Bulletin I27194 rev. A 01/06 40MT120UHA 40MT120UHTA "HALF-BRIDGE" IGBT MTP UltraFast NPT IGBT Features • UltraFast Non Punch Through (NPT) Technology • Positive VCE(ON)Temperature Coefficient • 10µs Short Circuit Capability • HEXFRED TM Antiparallel Diodes with UltraSoft Reverse Recovery and Low VF • Square RBSOA • Al2O3 DBC • Optional SMD Thermistor (NTC) • Very Low Stray Inductance Design for High Speed Operation VCES = 1200V IC = 80A Benefits • Optimized for Welding, UPS and SMPS Applications • Rugged with UltraFast Performance • Benchmark Efficiency above 20KHz • Outstanding ZVS and Hard Switching Operation • Low EMI, requires Less Snubbing • Excellent Current Sharing in Parallel Operation • Direct Mounting to Heatsink • PCB Solderable Terminals • Very Low Junction-to-Case Thermal Resis tance MMTP Absolute Maximum Ratings Parameters Max Units V CES Collector-to-Emitter Breakdown Voltage 1200 V IC Continuous Collector Current @ T C = 22°C 80 A @ TC = 104°C 40 I CM Pulsed Collector Current I LM Clamped Inductive Load Current IF Diode Continuous Forward Current I Diode Maximum Forward Current FM 160 160 @ TC = 105°C 21 160 V GE Gate-to-Emitter Voltage ± 20 V ISOL RMS Isolation Voltage, Any Terminal to Case, t = 1 min 2500 PD Maximum Power Dissipation (only IGBT) www.irf.com @ T C = 25°C 463 @ TC = 100°C 185 V W 1 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameters Min Typ Max Units Test Conditions V(BR)CES ∆V(BR)CES/ ∆T J V CE(ON) Collector-to-Emitter Breakdown Voltage 1200 Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage V GE(th) ∆V GE(th) / ∆T J g fe I CES Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Transconductance Zero Gate Voltage Collector Current 3.36 4.53 3.88 5.35 4 3.59 4.91 4.10 5.68 6 -12 35 0.4 0.2 I GES V V/°C +1.1 Gate-to-Emitter Leakage Current 250 1.0 10 ±250 V GE = 0V, I C = 250µA V GE = 0V, I C = 3mA (25-125°C) V V GE V GE V GE V GE V V CE mV/°C V CE S µA mA nA V CE V GE V GE V GE V GE = = = = = = 15V, I C = 40A 15V, I C = 80A 15V, I C = 40A T J = 150°C 15V, I C = 80A TJ = 150°C V GE , I C = 500µA V GE , I C = 1mA (25-125°C) = = = = = 50V, I C = 40A, PW = 0V, V CE = 1200V, T J 0V, V CE = 1200V, T J 0V, V CE = 1200V, T J ± 20V 80µs = 25°C = 125°C = 150°C Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameters Min Typ Max Units Test Conditions Qg Qge Qgc Eon Total Gate Charge (turn-on) Gate-Emitter Charge (turn-on) Gate-Collector Charge (turn-on) Turn-On Switching Loss 399 43 187 1142 599 65 281 1713 Eoff Etot Turn-Off Switching Loss Total Switching Loss 1345 2487 2018 3731 Eon Eoff Etot Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss 1598 1618 3216 2397 2427 4824 µJ Cies Coes Cres RBSOA Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area 5521 8282 380 570 171 257 full square pF SCSOA Short Circuit Safe Operating Area 10 nC µJ I C = 40A V CC = 600V VGE = 15V VCC = 600V, IC = 40A VGE = 15V, Rg = 5Ω, L = 200µH T J = 25°C, Energy losses include tail and diode reverse recovery µs VCC = 600V, IC = 40A VGE = 15V, Rg = 5Ω, L = 200µH T J = 125°C, Energy losses include tail and diode reverse recovery VGE = 0V VCC = 30V f = 1.0 MHz T J = 150°C, IC = 160A VCC = 1000V, Vp = 1200V