGA Part Pinout .......................................13 100-Ball VFBGA Part Pinout (On-Chip Debug) ...........14 100-Pin Part Pinout (On-Chip Debug) .........................16 Register Reference ...........................................................18 Register Conventions ..................................................18 Register Mapping Tables ............................................18 Register Map Bank 0 Table: User Space ...................19 Register Map Bank 1 Table: Configuration Space .....20 Electrical Specifications ..................................................21 Absolute Maximum Ratings .........................................22 Operating Temperature ...............................................22 DC Electrical Characteristics .......................................23 AC Electrical Characteristics .......................................31 Packaging Dimensions ....................................................39 Thermal Impedance ....................................................43 Solder Reflow Peak Temperature ...............................43 Development Tool Selection ...........................................44 Software ......................................................................44 Development Kits ........................................................44 Evaluation Tools ..........................................................44 Device Programmers ...................................................45 Accessories (Emulation and Programming) ................45 Ordering Information ........................................................46 Ordering Code Definitions ...........................................47 Document History Page ...................................................48 Sales, Solutions, and Legal Information ........................50 Page 2 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 The PSoC family consists of many programmable system-on-chips with On-Chip Controller devices. All PSoC family devices are designed to replace traditional MCUs, system ICs, and the numerous discrete components that surround them. The PSoC CY8C24x94 devices are unique members of the PSoC family because it includes a full featured, full speed (12 Mbps) USB port. Configurable analog, digital, and interconnect circuitry enable a high level of integration in a host of industrial, consumer, and communication applications. 3.2 The Digital System The Digital System is composed of four digital PSoC blocks. Each block is an 8-bit resource used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user modules. Figure 3-1. Digital System Block Diagram Port 7 This architecture enables the user to create customized peripheral configurations that match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages. The PSoC device incorporates flexible internal clock generators, including a 24 MHz IMO (internal main oscillator) accurate to 8% over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz ILO (internal low speed oscillator) is provided for the Sleep timer and WDT. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the PSoC device. In USB systems, the IMO self tunes to ± 0.25% accuracy for USB communication. PSoC GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin’s drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin is also capable of generating a system interrupt on high level, low level, and change from last read. Document Number: 38-12018 Rev. *U To System Bus Port 0 To Analog System DIGITAL SYSTEM 8 8 Row 0 DBB00 DBB01 DCB02 4 DCB03 4 GIE[7:0] GIO[7:0] Global Digital Interconnect 8 Row Output Configuration Memory encompasses 16K of Flash for program storage, 1K of SRAM for data storage, and up to 2K of EEPROM emulated using the Flash. Program Flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection. Port 1 Port 2 Digital PSoC Block Array 3.1 The PSoC Core The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four MIPS 8-bit Harvard architecture microprocessor. The CPU uses an interrupt controller with up to 20 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and Watch Dog Timers (WDT). Port 3 Digital Clocks From Core The PSoC architecture, as illustrated on the left, is comprised of four main areas: PSoC Core, Digital System, Analog System, and System Resources including a full speed USB port. Configurable global busing enables all the device resources to be combined into a complete custom system. The PSoC CY8C24x94 devices can have up to seven I/O ports that connect to the global digital and analog interconnects, providing access to 4 digital blocks and 6 analog blocks. The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPI/O (General Purpose I/O). Port 5 Port 4 Row Input Configuration 3. PSoC Functional Overview 8 GOE[7:0] GOO[7:0] Digital peripheral configurations include the following: ■ Full Speed USB (12 Mbps) ■ PWMs (8 to 32 bit) ■ PWMs with Dead band (8 to 24 bit) ■ Counters (8 to 32 bit) ■ Timers (8 to 32 bit) ■ UART 8 bit with selectable parity ■ SPI master and slave ■ I2C slave and multi-master ■ Cyclical Redundancy Checker/Generator (8 to 32 bit) ■ IrDA ■ Pseudo Random Sequence Generators (8 to 32 bit) The digital blocks are connected to any GPI/O through a series of global buses that can route any signal to any pin. The buses also enable signal multiplexing and performing logic operations. This configurability frees the designs from the constraints of a fixed peripheral controller. Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This enables you the optimum choice of system resources for your application. Family resources are shown in Table 3-1 on page 5. Page 3 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Figure 3-2. Analog System Block Diagram The Analog System is composed of 6 configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are as follows. ■ Filters (2 and 4 pole band-pass, low-pass, and notch) ■ Amplifiers (up to 2, with selectable gain to 48x) ■ Instrumentation amplifiers (1 with selectable gain to 93x) ■ Comparators (up to 2, with 16 selectable thresholds) ■ DACs (up to 2, with 6- to 9-bit resolution) ■ Multiplying DACs (up to 2, with 6- to 9-bit resolution) ■ High current output drivers (two with 30 mA drive as a PSoC Core Resource) ■ 1.3V reference (as a System Resource) ■ DTMF Dialer ■ P 0 [6 ] P 0 [5 ] P 0 [4 ] P 0 [3 ] P 0 [2 ] P 0 [1 ] P 0 [0 ] P 2 [3 ] AGNDIn RefIn Analog-to-digital converters (up to 2, with 6 to 14-bit resolution, selectable as Incremental, Delta Sigma, and SAR) P 0 [7 ] Analog ■ A ll IO (E x c e p t P o r t 7 ) Mux Bus 3.3 The Analog System P 2 [1 ] P 2 [6 ] P 2 [4 ] P 2 [2 ] P 2 [0 ] A C I 0 [1 :0 ] A C I 1 [1 :0 ] A r r a y In p u t C o n f ig u r a t io n B lo c k A rray AC B00 A C B 01 Modulators A SC 10 A SD 11 ■ Correlators ASD20 A SC 21 ■ Peak Detectors ■ Many other topologies possible A n a lo g R e f e r e n c e Analog blocks are arranged in a column of three, which includes one CT (Continuous Time) and two SC (Switched Capacitor) blocks, as shown in Figure 3-2. In t e r f a c e t o D ig it a l S y s t e m R e fH i R e fL o AGND R e fe r e n c e G e n e ra to rs A G N D In R e fIn B andgap M 8 C In t e r f a c e ( A d d r e s s B u s , D a t a B u s , E t c .) 3.3.1 The Analog Multiplexer System The Analog Mux Bus can connect to every GPI/O pin in ports 0-5. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with comparators and analog-to-digital converters. It is split into two sections for simultaneous dual-channel processing. An additional 8:1 analog input multiplexer provides a second path to bring Port 0 pins to the analog array. Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include: Document Number: 38-12018 Rev. *U ■ Track pad, finger sensing. ■ Chip-wide mux that enables analog input from up to 48 I/O pins. ■ Crosspoint connection between any I/O pin combinations. Page 4 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 4. Getting Started 3.4 Additional System Resources System Resources, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, low voltage detection, and power on reset. Brief statements describing the merits of each resource follow. ■ Full Speed USB (12 Mbps) with 5 configurable endpoints and 256 bytes of RAM. No external components required except two series resistors. Wider than commercial temperature USB operation (-10°C to +85°C). ■ Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks are generated using digital PSoC blocks as clock dividers. ■ Two multiply accumulates (MACs) provide fast 8-bit multipliers with 32-bit accumulate, to assist in both general math and digital filters. ■ Decimator provides a custom hardware filter for digital signal processing applications including creation of Delta Sigma ADCs. ■ The I2C module provides 100 and 400 kHz communication over two wires. Slave, master, multi-master are supported. ■ Low Voltage Detection (LVD) interrupts signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor. ■ An internal 1.3V reference provides an absolute reference for the analog system, including ADCs and DACs. ■ Versatile analog multiplexer system. Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. The following table lists the resources available for specific PSoC device groups. The device covered by this data sheet is shown in the highlighted row of the table Digital I/O Digital Rows Digital Blocks Analog Inputs Analog Outputs Analog Columns Analog Blocks SRAM Size Flash Size Table 3-1. PSoC Device Characteristics CY8C29x66 up to 64 4 16 12 4 4 12 2K 32K CY8C27x43 up to 44 2 8 12 4 4 12 256 Bytes 16K CY8C24x94 56 1 4 48 2 2 6 1K 16K CY8C24x23A up to 24 1 4 12 2 2 6 256 Bytes 4K CY8C21x34 up to 28 1 4 28 0 2 4 512 Bytes 8K CY8C21x23 16 1 4 8 0 2 4 256 Bytes 4K CY8C20x34 up to 28 0 0 28 0 0 3 512 Bytes 8K Document Number: 38-12018 Rev. *U For in depth information, along with detailed programming information, see the Technical Reference Manual for this PSoC device. For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at http://www.cypress.com. 4.1 Application Notes Application notes are an excellent introduction to the wide variety of possible PSoC designs and are available at http://www.cypress.com. 4.2 Development Kits PSoC Development Kits are available online from Cypress at http://www.cypress.com and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark. 4.3 Training Free PSoC technical training (on demand, webinars, and workshops) is available online at http://www.cypress.com. The training covers a wide variety of topics and skill levels to assist you in your designs. 4.4 CyPros Consultants 3.5 PSoC Device Characteristics PSoC Part Number The quickest way to understand PSoC silicon is to read this data sheet and then use the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to http://www.cypress.com and refer to CYPros Consultants. 4.5 Solutions Library Visit our growing library of solution focused designs at http://www.cypress.com. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly. 4.6 Technical Support For assistance with technical issues, search KnowledgeBase articles and forums at http://www.cypress.com. If you cannot find an answer to your question, call technical support at 1-800-541-4736. Page 5 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 5. Development Tools PSoC Designer is a Microsoft® Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE runs on Windows XP or Windows Vista. This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and built-in support for third-party assemblers and C compilers. PSoC Designer also supports C language compilers developed specifically for the devices in the PSoC family. 