IRF GA200TS60UX

Bulletin I27221 03/06
GA200TS60UX
"HALF-BRIDGE" IGBT INT-A-PAK
Ultra-FastTM Speed IGBT
Features
• Generation 4 IGBT technology
• UltraFast: Optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
• Very low conduction and switching losses
• HEXFREDTM antiparallel diodes with ultra-soft
recovery
• Industry standard package
• UL approved
VCES = 600V
VCE(on) typ. = 1.74V
@ VGE = 15V, IC = 200A
Benefits
Increased operating efficiency
• Direct mounting to heatsink
• Performance optimized for power conversion:
UPS, SMPS, Welding
• Low EMI, requires less snubbing
•
INT-A-PAK
Absolute Maximum Ratings
Parameters
Max
Units
600
V
265
A
V CES
Collector-to-Emitter Voltage
IC
Continuos Collector Current
ICM
Pulsed Collector Current
400
ILM
Peak Switching Current
400
IFM
Peak Diode Forward Current
400
V GE
Gate-to-Emitter Voltage
± 20
V ISOL
RMS Isolation Voltage, Any Terminal to Case, t = 1 min
2500
PD
Maximum Power Dissipation
@ T C = 25°C
625
@ T C = 85°C
325
www.irf.com
@ T C = 25°C
V
W
1
GA200TS60UX
Bulletin I27221 03/06
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameters
Min Typ Max Units Test Conditions
VBRCES
Collector-to-Emitter Breakdown Voltage
600
V CE(on)
Collector-to-Emitter Voltage
V GE(th)
Gate Threshold Voltage
3
ΔVGE(th)/ΔTJ Temperat. Coeff. of Threshold Voltage
g fe
Forward Transconductance
I CES
Collector-to-Emiter Leakage Current
VFM
Diode Forward Voltage drop
I GES
V
V GE = 0V, I C = 1mA
1.74
2.2
V GE = 15V, I C = 200A
1.79
2.25
V GE = 15V, IC = 200A, T J = 125°C
4.4
6
- 11
I C = 0.25mA
mV/°C V CE = V GE , I C = 0.25mA
220
S
0.014
V CE = 20V, I C = 200A
1
10
mA
4.2
6.0
V
4.4
6.2
Gate-to-Emitter Leakage Current
± 250
V GE = 0V, V CE = 600V
V GE = 0V, V CE = 600V, T J = 125°C
I C = 200A, V GE = 0V
I C = 200A, V GE = 0V, T J = 125°C
nA
V GE = ± 20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameters
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
Cies
Coes
Cres
trr
Irr
Qrr
di(rec)M/dt
Min Typ
Total Gate Charge
Gate-Emitter Charge
Gate-Collector Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Energy
Turn-Off Switching Energy
Total Switching Energy
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Diode Peak ReverseCurrent
Diode Recovery Charge
Diode Peak Rate of Fall of Recovery
During tb
—
—
—
—
—
—
—
Max Units Test Conditions
900
125
306
342
194
366
213
5
16
21
20068
1254
261
179
120
10714
1922
nC
IC = 200A
IC = 270A, V GE = 15V
ns
IC = 200A
VCC = 360V
VGE = ± 15V
mJ
—
—
—
—
—
—
—
pF
ns
A
μC
A/μs
TJ = 125°C
RG1 = 15Ω
RG2 = 0Ω
VGE = 0V
VCC = 30V
ƒ = 1 MHz
IC = 200A
VCC = 360V
di/dt=1300A/μs
Thermal- Mechanical Specifications
Parameters
Min
Max
Units
TJ
Operating Junction Temperature Range
- 40
150
°C
TSTG
Storage Temperature Range
- 40
125
R thJC
Junction-to-Case
IGBT
0.2
0.4
R thCS
Case-to-Sink
Per Diode
Per Module
T
Mounting torque
Case to heatsink
6
Case to terminal 1, 2, 3
5
Weight
2
Typ
°C/ W
0.1
200
Nm
g
www.irf.com
GA200TS60UX
Bulletin I27221 03/06
140
For both:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
Load Current (A)
120
100
Power Dissipation = 120 W
80
Square wave:
60% of rated
voltage
60
I
40
Ideal diodes
20
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
Vge = 15V
IC, Collector-to-Emitter Current (A)
IC, Collector-to-Emitter Current (A)
1000
500µs Pulse Width
100
Tj = 125°C
Tj = 25°C
Vge = 20V
500µs Pulse Width
100
Tj = 125°C
10
Tj = 25°C
1
10
0.5
www.irf.com
1.0
1.5
2.0
2.5
4.0
5.0
6.0
7.0
8.0
9.0
VCE , Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
