Bulletin I27221 03/06 GA200TS60UX "HALF-BRIDGE" IGBT INT-A-PAK Ultra-FastTM Speed IGBT Features • Generation 4 IGBT technology • UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode • Very low conduction and switching losses • HEXFREDTM antiparallel diodes with ultra-soft recovery • Industry standard package • UL approved VCES = 600V VCE(on) typ. = 1.74V @ VGE = 15V, IC = 200A Benefits Increased operating efficiency • Direct mounting to heatsink • Performance optimized for power conversion: UPS, SMPS, Welding • Low EMI, requires less snubbing • INT-A-PAK Absolute Maximum Ratings Parameters Max Units 600 V 265 A V CES Collector-to-Emitter Voltage IC Continuos Collector Current ICM Pulsed Collector Current 400 ILM Peak Switching Current 400 IFM Peak Diode Forward Current 400 V GE Gate-to-Emitter Voltage ± 20 V ISOL RMS Isolation Voltage, Any Terminal to Case, t = 1 min 2500 PD Maximum Power Dissipation @ T C = 25°C 625 @ T C = 85°C 325 www.irf.com @ T C = 25°C V W 1 GA200TS60UX Bulletin I27221 03/06 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameters Min Typ Max Units Test Conditions VBRCES Collector-to-Emitter Breakdown Voltage 600 V CE(on) Collector-to-Emitter Voltage V GE(th) Gate Threshold Voltage 3 ΔVGE(th)/ΔTJ Temperat. Coeff. of Threshold Voltage g fe Forward Transconductance I CES Collector-to-Emiter Leakage Current VFM Diode Forward Voltage drop I GES V V GE = 0V, I C = 1mA 1.74 2.2 V GE = 15V, I C = 200A 1.79 2.25 V GE = 15V, IC = 200A, T J = 125°C 4.4 6 - 11 I C = 0.25mA mV/°C V CE = V GE , I C = 0.25mA 220 S 0.014 V CE = 20V, I C = 200A 1 10 mA 4.2 6.0 V 4.4 6.2 Gate-to-Emitter Leakage Current ± 250 V GE = 0V, V CE = 600V V GE = 0V, V CE = 600V, T J = 125°C I C = 200A, V GE = 0V I C = 200A, V GE = 0V, T J = 125°C nA V GE = ± 20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameters Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets Cies Coes Cres trr Irr Qrr di(rec)M/dt Min Typ Total Gate Charge Gate-Emitter Charge Gate-Collector Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb — — — — — — — Max Units Test Conditions 900 125 306 342 194 366 213 5 16 21 20068 1254 261 179 120 10714 1922 nC IC = 200A IC = 270A, V GE = 15V ns IC = 200A VCC = 360V VGE = ± 15V mJ — — — — — — — pF ns A μC A/μs TJ = 125°C RG1 = 15Ω RG2 = 0Ω VGE = 0V VCC = 30V ƒ = 1 MHz IC = 200A VCC = 360V di/dt=1300A/μs Thermal- Mechanical Specifications Parameters Min Max Units TJ Operating Junction Temperature Range - 40 150 °C TSTG Storage Temperature Range - 40 125 R thJC Junction-to-Case IGBT 0.2 0.4 R thCS Case-to-Sink Per Diode Per Module T Mounting torque Case to heatsink 6 Case to terminal 1, 2, 3 5 Weight 2 Typ °C/ W 0.1 200 Nm g www.irf.com GA200TS60UX Bulletin I27221 03/06 140 For both: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified Load Current (A) 120 100 Power Dissipation = 120 W 80 Square wave: 60% of rated voltage 60 I 40 Ideal diodes 20 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 1000 Vge = 15V IC, Collector-to-Emitter Current (A) IC, Collector-to-Emitter Current (A) 1000 500µs Pulse Width 100 Tj = 125°C Tj = 25°C Vge = 20V 500µs Pulse Width 100 Tj = 125°C 10 Tj = 25°C 1 10 0.5 www.irf.com 1.0 1.5 2.0 2.5 4.0 5.0 6.0 7.0 8.0 9.0 VCE , Collector-to-Emitter Voltage (V) VGE, Gate-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics 3 GA200TS60UX Bulletin I27221 03/06 3 VCE Collector-to-Emitter Voltage (V) Maximum DC Collector Current (A) 160 140 120 100 80 60 40 20 400A 2.5 2 200A 100A 1.5 1 0 0 50 100 150 200 250 20 300 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) TC, Case Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (ZthJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-005 0.0001 0.001 0.01 0.1 1 10 t1, Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com GA200TS60UX Bulletin I27221 03/06 40 VCC = 400V I C = 135A V cc = 360V Total Switching Losses (mJ) VCE Gate-to-Emitter Voltage (V) 20 16 12 8 4 0 0 200 400 600 800 Tj = 125°C 35 Vge = 15V Ic = 200A 30 25 20 1000 0 QG , Total gate Charge (nC) 20 30 40 50 RG Gate Resistance (Ω) Fig. 7 - Typical Gate Charge vs. Gate-to-Emitter Voltage Fig. 8 - Typ. Switching Losses vs. Gate Resistance 500 V cc = 360V 60 Tj = 125°C 50 Vge = 15V Rg1 = 15Ω Rg2 = 0Ω 40 30 20 10 IC, Collector-to-Emitter Current (A) 70 Total Switching Losses (mJ) 10 Vge = 20V 400 SAFE OPERATING AREA 300 200 100 0 0 0 50 100 150 200 250 300 350 400 0 100 200 300 400 500 600 700 IC, Collector-to-Emitter Current (A) VCE, Collector-to-Emitter Voltage (V) Fig. 9 - Typ. Switching Losses vs. Collector-to-Emitter Current Fig. 10 - Reverse Bias SOA www.irf.com 5 GA200TS60UX Bulletin I27221 03/06 Instantaneous Forward Current - IF (A) 1000 20000 15000 QRR (nC) 400A, 125°C TJ = 25°C 100 TJ = 125°C 10000 200A, 125°C 100A, 125°C 400A, 25°C 200A, 25°C 5000 100A, 25°C 0 10 1.0 2.0 3.0 4.0 5.0 500 6.0 1000 1500 2000 Forward Voltage Drop - VFM (V) dIF/ dt (A/µs) Fig. 11 - Typ. Forward Voltage Drop vs. Instantaneous Forward Current Fig. 12 - Typical Stored Charge vs. dI f / dt 250 20000 200 15000 400A, 125°C 200A, 125°C 100A, 125°C 10000 I RRM (A) tRR (ns) 400A, 125°C 200A, 125°C 100A, 125°C 150 100 400A, 25°C 200A, 25°C 5000 100A, 25°C 0 500 6 1000 1500 2000 400A, 25°C 200A, 25°C 100A, 25°C 50 0 500 1000 1500 2000 dIF/ dt (A/µs) dIF/ dt (A/µs) Fig. 13 - Typical Reverse Recovery vs. dI f /dt Fig. 14 - Typical Reverse Recovery vs. dI f /dt www.irf.com GA200TS60UX Bulletin I27221 03/06 90% Vge +Vge Vce Ic 90% Ic 10% Vce Ic 5% Ic td(off) tf Eoff = ∫ t1+5µS Vce ic dt t1 Vce Ic dt t1 Fig. 15a - Test Circuit for Measurement of ILM, t2 Fig. 15b - Test Waveforms for Circuit of Fig. 18a, Defining Eon, Eoff(diode), trr, Q rr, Irr, td(on), tr, td(off), tf Eoff, t d(off), tf GATE VOLTAGE D.U.T. 10% +Vg Ic dt trr Qrr = Ic +Vg tx 10% Vcc DUT VOLTAGE AND CURRENT Vce Vcc ∫ trr id dt tx 10% Ic 90% Ic tr td(on) Ipk Vcc Irr Ic DIODE RECOVERY WAVEFORMS Vce Ic dt 5% Vce t1 Vpk 10% Irr Vd Ic dt t2 Eon = Vce ie dt t1 ∫ t2 DIODE REVERSE RECOVERY ENERGY t3 t4 Erec = Vd id dt t3 ∫ t4 Fig. 15c - Test Waveforms for Circuit of Fig. 18a, Fig. 15d - Test Waveforms for Circuit of Fig. 18a, Defining E on, td(on), tr Defining Erec, trr, Qrr, Irr www.irf.com 7 GA200TS60UX Bulletin I27221 03/06 Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 15e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µF 100V Figure 16. Clamped Inductive Load Test Circuit 8 Figure 17. Pulsed Collector Current Test Circuit www.irf.com GA200TS60UX Bulletin I27221 03/06 Outline Table Electrical Diagram Dimensions in millimeters Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 03/06 www.irf.com 9