5.1 PSoC Designer Software Subsystems 5.1.1 System-Level View A drag-and-drop visual embedded system design environment based on PSoC Express. In the system level view you create a model of your system inputs, outputs, and communication interfaces. You define when and how an output device changes state based upon any or all other system devices. Based upon the design, PSoC Designer automatically selects one or more PSoC Mixed-Signal Controllers that match your system requirements. PSoC Designer generates all embedded code, then compiles and links it into a programming file for a specific PSoC device. 5.1.2 Chip-Level View The chip-level view is a more traditional integrated development environment (IDE). Choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application. The device editor also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic configuration enables changing configurations at run time. 5.1.4 Code Generation Tools PSoC Designer supports multiple third party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours. Assemblers. The assemblers allow assembly code to merge seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing. C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality. 5.1.5 Debugger The PSoC Designer Debugger subsystem provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write I/O registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest. 5.1.6 Online Help System The online help system displays online, context-sensitive help for the user. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer in getting started. 5.2 In-Circuit Emulator 5.1.3 Hybrid Designs A low cost, high functionality In-Circuit Emulator (ICE) is available for development support. This hardware has the capability to program single devices. You can begin in the system-level view, allow it to choose and configure your user modules, routing, and generate code, then switch to the chip-level view to gain complete control over on-chip resources. All views of the project share a common code editor, builder, and common debug, emulation, and programming tools. The emulator consists of a base unit that connects to the PC by way of a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation. Document Number: 38-12018 Rev. *U Page 6 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 6. Designing with PSoC Designer The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process can be summarized in the following four steps: 1. Select components 2. Configure components 3. Organize and Connect 4. Generate, Verify, and Debug 6.3 Organize and Connect You can build signal chains at the chip level by interconnecting user modules to each other and the I/O pins, or connect system level inputs, outputs, and communication interfaces to each other with valuator functions. In the system-level view, selecting a potentiometer driver to control a variable speed fan driver and setting up the valuators to control the fan speed based on input from the pot selects, places, routes, and configures a programmable gain amplifier (PGA) to buffer the input from the potentiometer, an analog to digital converter (ADC) to convert the potentiometer’s output to a digital signal, and a PWM to control the fan. In the chip-level view, perform the selection, configuration, and routing so that you have complete control over the use of all on-chip resources. 6.1 Select Components 6.4 Generate, Verify, and Debug Both the system-level and chip-level views provide a library of prebuilt, pretested hardware peripheral components. In the system-level view, these components are called “drivers” and correspond to inputs (a thermistor, for example), outputs (a brushless DC fan, for example), communication interfaces (I2C-bus, for example), and the logic to control how they interact with one another (called valuators). When you are ready to test the hardware configuration or move on to developing code for the project, perform the “Generate Application” step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. In the chip-level view, the components are called “user modules”. User modules make selecting and implementing peripheral devices simple, and come in analog, digital, and mixed signal varieties. 6.2 Configure Components Each of the components you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a Pulse Width Modulator (PWM) User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. Both the system-level drivers and chip-level user modules are documented in data sheets that are viewed directly in PSoC Designer. These data sheets explain the internal operation of the component and provide performance specifications. Each data sheet describes the use of each user module parameter or driver property, and other information you may need to successfully implement your design. Document Number: 38-12018 Rev. *U Both system-level and chip-level designs generate software based on your design. The chip-level design provides application programming interfaces (APIs) with high level functions to control and respond to hardware events at run-time and interrupt service routines that you can adapt as needed. The system-level design also generates a C main() program that completely controls the chosen application and contains placeholders for custom code at strategic positions allowing you to further refine the software without disrupting the generated code. A complete code development environment allows you to develop and customize your applications in C, assembly language, or both. The last step in the development process takes place inside the PSoC Designer’s Debugger subsystem. The Debugger downloads the HEX image to the ICE where it runs at full speed. Debugger capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the Debugger provides a large trace buffer and allows you define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals. Page 7 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 7. Document Conventions 7.2 Units of Measure 7.1 Acronyms Used A units of measure table is located in the Electrical Specifications section. Table 10-1 on page 21 lists all the abbreviations used to measure the PSoC devices. The following table lists the acronyms that are used in this document. Acronym Description AC alternating current ADC analog-to-digital converter API application programming interface CPU central processing unit CT continuous time DAC digital-to-analog converter DC direct current ECO external crystal oscillator EEPROM electrically erasable programmable read-only memory FSR full scale range GPI/O general purpose I/O GUI graphical user interface HBM human body model ICE in-circuit emulator ILO internal low speed oscillator IMO internal main oscillator I/O input/output IPOR imprecise power on reset LSb least-significant bit LVD low voltage detect MSb most-significant bit PC program counter PLL phase-locked loop POR power on reset PPOR precision power on reset PSoC® Programmable System-on-Chip™ PWM pulse width modulator SC switched capacitor SRAM static random access memory Document Number: 38-12018 Rev. *U 7.3 Numeric Naming Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended lowercase ‘b’ (for example, ‘01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal. Page 8 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 8. Pin Information This section describes, lists, and illustrates the CY8C24x94 PSoC device family pins and pinout configuration. The CY8C24x94 PSoC devices are available in the following packages, all of which are shown on the following pages. Every port pin (labeled with a “P”) is capable of Digital I/O. However, Vss, Vdd, and XRES are not capable of Digital I/O. 8.1 56-Pin Part Pinout Table 8-1. 56-Pin Part Pinout (QFN[3]) See LEGEND details and footnotes in Table 8-2 on page 10. P5[4] 44 I/O M P2[6] External Voltage Reference (VREF) input. M P5[6] 45 I/O I, M P0[0] Analog column mux input. 33 I/O M P3[0] 46 I/O I, M P0[2] Analog column mux input. 34 I/O M P3[2] 47 I/O I, M P0[4] Analog column mux input VREF. 35 I/O M P3[4] 48 I/O I, M P0[6] Analog column mux input. 36 I/O M P3[6] 49 Power Vdd Supply voltage. 37 I/O M P4[0] 50 Power Vss 38 I/O M P4[2] 51 I/O I, M P0[7] Analog column mux input,. 39 I/O M P4[4] 52 I/O I/O, M P0[5] Analog column mux input and column output. 40 I/O M P4[6] 53 I/O I/O, M P0[3] Analog column mux input and column output. 41 I/O I, M P2[0] Direct switched capacitor block input. 54 I/O I, M P0[1] Analog column mux input. 42 I/O I, M P2[2] Direct switched capacitor block input. 55 I/O M P2[7] 43 I/O M P2[4] External Analog Ground (AGND) input. 56 I/O M P2[5] 44 43 46 45 51 50 49 48 47 56 55 54 53 52 QFN P7[0] 25 26 27 28 42 41 40 39 38 37 36 35 34 33 32 31 30 29 P2[2], A, I, M P2[0], A, I, M P4[6], M P4[4], M P4[2], M P4[0], M P3[6], M P3[4], M P3[2], M P3[0], M P5[6], M P5[4], M P5[2], M P5[0], M M, I2C SDA, P1[0] M,P1[2] EXTCLK, M,P1[4] M, P1[6] M,P1[3] M, I2C SCL, P1[1] Vss D+ DVdd P7[7] 21 22 23 24 (Top V ie w ) 15 16 17 18 19 20 M, I2C SCL, P1[7] M, I2C SDA, P1[5] P2[4],M M I/O Vdd P0[6], A, I, M P0[4], A, I, M P0[2], A, I, M P0[0], A, I, M P2[6],M I/O 32 P0[7], A, I, M Vss 31 P0[5], A, IO, M CY8C24794 56-Pin PSoC Device[1] P2[5],M P2[7],M P0[1], A, I, M P0[3], A, IO, M Type Pin Figure 8-1. Description No. Digital Analog Name 1 I/O I, M P2[3] Direct switched capacitor block input. 2 I/O I, M P2[1] Direct switched capacitor block input. 3 I/O M P4[7] 4 I/O M P4[5] 5 I/O M P4[3] A, I, M , P2[3] 1 6 I/O M P4[1] A, I, M , P2[1] 2 7 I/O M P3[7] M , P4[7] 3 8 I/O M P3[5] M , P4[5] 4 9 I/O M P3[3] M , P4[3] 5 10 I/O M P3[1] M , P4[1] 6 M , P3[7] 7 11 I/O M P5[7] 8 M , P3[5] 12 I/O M P5[5] M , P3[3] 9 13 I/O M P5[3] M , P3[1] 10 14 I/O M P5[1] M , P5[7] 11 15 I/O M P1[7] I2C Serial Clock (SCL). M , P5[5] 12 M , P5[3] 13 16 I/O M P1[5] I2C Serial Data (SDA). M , P5[1] 14 17 I/O M P1[3] 18 I/O M P1[1] I2C Serial Clock (SCL), ISSP SCLK[2]. 19 Power Vss Ground connection. 20 USB D+ 21 USB D22 Power Vdd Supply voltage. 23 I/O P7[7] 24 I/O P7[0] 25 I/O M P1[0] I2C Serial Data (SDA), ISSP SDATA[2]. 26 I/O M P1[2] 27 I/O M P1[4] Optional External Clock Input (EXTCLK). 28 I/O M P1[6] 29 I/O M P5[0] Type Pin Name No. Digital Analog 30 I/O M P5[2] Description Ground connection. Note 1. This part cannot be programmed with Reset mode; use Power Cycle mode when programming. Document Number: 38-12018 Rev. *U Page 9 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 8.2 56-Pin Part Pinout (with XRES) Table 8-2. 56-Pin Part Pinout (QFN[3]) I, I, I, I, A, A, A, A, M M I, M IO, M IO, M I, M 48 47 46 45 44 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 QFN (Top View) 15 16 17 18 19 20 21 22 23 24 25 26 27 28 P2[3] P2[1] P4[7] P4[5] P4[3] P4[1] P3[7] P3[5] P3[3] P3[1] P5[7] P5[5] P5[3] P5[1] 42 41 40 39 38 37 36 35 34 33 32 31 30 29 P2[2], P2[0], P4[6], P4[4], P4[2], P4[0], XRES P3[4], P3[2], P3[0], P5[6], P5[4], P5[2], P5[0], A, I, M A, I, M M M M M M M M M M M M M, I2C SCL, M, I2C SDA, M, M, I2C SCL, P1[7] P1[5] P1[3] P1[1] Vss D+ DVdd P7[7] P7[0] M, I2C SDA, P1[0] M, P1[2] EXTCLK, M, P1[4] M, P1[6] A, I, M, A, I, M, M, M, M, M, M, M, M, M, M, M, M, M, 56 55 54 53 52 51 50 49 P2[5], P2[7], P0[1], P0[3], P0[5], P0[7], Vss Vdd P0[6], P0[4], P0[2], P0[0], P2[6], P2[4], M M A, A, A, A, M M M M Figure 8-2. CY8C24894 56-Pin PSoC Device Type Pin Description No. Digital Analog Name 1 I/O I, M P2[3] Direct switched capacitor block input. 