3
GA200TS60UX
Bulletin I27221 03/06
3
VCE Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
160
140
120
100
80
60
40
20
400A
2.5
2
200A
100A
1.5
1
0
0
50
100
150
200
250
20
300
40
60
80
100
120
140
160
TJ , Junction Temperature (°C)
TC, Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (ZthJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-005
0.0001
0.001
0.01
0.1
1
10
t1, Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA200TS60UX
Bulletin I27221 03/06
40
VCC = 400V
I C = 135A
V cc = 360V
Total Switching Losses (mJ)
VCE Gate-to-Emitter Voltage (V)
20
16
12
8
4
0
0
200
400
600
800
Tj = 125°C
35
Vge = 15V
Ic = 200A
30
25
20
1000
0
QG , Total gate Charge (nC)
20
30
40
50
RG Gate Resistance (Ω)
Fig. 7 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 8 - Typ. Switching Losses vs. Gate
Resistance
500
V cc = 360V
60
Tj = 125°C
50
Vge = 15V
Rg1 = 15Ω
Rg2 = 0Ω
40
30
20
10
IC, Collector-to-Emitter Current (A)
70
Total Switching Losses (mJ)
10
Vge = 20V
400
SAFE OPERATING AREA
300
200
100
0
0
0
50
100 150 200 250 300 350 400
0
100 200 300 400 500 600 700
IC, Collector-to-Emitter Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig. 9 - Typ. Switching Losses vs. Collector-to-Emitter Current
Fig. 10 - Reverse Bias SOA
www.irf.com
5
GA200TS60UX
Bulletin I27221 03/06
Instantaneous Forward Current - IF (A)
1000
20000
15000
QRR (nC)
400A, 125°C
TJ = 25°C
100
TJ = 125°C
10000
200A, 125°C
100A, 125°C
400A, 25°C
200A, 25°C
5000
100A, 25°C
0
10
1.0
2.0
3.0
4.0
5.0
500
6.0
1000
1500
2000
Forward Voltage Drop - VFM (V)
dIF/ dt (A/µs)
Fig. 11 - Typ. Forward Voltage Drop vs.
Instantaneous Forward Current
Fig. 12 - Typical Stored Charge vs. dI f / dt
250
20000
200
15000
400A, 125°C
200A, 125°C
100A, 125°C
10000
I RRM (A)
tRR (ns)
400A, 125°C
200A, 125°C
100A, 125°C
150
100
400A, 25°C
200A, 25°C
5000
100A, 25°C
0
500
6
1000
1500
2000
400A, 25°C
200A, 25°C
100A, 25°C
50
0
500
1000
1500
2000
dIF/ dt (A/µs)
dIF/ dt (A/µs)
Fig. 13 - Typical Reverse Recovery vs. dI f /dt
Fig. 14 - Typical Reverse Recovery vs. dI f /dt
www.irf.com
GA200TS60UX
Bulletin I27221 03/06
90% Vge
+Vge
Vce
Ic
90% Ic
10% Vce
Ic
5% Ic
td(off)
tf
Eoff =
∫
t1+5µS
Vce ic dt
t1
Vce Ic dt
t1
Fig. 15a - Test Circuit for Measurement of ILM,
t2
Fig. 15b - Test Waveforms for Circuit of Fig. 18a, Defining
Eon, Eoff(diode), trr, Q rr, Irr, td(on), tr, td(off), tf
Eoff, t d(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
Ic dt
trr
Qrr =
Ic
+Vg
tx
10% Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vcc
∫
trr
id dt
tx
10% Ic
90% Ic
tr
td(on)
Ipk
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
Vce Ic dt
5% Vce
t1
Vpk
10% Irr
Vd Ic dt
t2
Eon = Vce ie dt
t1
∫
t2
DIODE REVERSE
RECOVERY ENERGY
t3
t4
Erec = Vd id dt
t3
∫
t4
Fig. 15c - Test Waveforms for Circuit of Fig. 18a,
Fig. 15d - Test Waveforms for Circuit of Fig. 18a,
Defining E on, td(on), tr
Defining Erec, trr, Qrr, Irr
www.irf.com
7
GA200TS60UX
Bulletin I27221 03/06
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 15e. Macro Waveforms for Figure 18a's Test Circuit
L
1000V
D.U.T.
Vc*
RL=
480V
4 X IC @25°C
0 - 480V
50V
6000µF
100V
Figure 16. Clamped Inductive Load Test Circuit
8
Figure 17. Pulsed Collector Current
Test Circuit
www.irf.com
GA200TS60UX
Bulletin I27221 03/06
Outline Table
Electrical Diagram
Dimensions in millimeters
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial Level.
Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 03/06
www.irf.com
9