IRF 40MT120UHA

Bulletin I27194 rev. A 01/06
40MT120UHA
40MT120UHTA
"HALF-BRIDGE" IGBT MTP
UltraFast NPT IGBT
Features
• UltraFast Non Punch Through (NPT)
Technology
• Positive VCE(ON)Temperature Coefficient
• 10µs Short Circuit Capability
• HEXFRED TM Antiparallel Diodes with
UltraSoft Reverse Recovery and Low VF
• Square RBSOA
• Al2O3 DBC
• Optional SMD Thermistor (NTC)
• Very Low Stray Inductance Design for
High Speed Operation
VCES = 1200V
IC = 80A
Benefits
• Optimized for Welding, UPS and SMPS
Applications
• Rugged with UltraFast Performance
• Benchmark Efficiency above 20KHz
• Outstanding ZVS and Hard Switching
Operation
• Low EMI, requires Less Snubbing
• Excellent Current Sharing in Parallel
Operation
• Direct Mounting to Heatsink
• PCB Solderable Terminals
• Very Low Junction-to-Case Thermal Resis
tance
MMTP
Absolute Maximum Ratings
Parameters
Max
Units
V CES
Collector-to-Emitter Breakdown Voltage
1200
V
IC
Continuous Collector Current
@ T C = 22°C
80
A
@ TC = 104°C
40
I
CM
Pulsed Collector Current
I
LM
Clamped Inductive Load Current
IF
Diode Continuous Forward Current
I
Diode Maximum Forward Current
FM
160
160
@ TC = 105°C
21
160
V GE
Gate-to-Emitter Voltage
± 20
V ISOL
RMS Isolation Voltage, Any Terminal to Case, t = 1 min
2500
PD
Maximum Power Dissipation (only IGBT)
www.irf.com
@ T C = 25°C
463
@ TC = 100°C
185
V
W
1
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameters
Min Typ Max Units Test Conditions
V(BR)CES
∆V(BR)CES/
∆T J
V CE(ON)
Collector-to-Emitter Breakdown Voltage 1200
Temperature Coeff. of
Breakdown Voltage
Collector-to-Emitter Saturation Voltage
V GE(th)
∆V GE(th) /
∆T J
g fe
I CES
Gate Threshold Voltage
Temperature Coeff. of
Threshold Voltage
Transconductance
Zero Gate Voltage Collector Current
3.36
4.53
3.88
5.35
4
3.59
4.91
4.10
5.68
6
-12
35
0.4
0.2
I GES
V
V/°C
+1.1
Gate-to-Emitter Leakage Current
250
1.0
10
±250
V GE = 0V, I C = 250µA
V GE = 0V, I C = 3mA (25-125°C)
V
V GE
V GE
V GE
V GE
V
V CE
mV/°C V CE
S
µA
mA
nA
V CE
V GE
V GE
V GE
V GE
=
=
=
=
=
=
15V, I C = 40A
15V, I C = 80A
15V, I C = 40A T J = 150°C
15V, I C = 80A TJ = 150°C
V GE , I C = 500µA
V GE , I C = 1mA (25-125°C)
=
=
=
=
=
50V, I C = 40A, PW =
0V, V CE = 1200V, T J
0V, V CE = 1200V, T J
0V, V CE = 1200V, T J
± 20V
80µs
= 25°C
= 125°C
= 150°C
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameters
Min Typ Max Units Test Conditions
Qg
Qge
Qgc
Eon
Total Gate Charge (turn-on)
Gate-Emitter Charge (turn-on)
Gate-Collector Charge (turn-on)
Turn-On Switching Loss
399
43
187
1142
599
65
281
1713
Eoff
Etot
Turn-Off Switching Loss
Total Switching Loss
1345
2487
2018
3731
Eon
Eoff
Etot
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
1598
1618
3216
2397
2427
4824
µJ
Cies
Coes
Cres
RBSOA
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Reverse Bias Safe Operating Area
5521 8282
380
570
171
257
full square
pF
SCSOA
Short Circuit Safe Operating Area
10
nC
µJ
I C = 40A
V CC = 600V
VGE = 15V
VCC = 600V, IC = 40A
VGE = 15V, Rg = 5Ω, L = 200µH
T J = 25°C, Energy losses include tail
and diode reverse recovery
µs
VCC = 600V, IC = 40A
VGE = 15V, Rg = 5Ω, L = 200µH
T J = 125°C, Energy losses include tail
and diode reverse recovery
VGE = 0V
VCC = 30V
f = 1.0 MHz
