IRF IRG4IBC30SPBF

PD - 95637
IRG4IBC30SPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
C
• Standard: Optimized for minimum saturation
voltage and low operating freqencies (<1 kHz)
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
previous generation
• Industry standard TO-220 Full-Pak
• Lead-Free
VCES = 600V
VCE(on) typ. = 1.4V
G
@VGE = 15V, IC = 18A
E
n-channel
N-channel
Benefits
• Generation 4 IGBTs offer highest efficiencies available
• IGBTs optimized for specific application conditions
• Designed to be a "drop-in" replacement for equivalent
industry -standard Generation 3 IR IGBTs
TO-220 Full-Pak
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ T C = 25°C
PD @ T C = 100°C
TJ
TSTG
Parameter
Max.
Units
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy ƒ
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
600
23.5
13.0
68
68
± 20
10
45
18
-55 to + 150
V
A
V
mJ
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθJA
Wt
www.irf.com
Junction-to-Case
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
–––
2.1 (0.075)
2.8
65
–––
Units
°C/W
g (oz)
1
7/23/04
IRG4IBC30SPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
V(BR)ECS
∆V(BR)CES/∆TJ
VCE(ON)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
IGES
Parameter
Min. Typ. Max. Units
Conditions
Collector-to-Emitter Breakdown Voltage
600
—
—
V
VGE = 0V, IC = 250µA
Emitter-to-Collector Breakdown Voltage „ 18
—
—
V
VGE = 0V, IC = 1.0A
Temperature Coeff. of Breakdown Voltage — 0.75 —
V/°C VGE = 0V, IC = 1.0mA
— 1.40 1.6
IC = 18A
VGE = 15V
Collector-to-Emitter Saturation Voltage
— 1.84 —
IC = 34A
See Fig.2, 5
V
— 1.45 —
IC = 18A , TJ = 150°C
Gate Threshold Voltage
3.0
—
6.0
VCE = VGE, IC = 250µA
Temperature Coeff. of Threshold Voltage
—
-11
— mV/°C VCE = VGE, IC = 250µA
Forward Transconductance …
6.0
11
—
S
VCE = 100 V, IC = 18A
—
—
250
VGE = 0V, VCE = 600V
Zero Gate Voltage Collector Current
µA
—
—
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
—
— 1000
VGE = 0V, VCE = 600V, TJ = 150°C
Gate-to-Emitter Leakage Current
—
— ±100
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
50
75
IC = 18A
7.3
11
nC
VCC = 400V
See Fig.8
17
26
VGE = 15V
22
—
18
—
TJ = 25°C
ns
540 810
IC = 18A, VCC = 480V
390 590
VGE = 15V, RG = 23Ω
0.26 —
Energy losses include "tail"
3.45 —
mJ See Fig. 9, 10, 14
3.71 5.6
21
—
TJ = 150°C,
19
—
IC = 18A, VCC = 480V
ns
790
—
VGE = 15V, RG = 23Ω
760
—
Energy losses include "tail"
6.55 —
mJ See Fig. 10, 11, 14
7.5
—
nH
Measured 5mm from package
1100 —
VGE = 0V
72
—
pF
VCC = 30V
See Fig. 7
19
—
ƒ = 1.0MHz
Notes:
 Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. (See Fig. 13b)
‚ VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω,
„ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
… Pulse width 5.0µs, single shot.
(See Fig. 13a)
ƒ Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4IBC30SPbF
20
For both:
Square wave:
For both:
Duty cycle:
Duty
cycle :50%
50%
TJ ==125°C
125°C
Tj
Tsink = 90°C
Tsink
Gate drive
drive as
as specified
specified
Power Dissipation
W
Power
Dissipation==5.8
7.0W
60% of rated
voltage
Load Current ( A )
15
I
Triangular wave:
Ideal diodes
10
I
Clamp voltage:
80% of rated
5
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25 o C
TJ = 150 o C
10
V GE = 15V
20µs PULSE WIDTH
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C, Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 oC
10
TJ = 25 oC
1
V CC = 50V
5µs PULSE WIDTH
0.1
5
6
7
8
9
10
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4IBC30SPbF
3.0
24
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current (A)
V GE = 15V
20
16
12
8
4
50
75
100
125
150
2.0
IC = 18 A
1.5
IC =
0
20
40
60
9A
80 100 120 140 160
TJ , Junction Temperature ( ° C)
TJ , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
IC = 36 A
2.5
1.0
-60 -40 -20
0
25
VGE = 15V
80 us PULSE WIDTH
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
PDM
0.02
t1
0.01
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x Z thJC + TC
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC30SPbF
2000
20
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
1500
Cies
1000
500
Coes
VCC = 400V
I C = 18A
16
12
8
4
Cres
0
1
10
0
100
0
10
VCE , Collector-to-Emitter Voltage (V)
100
V CC = 480V
V GE = 15V
TJ = 25 ° C
3.76 I C = 18A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
3.80
3.72
3.68
3.64
3.60
0
10
20
30
40
Gate Resistance
(Ω)(Ohm)
R RG,, Gate
Resistance
G
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
30
40
50
60
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
10
20
QG , Total Gate Charge (nC)
50
RG = 23Ohm
Ω
VGE = 15V
VCC = 480V
IC = 36 A
10
IC = 18 A
A
IC = 9.0
9A
1
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4IBC30SPbF
RG
TJ
VCC
12.0 VGE
1000
= 23Ohm
Ω
= 150° C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
15.0
VGE = 20V
T J = 125 oC
100
9.0
6.0
3.0
10
SAFE OPERATING AREA
1
0.0
0
10
20
30
40
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
50
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4IBC30SPbF
L
D.U.T.
RL =
VC *
50V
0 - 480V
1000V
480V
4 X I C@25°C
480µF
960V
c
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
Driver*
D.U.T.
VC
Fig. 14a - Switching Loss
Test Circuit
50V
1000V
c
d
e
* Driver same type
as D.U.T., VC = 480V
c
d
90%
e
VC
10%
90%
Fig. 14b - Switching Loss
t d(off)
10%
I C 5%
Waveforms
tf
tr
t d(on)
t=5µs
E on
E off
E ts = (Eon +Eoff )
www.irf.com
7
IRG4IBC30SPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
E X AMP L E :
T H IS IS AN IR F I84 0G
WIT H AS S E MB L Y
L OT CODE 3432
AS S E MB L E D ON WW 24 1999
IN T H E AS S E MB L Y L IN E "K "
P AR T NU MB E R
IN T E R NAT IONAL
R E CT IF IE R
L OGO
IR F I840G
924 K
34
Note: "P" in assembly line
position indicates "Lead-Free"
AS S E MB L Y
L OT CODE
32
DAT E CODE
YE AR 9 = 1999
WE E K 24
L IN E K
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/04
8
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/