2 I/O I, M P2[1] Direct switched capacitor block input. 3 I/O M P4[7] 4 I/O M P4[5] 5 I/O M P4[3] 6 I/O M P4[1] 7 I/O M P3[7] 8 I/O M P3[5] 9 I/O M P3[3] 10 I/O M P3[1] 11 I/O M P5[7] 12 I/O M P5[5] 13 I/O M P5[3] 14 I/O M P5[1] 15 I/O M P1[7] I2C Serial Clock (SCL). 16 I/O M P1[5] I2C Serial Data (SDA). 17 I/O M P1[3] 18 I/O M P1[1] I2C Serial Clock (SCL), ISSP SCLK[2]. 19 Power Vss Ground connection. 20 USB D+ 21 USB D22 Power Vdd Supply voltage. 23 I/O P7[7] 24 I/O P7[0] 25 I/O M P1[0] I2C Serial Data (SDA), ISSP SDATA[2]. 26 I/O M P1[2] 27 I/O M P1[4] Optional External Clock Input (EXTCLK). 28 I/O M P1[6] 29 I/O M P5[0] 30 I/O M P5[2] Type Pin No. Digital Analog Name 31 I/O M P5[4] 44 I/O M P2[6] External Voltage Reference (VREF) input. 32 I/O M P5[6] 45 I/O I, M P0[0] Analog column mux input. 33 I/O M P3[0] 46 I/O I, M P0[2] Analog column mux input. 34 I/O M P3[2] 47 I/O I, M P0[4] Analog column mux input VREF. 35 I/O M P3[4] 48 I/O I, M P0[6] Analog column mux input. 49 Vdd Supply voltage. 36 Input 37 I/O M XRES Active high external reset with internal pull down. P4[0] 38 I/O M P4[2] 51 I/O I, M P0[7] Analog column mux input,. 39 I/O M P4[4] 52 I/O I/O, M P0[5] Analog column mux input and column output. 40 I/O M P4[6] 53 I/O I/O, M P0[3] Analog column mux input and column output. 41 I/O I, M P2[0] Direct switched capacitor block input. 54 I/O I, M P0[1] Analog column mux input. 42 I/O I, M P2[2] Direct switched capacitor block input. 55 I/O M P2[7] 43 I/O M P2[4] External Analog Ground (AGND) input. 56 I/O M P2[5] 50 Power Description Power Vss Ground connection. LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input. Notes 2. These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details. 3. The center pad on the QFN package should be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal. Document Number: 38-12018 Rev. *U Page 10 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 8.3 68-Pin Part Pinout The following 68-pin QFN part table and drawing is for the CY8C24994 PSoC device. Table 8-3. 68-Pin Part Pinout (QFN[3]) M M M P4[0] P4[2] P4[4] P2[6], M, Ext. VREF P2[4], M, Ext. AGND P2[2], M, AI 53 52 P0[2], M, AI P0[0], M, AI 55 54 58 57 56 P0[7], M, AI Vss Vdd P0[6], M, AI P0[4], M, AI P0[1], M, AI P0[3], M, AIO P0[5], M, AIO 63 62 61 60 59 64 P2[3], M, AI P2[5], M P2[7], M P4[6] P2[0] P2[2] P2[4] P2[6] P0[0] P0[2] P0[4] P0[6] Vdd Vss P0[7] P0[5] 63 64 65 I/O I/O I/O I/O,M I,M M P0[3] P0[1] P2[7] 66 67 68 I/O I/O I/O M I,M I,M P2[5] P2[3] P2[1] 50 51 52 Optional External Clock Input (EXTCLK). 53 54 55 56 57 58 59 60 61 62 I2C Serial Data (SDA), ISSP SDATA[2]. No connection. No connection. Active high pin reset with internal pull down. 66 65 Type Digital Analog I/O M I/O I,M I/O I,M I/O M I/O M I/O I,M I/O I,M I/O I,M I/O I,M Power Power I/O I,M I/O I/O,M Pin No. Name 31 32 33 34 38 37 36 35 P2[0], M, AI P4[6], M P4[4], M P4[2], M P4[0], M XRES NC NC P3[6], M P3[4], M P3[2], M P3[0], M P5[6], M P5[4], M P5[2], M P5[0], M P1[6], M EXTCLK, M, P1[4] Supply voltage. I2C SDA, M, P1[0] M, P1[2] I2C Serial Clock (SCL) ISSP SCLK[2]. Ground connection. QFN (Top View) 28 29 30 I2C Serial Clock (SCL). I2C Serial Data (SDA). 49 48 47 46 45 44 43 42 41 40 39 P7[3] P7[2] P7[1] P7[0] M, P3[3] M, P3[1] M, P5[7] M, P5[5] M, P5[3] M, P5[1] I2C SCL, M, P1[7] I2C SDA, M, P1[5] 51 50 24 25 26 27 M, P4[1] NC NC Vss M, P3[7] M, P3[5] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 P7[7] P7[6] P7[5] P7[4] M, P4[7] M, P4[5] M, P4[3] 20 21 22 23 I/O I/O I/O P2[1], M, AI 47 48 49 68 67 Input NC NC XRES No connection. No connection. Ground connection. 18 19 44 45 46 Figure 8-3. CY8C24994 68-Pin PSoC Device Description M, P1[3] P4[7] P4[5] P4[3] P4[1] NC NC Vss P3[7] P3[5] P3[3] P3[1] P5[7] P5[5] P5[3] P5[1] P1[7] P1[5] P1[3] P1[1] Vss D+ DVdd P7[7] P7[6] P7[5] P7[4] P7[3] P7[2] P7[1] P7[0] P1[0] P1[2] P1[4] P1[6] P5[0] P5[2] P5[4] P5[6] P3[0] P3[2] P3[4] P3[6] Name I2C SCL, M, P1[1] Vss D+ DVdd Type Pin No. Digital Analog 1 I/O M 2 I/O M 3 I/O M 4 I/O M 5 6 7 Power 8 I/O M 9 I/O M 10 I/O M 11 I/O M 12 I/O M 13 I/O M 14 I/O M 15 I/O M 16 I/O M 17 I/O M 18 I/O M 19 I/O M 20 Power 21 USB 22 USB 23 Power 24 I/O 25 I/O 26 I/O 27 I/O 28 I/O 29 I/O 30 I/O 31 I/O 32 I/O M 33 I/O M 34 I/O M 35 I/O M 36 I/O M 37 I/O M 38 I/O M 39 I/O M 40 I/O M 41 I/O M 42 I/O M 43 I/O M Description Direct switched capacitor block input. Direct switched capacitor block input. External Analog Ground (AGND) input. External Voltage Reference (VREF) input. Analog column mux input. Analog column mux input and column output. Analog column mux input and column output. Analog column mux input. Supply voltage. Ground connection. Analog column mux input, integration input #1 Analog column mux input and column output, integration input #2. Analog column mux input and column output. Analog column mux input. Direct switched capacitor block input. Direct switched capacitor block input. LEGENDA = Analog, I = Input, O = Output, NC = No Connection, M = Analog Mux Input. Document Number: 38-12018 Rev. *U Page 11 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 8.4 68-Pin Part Pinout (On-Chip Debug) The following 68-pin QFN part table and drawing is for the CY8C24094 On-Chip Debug (OCD) PSoC device. Note This part is only used for in-circuit debugging. It is NOT available for production. Table 8-4. 68-Pin Part Pinout (QFN[3]) Type Pin No. Digital Analog 50 I/O M I2C Serial Data (SDA), ISSP SDATA[2]. 51 I/O I,M 52 I/O I,M Optional External Clock Input (EXTCLK). 53 I/O M 54 I/O M 55 I/O I,M 56 I/O I,M 57 I/O I,M 58 I/O I,M 59 Power 60 Power 61 I/O I,M 62 I/O I/O,M I/O I/O I/O P4[6] P2[0] P2[2] P2[4] P2[6] P0[0] P0[2] P0[4] P0[6] Vdd Vss P0[7] P0[5] P0[3] P0[1] P2[7] 47 I/O M P4[0] 66 I/O M 48 I/O M P4[2] 67 I/O I,M 49 I/O M P4[4] 68 I/O I,M LEGENDA = Analog, I = Input, O = Output, M = Analog Mux Input, OCD = On-Chip Debugger. P2[5] P2[3] P2[1] Document Number: 38-12018 Rev. *U 63 64 65 Name I/O,M I,M M Input P2[6], M, Ext. VREF P2[4], M, Ext. AGND P2[2], M, AI I2C SDA, M, P1[0] M, P1[2] EXTCLK M, P1[4] 28 29 30 31 32 33 34 P7[3] P7[2] P7[1] P7[0] 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 P2[0], M, AI P4[6], M P4[4], M P4[2], M P4[0], M XRES CCLK HCLK P3[6], M P3[4], M P3[2], M P3[0], M P5[6], M P5[4], M P5[2], M P5[0], M P1[6], M , 55 54 53 52 58 57 56 P0[7], M, AI Vss Vdd P0[6], M, AI P0[4], M, AI P0[2], M, AI P0[0], M, AI 64 63 62 61 60 59 P2[3], M, AI P2[5], M P2[7], M P0[1], M, AI P0[3], M, AIO P0[5], M, AIO QFN (Top View) P7[7] P7[6] P7[5] P7[4] Supply voltage. OCD high speed clock output. OCD CPU clock output. Active high pin reset with internal pull down. 66 65 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 23 24 25 26 27 I2C Serial Clock (SCL), ISSP SCLK[2]. Ground connection. M, P4[7] M, P4[5] M, P4[3] M, P4[1] OCDE OCDO Vss M, P3[7] M, P3[5] M, P3[3] M, P3[1] M, P5[7] M, P5[5] M, P5[3] M, P5[1] I2C SCL, M, P1[7] I2C SDA, M, P1[5] 20 21 22 I2C Serial Clock (SCL). I2C Serial Data (SDA). P2[1], M, AI HCLK CCLK XRES OCD even data I/O. OCD odd data output. Ground connection. 68 67 44 45 46 Figure 8-4. CY8C24094 68-Pin OCD PSoC Device Description 18 19 P4[7] P4[5] P4[3] P4[1] OCDE OCDO Vss P3[7] P3[5] P3[3] P3[1] P5[7] P5[5] P5[3] P5[1] P1[7] P1[5] P1[3] P1[1] Vss D+ DVdd P7[7] P7[6] P7[5] P7[4] P7[3] P7[2] P7[1] P7[0] P1[0] P1[2] P1[4] P1[6] P5[0] P5[2] P5[4] P5[6] P3[0] P3[2] P3[4] P3[6] Name M, P1[3] I2C SCL, M, P1[1] Vss D+ DVdd Type Pin No. Digital Analog 1 I/O M 2 I/O M 3 I/O M 4 I/O M 5 6 7 Power 8 I/O M 9 I/O M 10 I/O M 11 I/O M 12 I/O M 13 I/O M 14 I/O M 15 I/O M 16 I/O M 17 I/O M 18 I/O M 19 I/O M 20 Power 21 USB 22 USB 23 Power 24 I/O 25 I/O 26 I/O 27 I/O 28 I/O 29 I/O 30 I/O 31 I/O 32 I/O M 33 I/O M 34 I/O M 35 I/O M 36 I/O M 37 I/O M 38 I/O M 39 I/O M 40 I/O M 41 I/O M 42 I/O M 43 I/O M Description Direct switched capacitor block input. Direct switched capacitor block input. External Analog Ground (AGND) input. External Voltage Reference (VREF) input. Analog column mux input. Analog column mux input and column output. Analog column mux input and column output. Analog column mux input. Supply voltage. Ground connection. Analog column mux input, integration input #1 Analog column mux input and column output, integration input #2. Analog column mux input and column output. Analog column mux input. Direct switched capacitor block input. Direct switched capacitor block input. Page 12 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 8.5 100-Ball VFBGA Part Pinout The 100-ball VFBGA part is for the CY8C24994 PSoC device. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Power Power Vss Vss NC NC NC Power Vdd NC NC Power Vss Power Vss Power Vss Power Vss I/O I,M P2[1] I/O I,M P0[1] I/O I,M P0[7] Power Vdd I/O I,M P0[2] I/O I,M P2[2] Power Vss Power Vss NC I/O M P4[1] I/O M P4[7] I/O M P2[7] I/O I/O,M P0[5] I/O I,M P0[6] I/O I,M P0[0] I/O I,M P2[0] I/O M P4[2] NC NC I/O M P3[7] I/O M P4[5] I/O M P2[5] I/O I/O,M P0[3] I/O I,M P0[4] I/O M P2[6] I/O M P4[6] I/O M P4[0] NC NC NC I/O M P4[3] I/O I,M P2[3] Power Vss Power Vss I/O M P2[4] I/O M P4[4] I/O M P3[6] NC Description Ground connection. Ground connection. No connection. No connection. No connection. Supply voltage. No connection. No connection. Ground connection. Ground connection. Ground connection. Ground connection. Direct switched capacitor block input. Analog column mux input. Analog column mux input. Supply voltage. Analog column mux input. Direct switched capacitor block input. Ground connection. Ground connection. No connection. Pin No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 H1 H2 H3 H4 Analog column mux input and column output. H5 Analog column mux input. H6 Analog column mux input. H7 Direct switched capacitor block input. H8 H9 No connection. H10 No connection. J1 J2 J3 J4 Analog column mux input and column output. J5 Analog column mux input. J6 External Voltage Reference (VREF) input. J7 J8 J9 No connection. J10 No connection. K1 No connection. K2 K3 Direct switched capacitor block input. K4 Ground connection. K5 Ground connection. K6 External Analog Ground (AGND) input. K7 K8 K9 No connection. K10 Analog Name Digital Analog Pin No. Digital Table 8-5. 100-Ball Part Pinout (VFBGA) I/O M I/O M I/O M Power Power I/O M I/O M I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O M M M M M M M M I/O M I/O M I/O M I/O M I/O M I/O M I/O M I/O M I/O Power Power USB USB Power I/O I/O I/O M Power Power Power Power Power I/O I/O I/O Power Power Name NC P5[7] P3[5] P5[1] Vss Vss P5[0] P3[0] XRES P7[1] NC P5[5] P3[3] P1[7] P1[1] P1[0] P1[6] P3[4] P5[6] P7[2] NC P5[3] P3[1] P1[5] P1[3] P1[2] P1[4] P3[2] P5[4] P7[3] Vss Vss D+ DVdd P7[7] P7[0] P5[2] Vss Vss Vss Vss NC NC Vdd P7[6] P7[5] P7[4] Vss Vss Description No connection. Ground connection. Ground connection. Active high pin reset with internal pull down. No connection. I2C Serial Clock (SCL). I2C Serial Clock (SCL), ISSP SCLK[2]. I2C Serial Data (SDA), ISSP SDATA[2]. No connection. I2C Serial Data (SDA). Optional External Clock Input (EXTCLK). Ground connection. Ground connection. Supply voltage. Ground connection. Ground connection. Ground connection. Ground connection. No connection. No connection. Supply voltage. Ground connection. Ground connection. LEGENDA = Analog, I = Input, O = Output, M = Analog Mux Input, NC = No Connection. Document Number: 38-12018 Rev. *U Page 13 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Figure 8-5. CY8C24094 OCD (Not for Production) 1 2 3 4 5 6 7 8 9 10 A Vss Vss NC NC NC Vdd NC NC Vss Vss B Vss Vss P2[1] P0[1] P0[7] Vdd P0[2] P2[2] Vss Vss C NC P4[1] P4[7] P2[7] P0[5] P0[6] P0[0] P2[0] P4[2] NC D NC P3[7] P4[5] P2[5] P0[3] P0[4] P2[6] P4[6] P4[0] NC E NC NC P4[3] P2[3] Vss Vss P2[4] P4[4] P3[6] NC F NC P5[7] P3[5] P5[1] Vss Vss P5[0] P3[0] XRES P7[1] G NC P5[5] P3[3] P1[7] P1[1] P1[0] P1[6] P3[4] P5[6] P7[2] H NC P5[3] P3[1] P1[5] P1[3] P1[2] P1[4] P3[2] P5[4] P7[3] J Vss Vss D+ D- Vdd P7[7] P7[0] P5[2] Vss Vss K Vss Vss NC NC Vdd P7[6] P7[5] P7[4] Vss Vss BGA (Top View) 8.6 100-Ball VFBGA Part Pinout (On-Chip Debug) The following 100-pin VFBGA part table and drawing is for the CY8C24094 On-Chip Debug (OCD) PSoC device. Note This part is only used for in-circuit debugging. It is NOT available for production. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 Power Power C6 C7 I/O I/O Power Power Power Power Power I/O I,M I/O I,M I/O I,M Power I/O I,M I/O I,M Power Power I/O I/O I/O I/O M M M I/O, M I,M I,M Description Vss Vss NC NC NC Vdd NC NC Vss Vss Vss Vss P2[1] P0[1] P0[7] Vdd P0[2] P2[2] Vss Vss NC P4[1] P4[7] P2[7] P0[5] Ground connection. Ground connection. No connection. No connection. No connection. Supply voltage. No connection. No connection. Ground connection. Ground connection. Ground connection. Ground connection. Direct switched capacitor block input. Analog column mux input. Analog column mux input. Supply voltage. Analog column mux input. Direct switched capacitor block input. Ground connection. Ground connection. No connection. P0[6] P0[0] Analog column mux input. Analog column mux input. Pin No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 H1 H2 H3 H4 Analog column mux input and column output. H5 Document Number: 38-12018 Rev. *U H6 H7 Analog Name Digital Digital Pin No. Analog Table 8-6. 100-Ball Part Pinout (VFBGA) Name I/O I/O I/O I/O I/O I/O I/O I/O I/O M M M M M M M M I/O I/O I/O I/O M M M M OCDE P5[7] P3[5] P5[1] Vss Vss P5[0] P3[0] XRES P7[1] OCDO P5[5] P3[3] P1[7] P1[1] P1[0] P1[6] P3[4] P5[6] P7[2] NC P5[3] P3[1] P1[5] P1[3] I/O I/O M M P1[2] P1[4] I/O M I/O M I/O M Power Power I/O M I/O M I/O Description OCD even data I/O. Ground connection. Ground connection. Active high pin reset with internal pull down. OCD odd data output. I2C Serial Clock (SCL). I2C Serial Clock (SCL), ISSP SCLK[2]. I2C Serial Data (SDA), ISSP SDATA[2]. No connection. I2C Serial Data (SDA). Optional External Clock Input (EXTCLK). Page 14 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 I/O I/O I,M M I/O I/O I/O I/O D6 D7 D8 D9 D10 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 I/O I/O I/O I/O M M M I/O, M I,M M M M I/O M I/O I,M Power Power I/O M I/O M I/O M Pin No. Description Direct switched capacitor block input. Analog Analog C8 C9 C10 D1 D2 D3 D4 D5 Name Digital Pin No. Digital Table 8-6. 100-Ball Part Pinout (VFBGA) (continued) Name P2[0] P4[2] NC NC P3[7] P4[5] P2[5] P0[3] H8 H9 No connection. H10 No connection. J1 J2 J3 J4 Analog column mux input and column output. J5 I/O M I/O M I/O Power Power USB USB Power P3[2] P5[4] P7[3] Vss Vss D+ DVdd P0[4] P2[6] P4[6] P4[0] CCLK NC NC P4[3] P2[3] Vss Vss P2[4] P4[4] P3[6] HCLK Analog column mux input. External Voltage Reference (VREF) input. I/O I/O I/O M Power Power Power Power P7[7] P7[0] P5[2] Vss Vss Vss Vss NC NC Vdd P7[6] P7[5] P7[4] Vss Vss J6 J7 J8 J9 J10 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 OCD CPU clock output. No connection. No connection. Direct switched capacitor block input. Ground connection. Ground connection. External Analog Ground (AGND) input. OCD high speed clock output. Power I/O I/O I/O Power Power Description Ground connection. Ground connection. Supply voltage. Ground connection. Ground connection. Ground connection. Ground connection. No connection. No connection. Supply voltage. Ground connection. Ground connection. LEGENDA = Analog, I = Input, O = Output, M = Analog Mux Input, NC = No Connection, OCD = On-Chip Debugger. Figure 8-6. CY8C24094 OCD (Not for Production) 1 2 3 4 5 6 7 8 9 10 A Vss Vss NC NC NC Vdd NC NC Vss Vss B Vss Vss P2[1] P0[1] P0[7] Vdd P0[2] P2[2] Vss Vss C NC P4[1] P4[7] P2[7] P0[5] P0[6] P0[0] P2[0] P4[2] NC D NC P3[7] P4[5] P2[5] P0[3] P0[4] P2[6] P4[6] P4[0] CClk E NC NC P4[3] P2[3] Vss Vss P2[4] P4[4] P3[6] HClk F ocde P5[7] P3[5] P5[1] Vss Vss P5[0] P3[0] XRES P7[1] G ocdo P5[5] P3[3] P1[7] P1[1] P1[0] P1[6] P3[4] P5[6] P7[2] H NC P5[3] P3[1] P1[5] P1[3] P1[2] P1[4] P3[2] P5[4] P7[3] J Vss Vss D+ D- Vdd P7[7] P7[0] P5[2] Vss Vss K Vss Vss NC NC Vdd P7[6] P7[5] P7[4] Vss Vss BGA (Top View) Document Number: 38-12018 Rev. *U Page 15 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 8.7 100-Pin Part Pinout (On-Chip Debug) The 100-pin TQFP part is for the CY8C24094 On-Chip Debug (OCD) PSoC device. Note This part is only used for in-circuit debugging. It is NOT available for production. 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 NC NC I/O I, M P0[1] I/O M P2[7] I/O M P2[5] I/O I, M P2[3] I/O I, M P2[1] I/O M P4[7] I/O M P4[5] I/O M P4[3] I/O M P4[1] OCDE OCDO NC Power Vss I/O M P3[7] I/O M P3[5] I/O M P3[3] I/O M P3[1] I/O M P5[7] I/O M P5[5] I/O M P5[3] I/O M P5[1] I/O M P1[7] NC NC NC I/O P1[5] I/O P1[3] I/O P1[1] Power USB USB Power I/O I/O I/O I/O I/O I/O I/O I/O NC Vss D+ DVdd P7[7] P7[6] P7[5] P7[4] P7[3] P7[2] P7[1] P7[0] NC NC NC NC 48 I/O P1[0] 49 I/O P1[2] 50 I/O P1[4] Description No connection. No connection. Analog column mux input. Direct switched capacitor block input. Direct switched capacitor block input. OCD even data I/O. OCD odd data output. No connection. Ground connection. I2C Serial Clock (SCL). No connection. No connection. No connection. I2C Serial Data (SDA) Crystal (XTALin), I2C Serial Clock (SCL), ISSP SCLK[2]. No connection. Ground connection. Supply voltage. No connection. No connection. No connection. No connection. Crystal (XTALout), I2C Serial Data (SDA), ISSP SDATA[2]. Pin No. 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 I/O I/O I/O I/O I/O I/O I/O I/O I/O 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 I/O I, M Power M M M M M M M M M Input I/O M I/O M Power I/O M I/O M I/O I, M I/O I, M I/O I/O I/O I I/O I, M I/O I, M Power I/O I, M I/O I/O, M 98 99 Optional External Clock Input (EXTCLK). Analog Name Digital 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Analog Pin No. Digital Table 8-7. 100-Pin Part Pinout (TQFP) 100 I/O I/O, M Name Description P1[6] P5[0] P5[2] P5[4] P5[6] P3[0] P3[2] P3[4] P3[6] HCLK CCLK XRES P4[0] P4[2] Vss P4[4] P4[6] P2[0] P2[2] P2[4] NC P2[6] NC P0[0] NC NC P0[2] NC P0[4] NC Direct switched capacitor block input. Direct switched capacitor block input. External Analog Ground (AGND) input. No connection. External Voltage Reference (VREF) input. No connection. Analog column mux input. No connection. No connection. Analog column mux input and column output. No connection. Analog column mux input and column output. No connection. P0[6] Vdd NC Vss NC NC NC NC NC NC NC NC NC NC P0[7] NC P0[5] Analog column mux input. Supply voltage. No connection. Ground connection. No connection. No connection. No connection. No connection. No connection. No connection. No connection. No connection. No connection. No connection. Analog column mux input. No connection. Analog column mux input and column output. NC No connection. P0[3] Analog column mux input and column output. NC No connection. OCD high speed clock output. OCD CPU clock output. Active high pin reset with internal pull down. Ground connection. LEGENDA = Analog, I = Input, O = Output, NC = No Connection, M = Analog Mux Input, OCD = On-Chip Debugger. Document Number: 38-12018 Rev. *U Page 16 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Document Number: 38-12018 Rev. *U NC P0[2], M, AI NC 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 NC P0[0], M , AI NC P2[6], M , External VREF NC P2[4], M , External AGND P2[2], M , AI P2[0], M , AI P4[6], M P4[4], M Vss P4[2], M P4[0], M XRES CCLK HCLK P3[6], M P3[4], M P3[2], M P3[0], M P5[6], M P5[4], M P5[2], M P5[0], M P1[6], M M, P1[2] EXTCLK, M, P1[4] 46 47 48 49 50 P7[1] P7[0] NC NC NC NC I2C SDA, M, P1[0] P7[3] P7[2] 36 37 38 39 40 41 42 43 44 45 P7[7] P7[6] P7[5] P7[4] 31 32 33 34 35 77 76 80 79 78 NC Vdd P0[6], M, AI NC P0[4], M, AI NC NC Vss 87 86 85 84 83 82 81 90 89 88 NC NC NC NC NC NC NC NC P0[7], M, AI NC 95 94 93 92 91 P0[3], M, AI NC P0[5], M, AI 98 97 96 28 29 30 26 27 TQFP NC I2C SDA, M, P1[5] M, P1[3] I2C SCL, M, P1[1] NC Vss D+ DVdd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 NC NC NC AI, M , P0[1] M , P2[7] M , P2[5] AI, M , P2[3] AI, M , P2[1] M , P4[7] M , P4[5] M , P4[3] M , P4[1] OCDE OCDO NC Vss M , P3[7] M , P3[5] M , P3[3] M , P3[1] M , P5[7] M , P5[5] M , P5[3] M , P5[1] I2C SCL, P1[7] NC 100 99 NC Figure 8-7. CY8C24094 OCD (Not for Production) Page 17 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 9. Register Reference This section lists the registers of the CY8C24x94 PSoC device family. For detailed register information, reference the PSoC Technical Reference Manual. 9.1 Register Conventions 9.2 Register Mapping Tables The register conventions specific to this section are listed in the following table. The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set the user is in Bank 1. Convention Description R Read register or bit(s) W Write register or bit(s) L Logical register or bit(s) C Clearable register or bit(s) # Access is bit specific Document Number: 38-12018 Rev. *U Note In the following register mapping tables, blank fields are Reserved and should not be accessed. Page 18 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 9.3 Register Map Bank 0 Table: User Space Name PRT0DR PRT0IE PRT0GS PRT0DM2 PRT1DR PRT1IE PRT1GS PRT1DM2 PRT2DR PRT2IE PRT2GS PRT2DM2 PRT3DR PRT3IE PRT3GS PRT3DM2 PRT4DR PRT4IE PRT4GS PRT4DM2 PRT5DR PRT5IE PRT5GS PRT5DM2 Addr (0,Hex) Access Name 00 RW PMA0_DR 01 RW PMA1_DR 02 RW PMA2_DR 03 RW PMA3_DR 04 RW PMA4_DR 05 RW PMA5_DR 06 RW PMA6_DR 07 RW PMA7_DR 08 RW USB_SOF0 09 RW USB_SOF1 0A RW USB_CR0 0B RW USBI/O_CR0 0C RW USBI/O_CR1 0D RW 0E RW EP1_CNT1 0F RW EP1_CNT 10 RW EP2_CNT1 11 RW EP2_CNT 12 RW EP3_CNT1 13 RW EP3_CNT 14 RW EP4_CNT1 15 RW EP4_CNT 16 RW EP0_CR 17 RW EP0_CNT 18 EP0_DR0 19 EP0_DR1 1A EP0_DR2 1B EP0_DR3 PRT7DR 1C RW EP0_DR4 PRT7IE 1D RW EP0_DR5 PRT7GS 1E RW EP0_DR6 PRT7DM2 1F RW EP0_DR7 DBB00DR0 20 # AMX_IN DBB00DR1 21 W AMUXCFG DBB00DR2 22 RW DBB00CR0 23 # ARF_CR DBB01DR0 24 # CMP_CR0 DBB01DR1 25 W ASY_CR DBB01DR2 26 RW CMP_CR1 DBB01CR0 27 # DCB02DR0 28 # DCB02DR1 29 W DCB02DR2 2A RW DCB02CR0 2B # DCB03DR0 2C # TMP_DR0 DCB03DR1 2D W TMP_DR1 DCB03DR2 2E RW TMP_DR2 DCB03CR0 2F # TMP_DR3 30 ACB00CR3 31 ACB00CR0 32 ACB00CR1 33 ACB00CR2 34 ACB01CR3 35 ACB01CR0 36 ACB01CR1 37 ACB01CR2 38 39 3A 3B 3C 3D 3E 3F Blank fields are Reserved and should not be accessed. Document Number: 38-12018 Rev. *U Addr (0,Hex) 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F Access RW RW RW RW RW RW RW RW R R RW # RW # RW # RW # RW # RW # # RW RW RW RW RW RW RW RW RW RW RW # # RW RW RW RW RW RW RW RW RW RW RW RW RW Name ASC10CR0 ASC10CR1 ASC10CR2 ASC10CR3 ASD11CR0 ASD11CR1 ASD11CR2 ASD11CR3 Addr (0,Hex) 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F ASD20CR0 90 ASD20CR1 91 ASD20CR2 92 ASD20CR3 93 ASC21CR0 94 ASC21CR1 95 ASC21CR2 96 ASC21CR3 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 MUL1_X A8 MUL1_Y A9 MUL1_DH AA MUL1_DL AB ACC1_DR1 AC ACC1_DR0 AD ACC1_DR3 AE ACC1_DR2 AF RDI0RI B0 RDI0SYN B1 RDI0IS B2 RDI0LT0 B3 RDI0LT1 B4 RDI0RO0 B5 RDI0RO1 B6 B7 B8 B9 BA BB BC BD BE BF # Access is bit specific. Access RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW W W R R RW RW RW RW RW RW RW RW RW RW RW Name CUR_PP STK_PP IDX_PP MVR_PP MVW_PP I2C_CFG I2C_SCR I2C_DR I2C_MSCR INT_CLR0 INT_CLR1 INT_CLR2 INT_CLR3 INT_MSK3 INT_MSK2 INT_MSK0 INT_MSK1 INT_VC RES_WDT DEC_DH DEC_DL DEC_CR0 DEC_CR1 MUL0_X MUL0_Y MUL0_DH MUL0_DL ACC0_DR1 ACC0_DR0 ACC0_DR3 ACC0_DR2 CPU_F DAC_D CPU_SCR1 CPU_SCR0 Addr (0,Hex) C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF Access RW RW RW RW RW RW # RW # RW RW RW RW RW RW RW RW RC W RC RC RW RW W W R R RW RW RW RW RL RW # # Page 19 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 9.4 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 PRT0DM1 PRT0IC0 PRT0IC1 PRT1DM0 PRT1DM1 PRT1IC0 PRT1IC1 PRT2DM0 PRT2DM1 PRT2IC0 PRT2IC1 PRT3DM0 PRT3DM1 PRT3IC0 PRT3IC1 PRT4DM0 PRT4DM1 PRT4IC0 PRT4IC1 PRT5DM0 PRT5DM1 PRT5IC0 PRT5IC1 Addr (1,Hex) Access Name 00 RW PMA0_WA 01 RW PMA1_WA 02 RW PMA2_WA 03 RW PMA3_WA 04 RW PMA4_WA 05 RW PMA5_WA 06 RW PMA6_WA 07 RW PMA7_WA 08 RW 09 RW 0A RW 0B RW 0C RW 0D RW 0E RW 0F RW 10 RW PMA0_RA 11 RW PMA1_RA 12 RW PMA2_RA 13 RW PMA3_RA 14 RW PMA4_RA 15 RW PMA5_RA 16 RW PMA6_RA 17 RW PMA7_RA 18 19 1A 1B PRT7DM0 1C RW PRT7DM1 1D RW PRT7IC0 1E RW PRT7IC1 1F RW DBB00FN 20 RW CLK_CR0 DBB00IN 21 RW CLK_CR1 DBB00OU 22 RW ABF_CR0 23 AMD_CR0 DBB01FN 24 RW CMP_GO_EN DBB01IN 25 RW DBB01OU 26 RW AMD_CR1 27 ALT_CR0 DCB02FN 28 RW DCB02IN 29 RW DCB02OU 2A RW 2B DCB03FN 2C RW TMP_DR0 DCB03IN 2D RW TMP_DR1 DCB03OU 2E RW TMP_DR2 2F TMP_DR3 30 ACB00CR3 31 ACB00CR0 32 ACB00CR1 33 ACB00CR2 34 ACB01CR3 35 ACB01CR0 36 ACB01CR1 37 ACB01CR2 38 39 3A 3B 3C 3D 3E 3F Blank fields are Reserved and should not be accessed. Document Number: 38-12018 Rev. *U Addr (1,Hex) 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F Access RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW Name ASC10CR0 ASC10CR1 ASC10CR2 ASC10CR3 ASD11CR0 ASD11CR1 ASD11CR2 ASD11CR3 Addr (1,Hex) 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 ASD20CR1 91 ASD20CR2 92 ASD20CR3 93 ASC21CR0 94 ASC21CR1 95 ASC21CR2 96 ASC21CR3 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF RDI0RI B0 RDI0SYN B1 RDI0IS B2 RDI0LT0 B3 RDI0LT1 B4 RDI0RO0 B5 RDI0RO1 B6 B7 B8 B9 BA BB BC BD BE BF # Access is bit specific. Access RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW Name USBI/O_CR2 USB_CR1 Addr (1,Hex) Access C0 RW C1 # EP1_CR0 EP2_CR0 EP3_CR0 EP4_CR0 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF GDI_O_IN GDI_E_IN GDI_O_OU GDI_E_OU MUX_CR0 MUX_CR1 MUX_CR2 MUX_CR3 OSC_GO_EN OSC_CR4 OSC_CR3 OSC_CR0 OSC_CR1 OSC_CR2 VLT_CR VLT_CMP IMO_TR ILO_TR BDG_TR ECO_TR MUX_CR4 MUX_CR5 RW RW RW RW RW RW RW CPU_F DAC_CR CPU_SCR1 CPU_SCR0 # # # # RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW R W W RW W RW RW RL RW # # Page 20 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10. Electrical Specifications This section presents the DC and AC electrical specifications of the CY8C24x94 PSoC device family. For the most up to date electrical specifications, confirm that you have the most recent data sheet by visiting http://www.cypress.com. Specifications are valid for -40°C ≤ TA ≤ 85°C and TJ ≤ 100°C, except where noted. Specifications for devices running at greater than 12 MHz are valid for -40°C ≤ TA ≤ 70°C and TJ ≤ 82°C. Figure 10-1. Voltage versus CPU Frequency 5.25 Vdd Voltage lid ng Va rati n e io Op Reg 4.75 3.00 93 kHz 12 MHz 24 MHz CPU Frequency The following table lists the units of measure that are used in this chapter. Table 10-1. Units of Measure Symbol °C dB fF Hz KB Kbit kHz kΩ MHz MΩ μA μF μH μs μV μVrms Unit of Measure degree Celsius decibels femto farad hertz 1024 bytes 1024 bits kilohertz kilohm megahertz megaohm microampere microfarad microhenry microsecond microvolts microvolts root-mean-square Document Number: 38-12018 Rev. *U Symbol μW mA ms mV nA ns nV Ω pA pF pp ppm ps sps σ V Unit of Measure microwatts milli-ampere milli-second milli-volts nanoampere nanosecond nanovolts ohm picoampere picofarad peak-to-peak parts per million picosecond samples per second sigma: one standard deviation volts Page 21 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.1 Absolute Maximum Ratings Table 10-2. Absolute Maximum Ratings Symbol TSTG Description Storage Temperature TBAKETEMP Bake Temperature Min -55 Typ 25 Max +100 Units °C – 125 °C – See package label 72 TBAKETIME Bake Time TA Vdd VI/O Ambient Temperature with Power Applied Supply Voltage on Vdd Relative to Vss DC Input Voltage See package label -40 -0.5 Vss - 0.5 VI/O2 DC Voltage Applied to Tri-state Vss - 0.5 – IMI/O IMAI/O Maximum Current into any Port Pin Maximum Current into any Port Pin Configured as Analog Driver Electro Static Discharge Voltage Latch-up Current -25 -50 ESD LU – – – Notes Higher storage temperatures reduces data retention time. Recommended storage temperature is +25oC ± 25oC. Extended duration storage temperatures above 65oC degrades reliability. Hours – – +85 +6.0 Vdd + 0.5 Vdd + 0.5 +50 +50 mA mA 2000 – – – – 200 V mA Min -40 -10 -40 Typ – – – Max +85 +85 +100 Units °C °C °C °C V V V Human Body Model ESD. 10.2 Operating Temperature Table 10-3. Operating Temperature Symbol TA TAUSB TJ Description Ambient Temperature Ambient Temperature using USB Junction Temperature Document Number: 38-12018 Rev. *U Notes The temperature rise from ambient to junction is package specific. See Thermal Impedance on page 43. The user must limit the power consumption to comply with this requirement. Page 22 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.3 DC Electrical Characteristics 10.3.1 DC Chip Level Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-4. DC Chip-Level Specifications Symbol Description Vdd Supply Voltage Min 3.0 Typ – Max 5.25 Units V IDD5 Supply Current, IMO = 24 MHz (5V) – 14 27 mA IDD3 Supply Current, IMO = 24 MHz (3.3V) – 8 14 mA ISB Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT.[4] – 3 6.5 μA ISBH Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT at high temperature.[4] – 4 25 μA Notes See DC POR and LVD specifications, Table 10-14 on page 29. Conditions are Vdd = 5.0V, TA = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, analog power = off. Conditions are Vdd = 3.3V, TA = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.367 kHz, analog power = off. Conditions are with internal slow speed oscillator, Vdd = 3.3V, -40 °C ≤ TA ≤ 55 °C, analog power = off. Conditions are with internal slow speed oscillator, Vdd = 3.3V, 55 °C < TA ≤ 85 °C, analog power = off. 10.3.2 DC General Purpose I/O Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-5. DC GPI/O Specifications Symbol Description RPU Pull Up Resistor RPD Pull Down Resistor VOH High Output Level Min 4 4 Vdd - 1.0 Typ 5.6 5.6 – Max 8 8 – Units kΩ kΩ V VOL Low Output Level – – 0.75 V IOH High Level Source Current 10 – – mA IOL Low Level Sink Current 25 – – mA VIL VIH VH IIL CIN Input Low Level Input High Level Input Hysterisis Input Leakage (Absolute Value) Capacitive Load on Pins as Input – 2.1 – – – – – 60 1 3.5 0.8 – – 10 V V mV nA pF COUT Capacitive Load on Pins as Output – 3.5 10 pF Document Number: 38-12018 Rev. *U Notes IOH = 10 mA, Vdd = 4.75 to 5.25V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 80 mA maximum combined IOH budget. IOL = 25 mA, Vdd = 4.75 to 5.25V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 200 mA maximum combined IOL budget. VOH = Vdd-1.0V, see the limitations of the total current in the note for VOH VOL = 0.75V, see the limitations of the total current in the note for VOL Vdd = 3.0 to 5.25. Vdd = 3.0 to 5.25. Gross tested to 1 μA. Package and pin dependent. Temp = 25oC. Package and pin dependent. Temp = 25oC. Page 23 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.3.3 DC Full Speed USB Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -10°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -10°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-6. DC Full Speed (12 Mbps) USB Specifications Symbol Description USB Interface Differential Input Sensitivity VDI Differential Input Common Mode Range VCM Single Ended Receiver Threshold VSE CIN Transceiver Capacitance High-Z State Data Line Leakage II/O REXT External USB Series Resistor VUOH Static Output High, Driven Min Typ Max Units 0.2 0.8 0.8 – -10 23 2.8 – – – – – – – – 2.5 2.0 20 10 25 3.6 V V V pF μA W V VUOHI Static Output High, Idle 2.7 – 3.6 V VUOL Static Output Low – – 0.3 V ZO VCRS USB Driver Output Impedance D+/D- Crossover Voltage 28 1.3 – – 44 2.0 W V Notes | (D+) - (D-) | 0V < VIN < 3.3V. In series with each USB pin. 15 kΩ ± 5% to Ground. Internal pull up enabled. 15 kΩ ± 5% to Ground. Internal pull up enabled. 15 kΩ ± 5% to Ground. Internal pull up enabled. Including REXT Resistor. 10.3.4 DC Operational Amplifier Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Capacitor PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Table 10-7. 5V DC Operational Amplifier Specifications Symbol VOSOA Description Input Offset Voltage (absolute value) Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High TCVOSOA Average Input Offset Voltage Drift Input Leakage Current (Port 0 Analog Pins) IEBOA Input Capacitance (Port 0 Analog Pins) CINOA VCMOA Common Mode Voltage Range Common Mode Voltage Range (high power or high opamp bias) Min Typ Max Units – – – – – – 1.6 1.3 1.2 7.0 20 4.5 10 8 7.5 35.0 – 9.5 mV mV mV μV/°C pA pF 0.0 0.5 – – Vdd Vdd - 0.5 V Notes Gross tested to 1 μA. Package and pin dependent. Temp = 25oC. The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer. Note 4. Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This should be compared with devices that have similar functions enabled. Document Number: 38-12018 Rev. *U Page 24 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Table 10-7. 5V DC Operational Amplifier Specifications (continued) Symbol GOLOA Description Open Loop Gain Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High VOHIGHO High Output Voltage Swing (internal signals) Power = Low, Opamp Bias = High A Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High VOLOWOA Low Output Voltage Swing (internal signals) Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High ISOA Supply Current (including associated AGND buffer) Power = Low, Opamp Bias = Low Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = Low Power = Medium, Opamp Bias = High Power = High, Opamp Bias = Low Power = High, Opamp Bias = High PSRROA Supply Voltage Rejection Ratio Min Typ – Max – Units dB Vdd - 0.2 Vdd - 0.2 Vdd - 0.5 – – – – – – V V V – – – – – – 0.2 0.2 0.5 V V V – – – – – – 65 400 500 800 1200 2400 4600 80 800 900 1000 1600 3200 6400 – μA μA μA μA μA μA dB 60 60 80 Notes Vss ≤ VIN ≤ (Vdd - 2.25) or (Vdd - 1.25V) ≤ VIN ≤ Vdd. 10.3.5 DC Low Power Comparator Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V at 25°C and are for design guidance only. Table 10-8. DC Low Power Comparator Specifications Symbol VREFLPC ISLPC VOSLPC Description Low power comparator (LPC) reference voltage range LPC supply current LPC voltage offset Document Number: 38-12018 Rev. *U Min 0.2 Typ – Max Vdd - 1 Units V – – 10 2.5 40 30 μA mV Notes Page 25 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.3.6 DC Analog Output Buffer Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-9. 