Rg = 5Ω, VGE = +15V to 0V T J = 150°C VCC = 900V, Vp = 1200V Rg = 5Ω, VGE = +15V to 0V 2 www.irf.com 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 Diode Characteristics @ TJ = 25°C (unless otherwise specified) Parameters Min V FM Diode Forward Voltage Drop Erec trr Irr Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Typ Max Units Test Conditions 2.98 3.90 3.08 4.29 3.12 574 120 43 3.38 4.41 3.39 4.72 3.42 861 180 65 V I C = 40A I C = 80A I C = 40A, T J = 125°C I C = 80A, T J = 125°C I C = 40A, T J = 150°C VGE = 15V, Rg = 5Ω, L = 200µH VCC = 600V, IC = 40A T J = 125°C µJ ns A Thermistor Specifications (40MT120UHTA only) Parameters R0 (1) (1) (2) β (1) Min Typ Resistance Sensitivity index of the thermistor material T0,T1 are thermistor's temperatures (2) R0 R1 Max Units Test Conditions 30 kΩ T0 = 25°C 4000 K T0 = 25°C T1 = 85°C = exp [ β ( 1T 1 0 )], T1 Temperatures in Kelvin Thermal- Mechanical Specifications Parameters Min Max Units TJ Operating Junction Temperature Range - 40 150 °C TSTG Storage Temperature Range - 40 125 R thJC Junction-to-Case R thCS Case-to-Sink Typ IGBT 0.29 Diode 0.61 Module °C/ W 0.06 (Heatsink Compound Thermal Conductivity = 1 W/mK) Clearance ( external shortest distance in air 5.5 mm between two terminals) Creepage ( shortest distance along external 8 surface of the insulating material between 2 terminals) T Mounting torque to heatsink Wt Weight (3) 3 ± 10% 66 Nm g (oz) (3) A mounting compound is recommended and the torque should be checked after 3 hours to allow for the spread of the compound. Lubricated threads www.irf.com 3 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 600 100 500 80 400 PD (W) IC (A) 60 40 300 200 20 100 0 0 0 20 40 60 80 0 100 120 140 160 20 40 60 80 100 120 140 160 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100 100 10 µs 100 µs 1 10ms 10 DC 0.1 0.01 1 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C 4 IC (A) IC (A) 10 10000 10 100 1000 10000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V www.irf.com 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 160 160 VGE = 18V 140 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 120 100 = 18V = 15V = 12V = 10V = 8.0V 100 ICE (A) ICE (A) VGE VGE VGE VGE VGE 140 80 60 80 60 40 40 20 20 0 0 2 4 6 8 0 10 0 2 VCE (V) VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 10 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs -40°C 25°C 125°C 100 80 IF (A) 100 ICE (A) 8 120 VGE = 18V 140 6 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 160 4 80 60 60 40 40 20 20 0 0 0 2 4 6 8 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs www.irf.com 10 0.0 1.0 2.0 3.0 4.0 5.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 5 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 20 20 ICE = 80A ICE = 40A 18 16 12 10 8 12 10 8 6 6 4 4 2 2 0 5 10 15 ICE = 20A 14 V CE (V) V CE (V) 16 ICE = 20A 14 ICE = 80A ICE = 40A 18 0 20 5 10 V GE (V) 20 Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 350 20 ICE = 80A ICE = 40A 18 16 T J = 25°C 300 ICE = 20A 14 T J = 125°C 250 12 ICE (A) V CE (V) 15 V GE (V) 10 8 6 200 150 100 4 50 2 0 0 5 10 15 V GE (V) Fig. 11 - Typical VCE vs. VGE TJ = 125°C 6 