T J = 150°C, IC = 160A
VCC = 1000V, Vp = 1200V
Rg = 5Ω, VGE = +15V to 0V
T J = 150°C
VCC = 900V, Vp = 1200V
Rg = 5Ω, VGE = +15V to 0V
2
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
Diode Characteristics @ TJ = 25°C (unless otherwise specified)
Parameters
Min
V FM
Diode Forward Voltage Drop
Erec
trr
Irr
Reverse Recovery Energy of the Diode
Diode Reverse Recovery Time
Peak Reverse Recovery Current
Typ Max Units Test Conditions
2.98
3.90
3.08
4.29
3.12
574
120
43
3.38
4.41
3.39
4.72
3.42
861
180
65
V
I C = 40A
I C = 80A
I C = 40A, T J = 125°C
I C = 80A, T J = 125°C
I C = 40A, T J = 150°C
VGE = 15V, Rg = 5Ω, L = 200µH
VCC = 600V, IC = 40A
T J = 125°C
µJ
ns
A
Thermistor Specifications (40MT120UHTA only)
Parameters
R0 (1)
(1) (2)
β
(1)
Min Typ
Resistance
Sensitivity index of the thermistor
material
T0,T1 are thermistor's temperatures
(2)
R0
R1
Max Units Test Conditions
30
kΩ
T0 = 25°C
4000
K
T0 = 25°C
T1 = 85°C
= exp
[ β ( 1T
1
0
)],
T1
Temperatures in Kelvin
Thermal- Mechanical Specifications
Parameters
Min
Max
Units
TJ
Operating Junction Temperature Range
- 40
150
°C
TSTG
Storage Temperature Range
- 40
125
R thJC
Junction-to-Case
R thCS
Case-to-Sink
Typ
IGBT
0.29
Diode
0.61
Module
°C/ W
0.06
(Heatsink Compound Thermal Conductivity = 1 W/mK)
Clearance ( external
shortest distance in air
5.5
mm
between two terminals)
Creepage ( shortest
distance along external
8
surface of the insulating material between 2 terminals)
T
Mounting torque to heatsink
Wt
Weight
(3)
3 ± 10%
66
Nm
g (oz)
(3) A mounting compound is recommended and the torque should be checked after 3 hours to allow for the spread of the
compound. Lubricated threads
www.irf.com
3
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
600
100
500
80
400
PD (W)
IC (A)
60
40
300
200
20
100
0
0
0
20
40
60
80
0
100 120 140 160
20
40
60
80
100 120 140 160
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
100
100
10 µs
100 µs
1
10ms
10
DC
0.1
0.01
1
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
4
IC (A)
IC (A)
10
10000
10
100
1000
10000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
160
160
VGE = 18V
140
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
120
120
100
= 18V
= 15V
= 12V
= 10V
= 8.0V
100
ICE (A)
ICE (A)
VGE
VGE
VGE
VGE
VGE
140
80
60
80
60
40
40
20
20
0
0
2
4
6
8
0
10
0
2
VCE (V)
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
120
10
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
-40°C
25°C
125°C
100
80
IF (A)
100
ICE (A)
8
120
VGE = 18V
140
6
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
160
4
80
60
60
40
40
20
20
0
0
0
2
4
6
8
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
www.irf.com
10
0.0
1.0
2.0
3.0
4.0
5.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
5
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
20
20
ICE = 80A
ICE = 40A
18
16
12
10
8
12
10
8
6
6
4
4
2
2
0
5
10
15
ICE = 20A
14
V CE (V)
V CE (V)
16
ICE = 20A
14
ICE = 80A
ICE = 40A
18
0
20
5
10
V GE (V)
20
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
350
20
ICE = 80A
ICE = 40A
18
16
T J = 25°C
300
ICE = 20A
14
T J = 125°C
250
12
ICE (A)
V CE (V)
15
V GE (V)
10
8
6
200
150
100
4
50
2
0
0
5
10
15
V GE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 125°C
6