5V DC Analog Output Buffer Specifications Symbol VOSOB TCVOSOB VCMOB ROUTOB VOHIGHOB VOLOWOB ISOB PSRROB Description Min Input Offset Voltage (Absolute Value) – Average Input Offset Voltage Drift – Common-Mode Input Voltage Range 0.5 Output Resistance Power = Low – Power = High – High Output Voltage Swing (Load = 32 ohms to Vdd/2) Power = Low 0.5 x Vdd + 1.1 Power = High 0.5 x Vdd + 1.1 Low Output Voltage Swing (Load = 32 ohms to Vdd/2) Power = Low – Power = High – Supply Current Including Bias Cell (No Load) – Power = Low – Power = High Supply Voltage Rejection Ratio 53 Typ 3 +6 – Max 12 – Vdd - 1.0 Units mV μV/°C V 0.6 0.6 – – W W – – – – V V – – 0.5 x Vdd - 1.3 0.5 x Vdd - 1.3 V V 1.1 2.6 64 5.1 8.8 – mA mA dB Typ 3 +6 - Max 12 – Vdd - 1.0 Units mV μV/°C V 1 1 – – W W – – – – V V – – 0.5 x Vdd - 1.0 0.5 x Vdd - 1.0 V V 0.8 2.0 64 2.0 4.3 – mA mA dB Notes (0.5 x Vdd - 1.3) ≤ VOUT ≤ (Vdd - 2.3). Table 10-10. 3.3V DC Analog Output Buffer Specifications Symbol VOSOB TCVOSOB VCMOB ROUTOB VOHIGHOB VOLOWOB ISOB PSRROB Description Min Input Offset Voltage (Absolute Value) – Average Input Offset Voltage Drift – Common-Mode Input Voltage Range 0.5 Output Resistance Power = Low – Power = High – High Output Voltage Swing (Load = 1K ohms to Vdd/2) 0.5 x Vdd + 1.0 Power = Low 0.5 x Vdd + 1.0 Power = High Low Output Voltage Swing (Load = 1K ohms to Vdd/2) – Power = Low – Power = High Supply Current Including Bias Cell (No Load) Power = Low – Power = High Supply Voltage Rejection Ratio 34 Document Number: 38-12018 Rev. *U Notes (0.5 x Vdd - 1.0) ≤ VOUT ≤ (0.5 x Vdd + 0.9). Page 26 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.3.7 DC Analog Reference Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block. Reference control power is high. Table 10-11. 5V DC Analog Reference Specifications Symbol BG – – – – – – – – – – – – – – – – – Description Min Typ Max Bandgap Voltage Reference 1.28 1.30 1.32 AGND = Vdd/2[5, 6] Vdd/2 - 0.04 Vdd/2 - 0.01 Vdd/2 + 0.007 AGND = 2 x BandGap[5, 6] 2 x BG - 0.048 2 x BG - 0.030 2 x BG + 0.024 [5, 6] AGND = P2[4] (P2[4] = Vdd/2) P2[4] - 0.011 P2[4] P2[4] + 0.011 AGND = BandGap[5, 6] BG - 0.009 BG + 0.008 BG + 0.016 AGND = 1.6 x BandGap[5, 6] 1.6 x BG - 0.022 1.6 x BG - 0.010 1.6 x BG + 0.018 AGND Block to Block Variation (AGND = Vdd/2)[5, 6] -0.034 0.000 0.034 RefHi = Vdd/2 + BandGap Vdd/2 + BG - 0.10 Vdd/2 + BG Vdd/2 + BG + 0.10 RefHi = 3 x BandGap 3 x BG - 0.06 3 x BG 3 x BG + 0.06 RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V) 2 x BG + P2[6] 2 x BG + P2[6] 2 x BG + P2[6] + 0.113 0.018 0.077 RefHi = P2[4] + BandGap (P2[4] = Vdd/2) P2[4] + BG - 0.130 P2[4] + BG - 0.016 P2[4] + BG + 0.098 RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V) P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6]+ 0.133 0.016 0.100 RefHi = 3.2 x BandGap 3.2 x BG - 0.112 3.2 x BG 3.2 x BG + 0.076 RefLo = Vdd/2 – BandGap Vdd/2 - BG - 0.04 Vdd/2 - BG + 0.024 Vdd/2 - BG + 0.04 RefLo = BandGap BG - 0.06 BG BG + 0.06 RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V) 2 x BG - P2[6] 2 x BG - P2[6] + 2 x BG - P2[6] + 0.084 0.025 0.134 RefLo = P2[4] – BandGap (P2[4] = Vdd/2) P2[4] - BG - 0.056 P2[4] - BG + 0.026 P2[4] - BG + 0.107 RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V) P2[4] - P2[6] P2[4] - P2[6] + P2[4] - P2[6] + 0.057 0.026 0.110 Document Number: 38-12018 Rev. *U Units V V V V V V V V V V V V V V V V V V Page 27 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Table 10-12. 3.3V DC Analog Reference Specifications Symbol BG – – – – – – – – – – – Description Bandgap Voltage Reference AGND = Vdd/2[5, 6] AGND = 2 x BandGap[5, 6] AGND = P2[4] (P2[4] = Vdd/2) AGND = BandGap[5, 6] AGND = 1.6 x BandGap[5, 6] AGND Column to Column Variation (AGND = Vdd/2)[5, 6] RefHi = Vdd/2 + BandGap RefHi = 3 x BandGap RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V) RefHi = P2[4] + BandGap (P2[4] = Vdd/2) RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V) Min 1.28 Vdd/2 - 0.03 – – – – – – RefHi = 3.2 x BandGap RefLo = Vdd/2 - BandGap RefLo = BandGap RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V) RefLo = P2[4] – BandGap (P2[4] = Vdd/2) RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V) P2[4] - P2[6] - 0.048 P2[4] - 0.008 BG - 0.009 1.6 x BG - 0.027 -0.034 P2[4] + P2[6] 0.075 Typ Max 1.30 1.32 Vdd/2 - 0.01 Vdd/2 + 0.005 Not Allowed P2[4] + 0.001 P2[4] + 0.009 BG + 0.005 BG + 0.015 1.6 x BG - 0.010 1.6 x BG + 0.018 0.000 0.034 Not Allowed Not Allowed Not Allowed Not Allowed P2[4] + P2[6] 0.009 Not Allowed Not Allowed Not Allowed Not Allowed Not Allowed P2[4]- P2[6] + 0.022 Units V V V V V V P2[4] + P2[6] + 0.057 V P2[4] - P2[6] + 0.092 V 10.3.8 DC Analog PSoC Block Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-13. DC Analog PSoC Block Specifications Symbol Description RCT Resistor Unit Value (Continuous Time) CSC Capacitor Unit Value (Switched Capacitor) Min – – Typ 12.2 80 Max – – Units kΩ fF Notes Note 5. AGND tolerance includes the offsets of the local buffer in the PSoC block. Bandgap voltage is 1.3V ± 0.02V. 6. Avoid using P2[4] for digital signaling when using an analog resource that depends on the Analog Reference. Some coupling of the digital signal may appear on the AGND. Document Number: 38-12018 Rev. *U Page 28 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.3.9 DC POR and LVD Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V or 3.3V at 25°C and are for design guidance only. Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the PSoC Technical Reference Manual for more information on the VLT_CR register. Table 10-14. DC POR and LVD Specifications Symbol Description VPPOR0R VPPOR1R VPPOR2R Vdd Value for PPOR Trip (positive ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b VPPOR0 VPPOR1 VPPOR2 Vdd Value for PPOR Trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b VPH0 VPH1 VPH2 PPOR Hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7 Vdd Value for LVD Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b Min Typ Max Units – 2.91 4.39 4.55 – V V V – 2.82 4.39 4.55 – V V V – – – 92 0 0 – – – mV mV mV 2.86 2.96 3.07 3.92 4.39 4.55 4.63 4.72 2.92 3.02 3.13 4.00 4.48 4.64 4.73 4.81 2.98[7] 3.08 3.20 4.08 4.57 4.74[8] 4.82 4.91 V V V V V V V V V Notes Notes 7. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply. 8. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply. Document Number: 38-12018 Rev. *U Page 29 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.3.10 DC Programming Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-15. DC Programming Specifications Symbol IDDP VILP Description Supply Current During Programming or Verify Input Low Voltage During Programming or Verify VIHP Input High Voltage During Programming or Verify IILP Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify IIHP Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify VOLV Output Low Voltage During Programming or Verify VOHV Output High Voltage During Programming or Verify FlashENPB Flash Endurance (per block)[9] FlashENT FlashDR Flash Endurance (total)[10] Flash Data Retention Min – – Typ 15 – Max 30 0.8 Units mA V 2.1 – – V – – 0.2 mA – – 1.5 mA – – Vss + 0.75 V Vdd - 1.0 – Vdd V 50,000 – – – 1,800,000 10 – – – – – Years Notes Driving internal pull down resistor. Driving internal pull down resistor. Erase/write cycles per block. Erase/write cycles. Note 9. The 50,000 cycle flash endurance per block will only be guaranteed if the flash is operating within one voltage range. Voltage ranges are 3.0V to 3.6V and 4.75V to 5.25V. 10. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information. Document Number: 38-12018 Rev. *U Page 30 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.4 AC Electrical Characteristics 10.4.1 AC Chip-Level Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-16. AC Chip-Level Specifications Symbol FIMO245V Min 23.04 Typ 24 Max 24.96[11,12] Units MHz 22.08 24 25.92[12,13] MHz 23.94 24 24.06[12] MHz 23.94 24 24.06[12] MHz -0°C ≤ TA ≤ 70°C 3.15 ≤ Vdd ≤ 3.45 FIMO6 Description Internal Main Oscillator Frequency for 24 MHz (5V) Internal Main Oscillator Frequency for 24 MHz (3.3V) Internal Main Oscillator Frequency with USB (5V) Frequency locking enabled and USB traffic present. Internal Main Oscillator Frequency with USB (3.3V) Frequency locking enabled and USB traffic present. Internal Main Oscillator Frequency for 6 MHz 5.5 6 6.5[11,12,13] MHz Trimmed for 5V or 3.3V operation using factory trim values. See the figure on page 19. SLIMO Mode = 1. FCPU1 FCPU2 FBLK5 CPU Frequency (5V Nominal) CPU Frequency (3.3V Nominal) Digital PSoC Block Frequency (5V Nominal) 0.090 0.086 0 24 12 48 24.96[11,12] 12.96[12,13] 49.92[11,12,14] MHz MHz MHz FBLK3 F32K1 F32K_U Digital PSoC Block Frequency (3.3V Nominal) Internal Low Speed Oscillator Frequency Internal Low Speed Oscillator (ILO) Untrimmed Frequency 0 15 5 24 32 – 25.92[12,14] 64 – MHz kHz kHz Jitter32k TXRST DC24M DCILO Step24M Fout48M 32 kHz Period Jitter External Reset Pulse Width 24 MHz Duty Cycle Internal Low Speed Oscillator Duty Cycle 24 MHz Trim Step Size 48 MHz Output Frequency – 10 40 20 – 46.08 100 – 50 50 50 48.0 – 60 80 – 49.92[11,13] ns µs % % kHz MHz 24 MHz Period Jitter (IMO) Peak-to-Peak Maximum frequency of signal on row input or row output. SRPOWER_UP Power Supply Slew Rate – – 300 – 12.96 ps MHz – – 250 V/ms TPOWERUP – 16 100 ms FIMO243V FIMOUSB5V FIMOUSB3V Jitter24M1 FMAX Time from end of POR to CPU executing code Document Number: 38-12018 Rev. *U Notes Trimmed for 5V operation using factory trim values. Trimmed for 3.3V operation using factory trim values. -10°C ≤ TA ≤ 85°Cn 4.35 ≤ Vdd ≤ 5.15 Refer to the AC Digital Block Specifications. After a reset and before the m8c starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on timing this Trimmed. Utilizing factory trim values. Vdd slew rate during power up. Power up from 0V. See the System Resets section of the PSoC Technical Reference Manual. Page 31 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Figure 10-2. 24 MHz Period Jitter (IMO) Timing Diagram Jitter24M1 F24M 10.4.2 AC General Purpose I/O Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-17. AC GPI/O Specifications Symbol FGPI/O TRiseF TFallF TRiseS TFallS Description GPI/O Operating Frequency Rise Time, Normal Strong Mode, Cload = 50 pF Fall Time, Normal Strong Mode, Cload = 50 pF Rise Time, Slow Strong Mode, Cload = 50 pF Fall Time, Slow Strong Mode, Cload = 50 pF Min 0 3 2 10 10 Typ – – – 27 22 Max 12 18 18 – – Units MHz ns ns ns ns Notes Normal Strong Mode Vdd = 4.5 to 5.25V, 10% - 90% Vdd = 4.5 to 5.25V, 10% - 90% Vdd = 3 to 5.25V, 10% - 90% Vdd = 3 to 5.25V, 10% - 90% Figure 10-3. GPI/O Timing Diagram 90% G PIO Pin O utput Voltage 10% TRiseF TRiseS TFallF TFallS 10.4.3 AC Full Speed USB Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -10°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -10°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-18. AC Full Speed (12 Mbps) USB Specifications Symbol TRFS TFSS TRFMFS TDRATEFS Description Transition Rise Time Transition Fall Time Rise/Fall Time Matching: (TR/TF) Full Speed Data Rate Min 4 4 90 12 0.25% Typ – – – 12 Max 20 20 111 12 + 0.25% Units ns ns % Mbps Notes For 50 pF load. For 50 pF load. For 50 pF load. Notes 11. 4.75V < Vdd < 5.25V. 12. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range. 13. 3.0V < Vdd < 3.6V. See Application Note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for operation at 3.3V. 14. See the individual user module data sheets for information on maximum frequencies for user modules Document Number: 38-12018 Rev. *U Page 32 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.4.4 AC Operational Amplifier Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block. Power = High and Opamp Bias = High is not supported at 3.3V. Table 10-19. 