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 4800 1000 4200 tdOFF Swiching Time (ns) Energy (µJ) 3600 3000 2400 1800 EON 1200 100 tR tdON 600 EOFF tF 0 10 0 20 40 60 80 100 0 20 40 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 125°C; L=250µH; VCE= 400V RG= 5Ω; VGE= 15V 80 100 Fig. 14 - Typ. Switching Time vs. IC TJ = 125°C; L=250µH; VCE= 400V RG= 5Ω; VGE= 15V 6000 10000 Swiching Time (ns) EON 5000 Energy (µJ) 60 IC (A) EOFF 4000 3000 tdOFF 1000 tdON tR tF 100 2000 1000 10 0 10 20 30 40 R G (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=250µH; VCE= 600V ICE= 40A; VGE= 15V www.irf.com 50 60 0 10 20 30 40 50 60 RG ( Ω) Fig. 16 - Typ. Switching Time vs. R G TJ = 150°C; L=250µH; VCE= 600V ICE= 40A; VGE= 15V 7 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 50 50 RG = 5.0Ω RG = 10 Ω 30 RG = 30 Ω 20 R G = 50 Ω 40 IRR (A) IRR (A) 40 30 20 10 10 0 10 20 30 40 50 60 0 70 10 20 30 40 50 R G ( Ω) IF (A) Fig. 18 - Typical Diode IRR vs. RG TJ = 125°C; IF = 40A Fig. 17 - Typical Diode IRR vs. IF TJ = 125°C 5.0 50 60A 4.5 45 40A 4.0 40 3.5 Q RR (µC) IRR (A) 35 30 25 3.0 2.5 50Ω 2.0 20A 30Ω 10 Ω 1.5 20 5.0 Ω 1.0 15 0.5 0.0 10 0 200 400 600 diF /dt (A/µs) Fig. 19- Typical Diode I RR vs. diF/dt VCC= 600V; VGE= 15V; ICE= 40A; TJ = 125°C 8 60 800 1000 0 200 400 600 800 1000 1200 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 600V; VGE= 15V;TJ = 125°C www.irf.com 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 10000 Capacitance (pF) Cies 1000 Coes 100 Cres 10 0 20 40 60 80 100 VCE (V) Fig. 21- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 16 14 600V 12 VGE (V) 10 8 6 4 2 0 0 100 200 300 400 500 Q G , Total Gate Charge (nC) Fig. 22 - Typical Gate Charge vs. VGE ICE = 5.0A; L = 600µH www.irf.com 9 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 1 Thermal Response ( Z thJC ) 0.1 D = 0.50 0.20 0.10 0.05 0.01 0.02 0.01 τJ 0.001 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τC τ τ3 τ2 Ri (°C/W) τi (sec) 0.043 0.001214 0.105 0.123 τ3 Ci= τi/Ri Ci= i/Ri 0.0001 0.044929 1.1977 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 τC τ1 τ2 τ Ri (°C/W) τi (sec) 0.024 0.00008 0.549 τ2 0.000098 Ci= τi/Ri Ci i/Ri 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) 10 www.irf.com 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 L L VCC DUT 0 80 V DUT 1000V Rg 1K Fig. CT.1 - Gate Charge Circuit (turn-off) Fig. CT.2 - RBSOA Circuit diode clamp / DUT L Driver D C 900V - 5V DUT / DRIVER DUT VCC Rg Fig. CT.3 - S.C. SOA Circuit www.irf.com Fig. CT.4 - Switching Loss Circuit 11 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 Outline Table Electrical Diagram Dimensions in millimetres Note: unused terminals are not assembled in the package 12 www.irf.com 40MT120UHA, 40MT120UHTA Bulletin I27194 rev. A 01/06 Ordering Information Table Device Code 40 MT 120 1 2 3 U H T A 4 5 6 7 1 - Current rating 2 - Essential Part Number (40 = 40A) 3 - Voltage code (120 = 1200V) 4 - Speed/ Type (U = Ultra Fast IGBT) 5 - Circuit Configuration (H = Half Bridge) 6 - Special Option y none = no special option yT 7 - = Thermistor A = Al2O3 DBC Substrate Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 01/06 www.irf.com 13