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
4800
1000
4200
tdOFF
Swiching Time (ns)
Energy (µJ)
3600
3000
2400
1800
EON
1200
100
tR
tdON
600
EOFF
tF
0
10
0
20
40
60
80
100
0
20
40
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 125°C; L=250µH; VCE= 400V
RG= 5Ω; VGE= 15V
80
100
Fig. 14 - Typ. Switching Time vs. IC
TJ = 125°C; L=250µH; VCE= 400V
RG= 5Ω; VGE= 15V
6000
10000
Swiching Time (ns)
EON
5000
Energy (µJ)
60
IC (A)
EOFF
4000
3000
tdOFF
1000
tdON
tR
tF
100
2000
1000
10
0
10
20
30
40
R G (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=250µH; VCE= 600V
ICE= 40A; VGE= 15V
www.irf.com
50
60
0
10
20
30
40
50
60
RG ( Ω)
Fig. 16 - Typ. Switching Time vs. R G
TJ = 150°C; L=250µH; VCE= 600V
ICE= 40A; VGE= 15V
7
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
50
50
RG = 5.0Ω
RG = 10 Ω
30
RG = 30 Ω
20
R G = 50 Ω
40
IRR (A)
IRR (A)
40
30
20
10
10
0
10
20
30
40
50
60
0
70
10
20
30
40
50
R G ( Ω)
IF (A)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 125°C; IF = 40A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 125°C
5.0
50
60A
4.5
45
40A
4.0
40
3.5
Q RR (µC)
IRR (A)
35
30
25
3.0
2.5
50Ω
2.0
20A
30Ω
10 Ω
1.5
20
5.0 Ω
1.0
15
0.5
0.0
10
0
200
400
600
diF /dt (A/µs)
Fig. 19- Typical Diode I RR vs. diF/dt
VCC= 600V; VGE= 15V;
ICE= 40A; TJ = 125°C
8
60
800
1000
0
200
400
600
800
1000
1200
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 600V; VGE= 15V;TJ = 125°C
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
10000
Capacitance (pF)
Cies
1000
Coes
100
Cres
10
0
20
40
60
80
100
VCE (V)
Fig. 21- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
16
14
600V
12
VGE (V)
10
8
6
4
2
0
0
100
200
300
400
500
Q G , Total Gate Charge (nC)
Fig. 22 - Typical Gate Charge vs. VGE
ICE = 5.0A; L = 600µH
www.irf.com
9
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
1
Thermal Response ( Z thJC )
0.1
D = 0.50
0.20
0.10
0.05
0.01
0.02
0.01
τJ
0.001
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τC
τ
τ3
τ2
Ri (°C/W) τi (sec)
0.043
0.001214
0.105
0.123
τ3
Ci= τi/Ri
Ci= i/Ri
0.0001
0.044929
1.1977
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ1
τ2
τ
Ri (°C/W) τi (sec)
0.024
0.00008
0.549
τ2
0.000098
Ci= τi/Ri
Ci i/Ri
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
10
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
L
L
VCC
DUT
0
80 V
DUT
1000V
Rg
1K
Fig. CT.1 - Gate Charge Circuit (turn-off)
Fig. CT.2 - RBSOA Circuit
diode clamp /
DUT
L
Driver
D
C
900V
- 5V
DUT /
DRIVER
DUT
VCC
Rg
Fig. CT.3 - S.C. SOA Circuit
www.irf.com
Fig. CT.4 - Switching Loss Circuit
11
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
Outline Table
Electrical Diagram
Dimensions in millimetres
Note: unused terminals are not assembled in the package
12
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
Ordering Information Table
Device Code
40
MT 120
1
2
3
U
H
T
A
4
5
6
7
1
-
Current rating
2
-
Essential Part Number
(40 = 40A)
3
-
Voltage code
(120 = 1200V)
4
-
Speed/ Type
(U = Ultra Fast IGBT)
5
-
Circuit Configuration (H = Half Bridge)
6
-
Special Option
y none = no special option
yT
7
-
= Thermistor
A = Al2O3 DBC Substrate
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial Level.
Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 01/06
www.irf.com
13