5V AC Operational Amplifier Specifications Symbol TROA TSOA SRROA SRFOA BWOA ENOA Description Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High Gain Bandwidth Product Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High Noise at 1 kHz (Power = Medium, Opamp Bias = High) Min Typ Max Units – – – – – – 3.9 0.72 0.62 μs μs μs – – – – – – 5.9 0.92 0.72 μs μs μs 0.15 1.7 6.5 – – – – – – V/μs V/μs V/μs 0.01 0.5 4.0 – – – – – – V/μs V/μs V/μs 0.75 3.1 5.4 – – – – 100 – – – – MHz MHz MHz nV/rt-Hz Min Typ Max Units – – – – 3.92 0.72 μs μs – – – – 5.41 0.72 μs μs 0.31 2.7 – – – – V/μs V/μs 0.24 1.8 – – – – V/μs V/μs 0.67 2.8 – – – 100 – – – MHz MHz nV/rt-Hz Table 10-20. 3.3V AC Operational Amplifier Specifications Symbol TROA TSOA SRROA SRFOA BWOA ENOA Description Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High Gain Bandwidth Product Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = High Noise at 1 kHz (Power = Medium, Opamp Bias = High) Document Number: 38-12018 Rev. *U Page 33 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor. Figure 10-4. Typical AGND Noise with P2[4] Bypass dBV/rtHz 10000 0 0.01 0.1 1.0 10 1000 100 0.001 0.01 0.1 Freq (kHz) 1 10 100 At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level. Figure 10-5. Typical Opamp Noise nV/rtHz 10000 PH_BH PH_BL PM_BL PL_BL 1000 100 10 0.001 Document Number: 38-12018 Rev. *U 0.01 0.1 Freq (kHz) 1 10 100 Page 34 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.4.5 AC Low Power Comparator Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V at 25°C and are for design guidance only. Table 10-21. AC Low Power Comparator Specifications Symbol TRLPC Description LPC response time Min – Typ – Max 50 Units μs Notes ≥ 50 mV overdrive comparator reference set within VREFLPC. 10.4.6 AC Digital Block Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-22. AC Digital Block Specifications Function Min Typ Max Units 50[15] – – ns Maximum Frequency, No Capture – – 49.92 MHz Maximum Frequency, With Capture – – 25.92 MHz 50[15] – – ns Maximum Frequency, No Enable Input – – 49.92 MHz Maximum Frequency, Enable Input – – 25.92 MHz Asynchronous Restart Mode 20 – – ns Synchronous Restart Mode 50[15] – – ns Disable Mode 50[15] – – ns Maximum Frequency – – 49.92 MHz 4.75V < Vdd < 5.25V. CRCPRS Maximum Input Clock Frequency (PRS Mode) – – 49.92 MHz 4.75V < Vdd < 5.25V. CRCPRS Maximum Input Clock Frequency (CRC Mode) – – 24.6 MHz SPIM Maximum Input Clock Frequency – – 8.2 MHz SPIS Maximum Input Clock Frequency Timer Counter Dead Band Description Capture Pulse Width Enable Pulse Width Notes 4.75V < Vdd < 5.25V. 4.75V < Vdd < 5.25V. Kill Pulse Width: Width of SS_ Negated Between Transmissions – – 4.1 MHz 50[15] – – ns Maximum data rate at 4.1 MHz due to 2 x over clocking. Transmitter Maximum Input Clock Frequency – – 24.6 MHz Maximum data rate at 3.08 MHz due to 8 x over clocking. Receiver Maximum Input Clock Frequency – – 24.6 MHz Maximum data rate at 3.08 MHz due to 8 x over clocking. Note 15. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period). Document Number: 38-12018 Rev. *U Page 35 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.4.7 AC External Clock Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-23. AC External Clock Specifications Symbol Description FOSCEXT Frequency for USB Applications Min Typ Max Units 23.94 24 24.06 MHz – Duty Cycle 47 50 53 % – Power up to IMO Switch 150 – – μs Notes 10.4.8 AC Analog Output Buffer Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-24. 5V AC Analog Output Buffer Specifications Symbol Description TROB Rising Settling Time to 0.1%, 1V Step, 100pF Load Power = Low Power = High TSOB Falling Settling Time to 0.1%, 1V Step, 100pF Load Power = Low Power = High SRROB Rising Slew Rate (20% to 80%), 1V Step, 100 pF Load Power = Low Power = High SRFOB Falling Slew Rate (80% to 20%), 1V Step, 100 pF Load Power = Low Power = High BWOBSS Small Signal Bandwidth, 20mVpp, 3dB BW, 100 pF Load Power = Low Power = High BWOBLS Large Signal Bandwidth, 1Vpp, 3dB BW, 100 pF Load Power = Low Power = High Min Typ Max Units – – – – 2.5 2.5 μs μs – – – – 2.2 2.2 μs μs 0.65 0.65 – – – – V/μs V/μs 0.65 0.65 – – – – V/μs V/μs 0.8 0.8 – – – – MHz MHz 300 300 – – – – kHz kHz Min Typ Max Units – – – – 3.8 3.8 μs μs – – – – 2.6 2.6 μs μs 0.5 0.5 – – – – V/μs V/μs 0.5 0.5 – – – – V/μs V/μs 0.7 0.7 – – – – MHz MHz 200 200 – – – – kHz kHz Notes Table 10-25. 3.3V AC Analog Output Buffer Specifications Symbol TROB TSOB SRROB SRFOB BWOBSS BWOBLS Description Rising Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High Falling Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High Rising Slew Rate (20% to 80%), 1V Step, 100 pF Load Power = Low Power = High Falling Slew Rate (80% to 20%), 1V Step, 100 pF Load Power = Low Power = High Small Signal Bandwidth, 20mVpp, 3dB BW, 100 pF Load Power = Low Power = High Large Signal Bandwidth, 1Vpp, 3dB BW, 100 pF Load Power = Low Power = High Document Number: 38-12018 Rev. *U Notes Page 36 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.4.9 AC Programming Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-26. AC Programming Specifications Symbol TRSCLK TFSCLK TSSCLK THSCLK FSCLK TERASEB TWRITE TDSCLK TDSCLK3 TERASEALL Description Rise Time of SCLK Fall Time of SCLK Data Set up Time to Falling Edge of SCLK Data Hold Time from Falling Edge of SCLK Frequency of SCLK Flash Erase Time (Block) Flash Block Write Time Data Out Delay from Falling Edge of SCLK Data Out Delay from Falling Edge of SCLK Flash Erase Time (Bulk) TPROGRAM_HOT Flash Block Erase + Flash Block Write Time TPROGRAM_COLD Flash Block Erase + Flash Block Write Time Min 1 1 40 40 0 – – – – – Typ – – – – – 10 40 – – 40 Max 20 20 – – 8 – – 45 50 – Units ns ns ns ns MHz ms ms ns ns ms – – – – 100[16] 200[16] ms ms Notes Vdd > 3.6 3.0 ≤ Vdd ≤ 3.6 Erase all Blocks and protection fields at once 0°C <= Tj <= 100°C -40°C <= Tj <= 0°C Note 16. For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information. Document Number: 38-12018 Rev. *U Page 37 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 10.4.10 AC I2C Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C ≤ TA ≤ 85°C, or 3.0V to 3.6V and -40°C ≤ TA ≤ 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Table 10-27. AC Characteristics of the I2C SDA and SCL Pins for Vdd Symbol Description SCL Clock Frequency FSCLI2C THDSTAI2C Hold Time (repeated) START Condition. After this period, the first clock pulse is generated. TLOWI2C LOW Period of the SCL Clock HIGH Period of the SCL Clock THIGHI2C TSUSTAI2C Setup Time for a Repeated START Condition THDDATI2C Data Hold Time TSUDATI2C Data Setup Time TSUSTOI2C Setup Time for STOP Condition Bus Free Time Between a STOP and START TBUFI2C Condition TSPI2C Pulse Width of spikes are suppressed by the input filter. Standard Mode Min Max 0 100 4.0 – Fast Mode Min Max 0 400 0.6 – Units Notes kHz μs 4.7 4.0 4.7 0 250 4.0 4.7 – – – – – – – 1.3 0.6 0.6 0 100[17] 0.6 1.3 – – – – – – – μs μs μs μs ns μs μs – – 0 50 ns Figure 10-6. Definition for Timing for Fast/Standard Mode on the I2C Bus SDA TLOWI2C TSUDATI2C THDSTAI2C TSPI2C TBUFI2C SCL S THDSTAI2C THDDATI2C THIGHI2C TSUSTAI2C Sr TSUSTOI2C P S Note 17. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement tSU;DAT Š 250 ns must then be met. This automatically is the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line trmax + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released. Document Number: 38-12018 Rev. *U Page 38 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 11. Packaging Dimensions This section illustrates the package specification for the CY8C24x94 PSoC devices, along with the thermal impedance for the package and solder reflow peak temperatures. Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the Emulator Pod Dimension drawings at http://www.cypress.com. Figure 11-1. 56-Pin (7x7x0.6 mm) QFN 001-58740 Rev ** Document Number: 38-12018 Rev. *U Page 39 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Figure 11-2. 56-Pin (8x8 mm) QFN SIDE VIEW TOP VIEW BOTTOM VIEW 0.08[0.003] 7.90[0.311] 8.10[0.319] A C 4.5 1.00[0.039] MAX. 0.05[0.002] MAX. 7.70[0.303] 7.80[0.307] 0.80[0.031] MAX. 0.20[0.008] REF. N PIN1 ID 0.20[0.008] R. N 1 2 2 5.2 0°-12° C SEATING PLANE 0.45[0.018] SOLDERABLE EXPOSED PAD 0.30[0.012] 0.50[0.020] 0.50[0.020] 6.45[0.254] 6.55[0.258] 7.90[0.311] 8.10[0.319] 1 7.70[0.303] 7.80[0.307] 0.80[0.031] DIA. 0.18[0.007] 0.28[0.011] 0.24[0.009] 0.60[0.024] (4X) 6.45[0.254] 6.55[0.258] NOTES: 1. HATCH AREA IS SOLDERABLE EXPOSED METAL. 2. REFERENCE JEDEC#: MO-220 3. PACKAGE WEIGHT: 0.162g 4. ALL DIMENSIONS ARE IN MM [MIN/MAX] 5. PACKAGE CODE PART # LF56A LY56A DESCRIPTION STANDARD PB-FREE 001-12921 *A Figure 11-3. 56-Pin QFN (8 X 8 X 0.9 MM) - Sawn 001-53450 *B Document Number: 38-12018 Rev. *U Page 40 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Figure 11-4. 68-Pin (8x8 mm x 0.89 mm) QFN TOP VIEW BOTTOM VIEW SIDE VIEW 7.90[0.311] A 8.10[0.319] 0.08 7.70[0.303] C 5.69 0.9[0.035] MAX 0.05[0.002] MAX 7.80[0.307] 0.70[0.028] MAX 0.2[0.008] REF Ø 0.18[0.007] 0.28[0.011] PIN1 ID 0.20 R. N N 1 2 3 SOLDERABLE EXPOSED PAD 8.10[0.319] 7.90[0.311] 7.80[0.307] 7.70[0.303] 1 2 3 5.69 0°-12° C NOTES: 1. SEATING PLANE 0.4 B.S.C. 0.24[0.009] 0.60[0.023] 6.50[0.255] REF HATCH IS SOLDERABLE EXPOSED PAD. 2. REFERENCE JEDEC#: MO-220 3. PACKAGE WEIGHT: 0.17g 4. ALL DIMENSIONS ARE IN MM [MIN/MAX] 5. PACKAGE CODE PART # DESCRIPTION LF68 LY68 STANDARD PB-FREE NOTE: EXPOSED PAD DIMENSION VARIES BY LEADFRAME CAVITY (PADDLE) SIZE 51-85214 *D Important Note ■ For information on the preferred dimensions for mounting QFN packages, refer to Application Note, "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" available at http://www.amkor.com. ■ Pinned vias for thermal conduction are not required for the low-power PSoC device. Document Number: 38-12018 Rev. *U Page 41 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Figure 11-5. 68-Pin Sawn QFN (8X8 mm X 0.90 mm) TOP VIEW BOTTOM VIEW SIDE VIEW 0.900±0.100 5.7±0.10 8.000±0.100 0.200 REF 5 1 PIN 1 DOT 8.000±0.100 LASER MARK 1 7 0.20±0.05 3 0.400±0.1005 C 0.08 1 8 1 7 6.40 REF SEATING PLANE NOTES: 1. 3 4 0.05 MAX 3 4 1 8 1 SOLDERABLE EXPOSED PAD 5.7±0.10 3 5 6 8 5 2 6.40 REF 5 1 1 PIN1 ID R 0.20 0.400 PITCH 5 2 6 8 HATCH AREA IS SOLDERABLE EXPOSED METAL. 2. REFERENCE JEDEC#: MO-220 3. PACKAGE WEIGHT: 0.17g 001-09618 *C 4. ALL DIMENSIONS ARE IN MILLIMETERS Figure 11-6. 100-Ball (6x6 mm) VFBGA BOTTOM VIEW TOP VIEW A1 CORNER Ø0.05 M C Ø0.15 M C A B A1 CORNER Ø0.30±0.05(100X) 1 2 3 4 5 6 7 8 9 10 0.50 2.25 A 0.50 6.00±0.10 B A B C D E F G H J K 2.25 6.00±0.10 6.00±0.10 A 4.50 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K B 0.08 C 0.21±0.05 0.45 REF. 0.10 C 4.50 Document Number: 38-12018 Rev. *U 1.00 MAX 0.21 REF. SEATING PLANE C 6.00±0.10 0.15(4X) REFERENCE JEDEC MO-195C PKG. WEIGHT: TBD (NEW PKG.) 51-85209 *C Page 42 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Figure 11-7. 100-Pin (14x14 x 1.4 mm) TQFP 51-85048 *D 11.1 Thermal Impedance Typical θJA [18] 12.93 °C/W 13.05 °C/W 65 °C/W 51 °C/W Package 56 QFN[19] 68 QFN[19] 100 VFBGA 100 TQFP 11.2 Solder Reflow Peak Temperature Following is the minimum solder reflow peak temperature to achieve good solderability. Package 56 QFN 68 QFN 100 VFBGA 100 TQFP Minimum Peak Temperature[20] 240°C 240°C 240°C 240°C Maximum Peak Temperature 260°C 260°C 260°C 260°C Notes 18. TJ = TA + POWER x θJA 19. To achieve the thermal impedance specified for the QFN package,refer to "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" available at http://www.amkor.com. 20. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5oC with Sn-Pb or 245 ± 5oC with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications Document Number: 38-12018 Rev. *U Page 43 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 12. Development Tool Selection 12.1 Software 12.3 Evaluation Tools 12.1.1 PSoC Designer All evaluation tools can be purchased from the Cypress Online Store. At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at http://www.cypress.com and includes a free C compiler. 12.1.2 PSoC Programmer Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com. 12.3.1 CY3210-MiniProg1 The CY3210-MiniProg1 kit enables a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes: ■ MiniProg Programming Unit ■ MiniEval Socket Programming and Evaluation Board ■ 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample ■ 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample ■ PSoC Designer Software CD All development kits can be purchased from the Cypress Online Store. ■ Getting Started Guide ■ USB 2.0 Cable 12.2.1 CY3215-DK Basic Development Kit 12.3.2 CY3210-PSoCEval1 The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. Advance emulation features also supported through PSoC Designer. The kit includes: The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes: 12.2 Development Kits ■ PSoC Designer Software CD ■ ICE-Cube In-Circuit Emulator ■ ICE Flex-Pod for CY8C29x66 Family ■ Cat-5 Adapter ■ Mini-Eval Programming Board ■ 110 ~ 240V Power Supply, Euro-Plug Adapter ■ iMAGEcraft C Compiler (Registration Required) ■ ISSP Cable ■ USB 2.0 Cable and Blue Cat-5 Cable ■ 2 CY8C29466-24PXI 28-PDIP Chip Samples Document Number: 38-12018 Rev. *U ■ Evaluation Board with LCD Module ■ MiniProg Programming Unit ■ 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2) ■ PSoC Designer Software CD ■ Getting Started Guide ■ USB 2.0 Cable 12.3.3 CY3214-PSoCEvalUSB The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. Special features of the board include both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of bread boarding space to meet all of your evaluation needs. The kit includes: ■ PSoCEvalUSB Board ■ LCD Module ■ MIniProg Programming Unit ■ Mini USB Cable ■ PSoC Designer and Example Projects CD ■ Getting Started Guide ■ Wire Pack Page 44 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 12.4 Device Programmers All device programmers can be purchased from the Cypress Online Store. 12.4.1 CY3216 Modular Programmer The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes: 12.4.2 CY3207ISSP In-System Serial Programmer (ISSP) The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment. Note: CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes: ■ CY3207 Programmer Unit ■ Modular Programmer Base ■ PSoC ISSP Software CD ■ 3 Programming Module Cards ■ 110 ~ 240V Power Supply, Euro-Plug Adapter ■ MiniProg Programming Unit ■ USB 2.0 Cable ■ PSoC Designer Software CD ■ Getting Started Guide ■ USB 2.0 Cable 12.5 Accessories (Emulation and Programming) Table 12-1. Emulation and Programming Accessories Part # Pin Package Flex-Pod Kit[21] Foot Kit[22] CY8C24794-24LFXI 56 QFN CY3250-24X94QFN CY3250-56QFN-FK CY8C24894-24LFXI 56 QFN CY3250-24X94QFN CY3250-56QFN-FK CY8C24794-24LQXI 56 QFN CY3250-24X94QFN None Adapter[23] Adapters can be found at http://www.emulation.com. Notes 21. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods. 22. Foot kit includes surface mount feet that are soldered to the target PCB. 23. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters are found at http://www.emulation.com. Document Number: 38-12018 Rev. *U Page 45 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 13. Ordering Information XRES Pin Analog Outputs Analog Inputs Digital I/O Pins Analog Blocks Digital Blocks Temperature Range SRAM (Bytes) 100 Pin OCD TQFP[24] 100-Ball OCD (6x6 mm) VFBGA[24] 68-Pin QFN (Sawn) 68-Pin QFN (Sawn) (Tape and Reel) 56-Pin (8x8 mm) QFN 56-Pin (8x8 mm) QFN (Tape and Reel) 56-Pin (8x8 mm) QFN (Sawn) 56-Pin (8x8 mm) QFN (Sawn) (Tape and Reel) 56-Pin (8x8 mm) QFN 56-Pin (8x8 mm) QFN (Tape and Reel) 56-Pin (8x8 mm) QFN (Sawn) 56-Pin (8x8 mm) QFN (Sawn) (Tape and Reel) 100-Ball (6x6 mm) VFBGA 68-Pin QFN (Sawn) 68-Pin QFN (Sawn) (Tape and Reel) Flash (Bytes) Package Ordering Code Table 13-1. CY8C24x94 PSoC Device’s Key Features and Ordering Information CY8C24094-24AXI CY8C24094-24BVXI 16K 16K 1K 1K -40°C to +85°C -40°C to +85°C 4 4 6 6 56 56 48 48 2 2 Yes Yes CY8C24094-24LTXI CY8C24094-24LTXIT 16K 16K 1K 1K -40°C to +85°C -40°C to +85°C 4 4 6 6 56 56 48 48 2 2 Yes Yes CY8C24794-24LFXI CY8C24794-24LFXIT 16K 16K 1K 1K -40°C to +85°C -40°C to +85°C 4 4 6 6 50 50 48 48 2 2 No No CY8C24794-24LTXI CY8C24794-24LTXIT 16K 16K 1K 1K -40°C to +85°C -40°C to +85°C 4 4 6 6 50 50 48 48 2 2 No No CY8C24894-24LFXI CY8C24894-24LFXIT 16K 16K 1K 1K -40°C to +85°C -40°C to +85°C 4 4 6 6 49 49 47 47 2 2 Yes Yes CY8C24894-24LTXI CY8C24894-24LTXIT 16K 16K 1K 1K -40°C to +85°C -40°C to +85°C 4 4 6 6 49 49 47 47 2 2 Yes Yes CY8C24994-24BVXI CY8C24994-24LTXI CY8C24994-24LTXIT 16K 16K 16K 1K 1K 1K -40°C to +85°C -40°C to +85°C -40°C to +85°C 4 4 4 6 6 6 56 56 56 48 48 48 2 2 2 Yes Yes Yes Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE). Notes 24. This part may be used for in-circuit debugging. It is NOT available for production Document Number: 38-12018 Rev. *U Page 46 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 13.1 Ordering Code Definitions CY 8 C 24 XXX- SP XX Package Type: PX = PDIP Pb-Free SX = SOIC Pb-Free PVX = SSOP Pb-Free LFX/LKX/LQX/LTX = QFN Pb-Free AX = TQFP Pb-Free BVX = VFBGA Pb-Free Speed: 24 MHz Thermal Rating: C = Commercial I = Industrial E = Extended Part Number Family Code Technology Code: C = CMOS Marketing Code: 8 = PSoC Company ID: CY = Cypress Document Number: 38-12018 Rev. *U Page 47 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Document History Page Document Title: CY8C24094, CY8C24794, CY8C24894, CY8C24994 PSoC® Programmable System-on-Chip Document Number: 38-12018 Rev. ECN No. Submission Date Orig. of Change Description of Change ** 133189 01.27.2004 NWJ New silicon and new document – Advance Data Sheet. *A 251672 See ECN SFV First Preliminary Data Sheet. Changed title to encompass only the CY8C24794 because the CY8C24494 and CY8C24694 are not being offered by Cypress. *B 289742 See ECN HMT Add standard DS items from SFV memo. Add Analog Input Mux on pinouts. 2 MACs. Change 512 bytes of SRAM to 1K. Add dimension key to package. Remove HAPI. Update diagrams, registers and specs. *C 335236 See ECN HMT Add CY logo. Update CY copyright. Update new CY.com URLs. Re-add ISSP programming pinout notation. Add Reflow Temp. table. Update features (MAC, Oscillator, and voltage range), registers (INT_CLR2/MSK2, second MAC), and specs. (Rext, IMO, analog output buffer...). *D 344318 See ECN HMT Add new color and logo. Expand analog arch. diagram. Fix I/O #. Update Electrical Specifications. *E 346774 See ECN HMT Add USB temperature specifications. Make data sheet Final. *F 349566 See ECN HMT Remove USB logo. Add URL to preferred dimensions for mounting MLF packages. *G 393164 See ECN HMT Add new device, CY8C24894 56-pin MLF with XRES pin. Add Fimousb3v char. to specs. Upgrade to CY Perform logo and update corporate address and copyright. *H 469243 See ECN HMT Add ISSP note to pinout tables. Update typical and recommended Storage Temperature per industrial specs. Update Low Output Level maximum I/OL budget. Add FLS_PR1 to Register Map Bank 1 for users to specify which Flash bank should be used for SROM operations. Add two new devices for a 68-pin QFN and 100-ball VFBGA under RPNs: CY8C24094 and CY8C24994. Add two packages for 68-pin QFN. Add OCD non-production pinouts and package diagrams. Update CY branding and QFN convention. Add new Dev. Tool section. Update copyright and trademarks. *I 561158 See ECN HMT Add Low Power Comparator (LPC) AC/DC electrical spec. tables. Add CY8C20x34 to PSoC Device Characteristics table. Add detailed dimensions to 56-pin QFN package diagram and update revision. Secure one package diagram/manufacturing per QFN. Update emulation pod/feet kit part numbers. Fix pinout type-o per TestTrack. *J 728238 See ECN HMT Add CapSense SNR requirement reference. Update figure standards. Update Technical Training paragraphs. Add QFN package clarifications and dimensions. Update ECN-ed Amkor dimensioned QFN package diagram revisions. Reword SNR reference. Add new 56-pin QFN spec. *K 2552459 08/14/08 AZIE/PYRS Add footnote on AGND descriptions to avoid using P2[4] for digital signaling as it may add noise to AGND. Remove reference to CMP_GO_EN1 in Map Bank 1 Table on Address 65; this register has no functionality on 24xxx. Add footnote on die sales. Add description 'Optional External Clock Input’ on P1[4] to match description of P1[4]. *L 2616550 12/05/08 *M 2657956 02/11/09 OGNE/PYRS Updated Programmable Pin Configuration detail. Changed title from PSoC® Mixed-Signal Array to PSoC® Programmable System-on-Chip™ DPT/PYRS Document Number: 38-12018 Rev. *U Added package diagram 001-09618 and updated Ordering Information table Page 48 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Document Title: CY8C24094, CY8C24794, CY8C24894, CY8C24994 PSoC® Programmable System-on-Chip Document Number: 38-12018 *N 2708135 05/18/2009 BRW Added Note in the Pin Information section on page 8. Removed reference to Hi-Tech Lite Compiler in the section Development Tools Selection on page 42. *O 2718162 06/11/2009 DPT Added 56-Pin QFN (Sawn) package diagram and updated ordering information *P 2762161 09/10/2009 RLRM Updated the following parameters: DCILO, F32K_U, FIMO6, TPOWERUP, TERASE_ALL, TPROGRAM_HOT, and TPROGRAM_COLD. Added SRPOWER_UP parameter in AC specs table. *Q 2768530 09/24/09 RLRM Ordering Information table: Changed XRES Pin value for CY8C24894-24LTXI and CY8C24894-24LTXIT to ‘Yes’. *R 2817938 11/30/09 KRIS Ordering Information: Updated CY8C24894-24LTXI and CY8C24894-24LTXIT parts as Sawn and updated the Digital I/O and Analog Pin values Added Contents page. Updated 68 QFN package diagram (51-85124) *S 2846641 1/12/10 RLRM Added package diagram 001-58740 and updated Development Tools section. *T 2867363 01/27/10 ANUP Modified Note 9 to remove voltage range 2.4V to 3.0V *U 2901653 03/30/2010 NJF Document Number: 38-12018 Rev. *U Updated Cypress website links Added TXRST, DC24M, TBAKETEMP and TBAKETIME parameters Removed reference to 2.4V Removed sections ‘Third Party Tools’ ‘Build a PSoC Emulator into your Board’ Updated package diagrams Removed inactive parts from ordering information table. Page 49 of 50 [+] Feedback CY8C24094, CY8C24794 CY8C24894, CY8C24994 Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. Products Automotive Clocks & Buffers Interface Lighting & Power Control PSoC Solutions cypress.com/go/automotive cypress.com/go/clocks psoc.cypress.com/solutions cypress.com/go/interface PSoC 1 | PSoC 3 | PSoC 5 cypress.com/go/powerpsoc cypress.com/go/plc Memory Optical & Image Sensing cypress.com/go/memory cypress.com/go/image PSoC cypress.com/go/psoc Touch Sensing cypress.com/go/touch USB Controllers Wireless/RF cypress.com/go/USB cypress.com/go/wireless © Cypress Semiconductor Corporation, 2004-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 38-12018 Rev. *U Revised March 30, 2010 Page 50 of 50 PSoC Designer™ is a trademark and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations. [+] Feedback