PD - 95637 IRG4IBC30SPbF INSULATED GATE BIPOLAR TRANSISTOR Features C • Standard: Optimized for minimum saturation voltage and low operating freqencies (<1 kHz) • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation • Industry standard TO-220 Full-Pak • Lead-Free VCES = 600V VCE(on) typ. = 1.4V G @VGE = 15V, IC = 18A E n-channel N-channel Benefits • Generation 4 IGBTs offer highest efficiencies available • IGBTs optimized for specific application conditions • Designed to be a "drop-in" replacement for equivalent industry -standard Generation 3 IR IGBTs TO-220 Full-Pak Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ T C = 25°C PD @ T C = 100°C TJ TSTG Parameter Max. Units Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds 600 23.5 13.0 68 68 ± 20 10 45 18 -55 to + 150 V A V mJ W °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJA Wt www.irf.com Junction-to-Case Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– ––– 2.1 (0.075) 2.8 65 ––– Units °C/W g (oz) 1 7/23/04 IRG4IBC30SPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ VCE(ON) VGE(th) ∆VGE(th)/∆TJ gfe ICES IGES Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 600 — — V VGE = 0V, IC = 250µA Emitter-to-Collector Breakdown Voltage 18 — — V VGE = 0V, IC = 1.0A Temperature Coeff. of Breakdown Voltage — 0.75 — V/°C VGE = 0V, IC = 1.0mA — 1.40 1.6 IC = 18A VGE = 15V Collector-to-Emitter Saturation Voltage — 1.84 — IC = 34A See Fig.2, 5 V — 1.45 — IC = 18A , TJ = 150°C Gate Threshold Voltage 3.0 — 6.0 VCE = VGE, IC = 250µA Temperature Coeff. of Threshold Voltage — -11 — mV/°C VCE = VGE, IC = 250µA Forward Transconductance 6.0 11 — S VCE = 100 V, IC = 18A — — 250 VGE = 0V, VCE = 600V Zero Gate Voltage Collector Current µA — — 2.0 VGE = 0V, VCE = 10V, TJ = 25°C — — 1000 VGE = 0V, VCE = 600V, TJ = 150°C Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 50 75 IC = 18A 7.3 11 nC VCC = 400V See Fig.8 17 26 VGE = 15V 22 — 18 — TJ = 25°C ns 540 810 IC = 18A, VCC = 480V 390 590 VGE = 15V, RG = 23Ω 0.26 — Energy losses include "tail" 3.45 — mJ See Fig. 9, 10, 14 3.71 5.6 21 — TJ = 150°C, 19 — IC = 18A, VCC = 480V ns 790 — VGE = 15V, RG = 23Ω 760 — Energy losses include "tail" 6.55 — mJ See Fig. 10, 11, 14 7.5 — nH Measured 5mm from package 1100 — VGE = 0V 72 — pF VCC = 30V See Fig. 7 19 — ƒ = 1.0MHz Notes: Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. (See Fig. 13b) VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω, Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. (See Fig. 13a) Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4IBC30SPbF 20 For both: Square wave: For both: Duty cycle: Duty cycle :50% 50% TJ ==125°C 125°C Tj Tsink = 90°C Tsink Gate drive drive as as specified specified Power Dissipation W Power Dissipation==5.8 7.0W 60% of rated voltage Load Current ( A ) 15 I Triangular wave: Ideal diodes 10 I Clamp voltage: 80% of rated 5 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 o C TJ = 150 o C 10 V GE = 15V 20µs PULSE WIDTH 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C, Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 oC 10 TJ = 25 oC 1 V CC = 50V 5µs PULSE WIDTH 0.1 5 6 7 8 9 10 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4IBC30SPbF 3.0 24 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current (A) V GE = 15V 20 16 12 8 4 50 75 100 125 150 2.0 IC = 18 A 1.5 IC = 0 20 40 60 9A 80 100 120 140 160 TJ , Junction Temperature ( ° C) TJ , Junction Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature IC = 36 A 2.5 1.0 -60 -40 -20 0 25 VGE = 15V 80 us PULSE WIDTH Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.00001 PDM 0.02 t1 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJC + TC 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4IBC30SPbF 2000 20 VGE , Gate-to-Emitter Voltage (V) VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 1500 Cies 1000 500 Coes VCC = 400V I C = 18A 16 12 8 4 Cres 0 1 10 0 100 0 10 VCE , Collector-to-Emitter Voltage (V) 100 V CC = 480V V GE = 15V TJ = 25 ° C 3.76 I C = 18A Total Switching Losses (mJ) Total Switching Losses (mJ) 3.80 3.72 3.68 3.64 3.60 0 10 20 30 40 Gate Resistance (Ω)(Ohm) R RG,, Gate Resistance G Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 30 40 50 60 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 10 20 QG , Total Gate Charge (nC) 50 RG = 23Ohm Ω VGE = 15V VCC = 480V IC = 36 A 10 IC = 18 A A IC = 9.0 9A 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4IBC30SPbF RG TJ VCC 12.0 VGE 1000 = 23Ohm Ω = 150° C = 480V = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 15.0 VGE = 20V T J = 125 oC 100 9.0 6.0 3.0 10 SAFE OPERATING AREA 1 0.0 0 10 20 30 40 I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 50 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4IBC30SPbF L D.U.T. RL = VC * 50V 0 - 480V 1000V 480V 4 X I C@25°C 480µF 960V c d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L Driver* D.U.T. VC Fig. 14a - Switching Loss Test Circuit 50V 1000V c d e * Driver same type as D.U.T., VC = 480V c d 90% e VC 10% 90% Fig. 14b - Switching Loss t d(off) 10% I C 5% Waveforms tf tr t d(on) t=5µs E on E off E ts = (Eon +Eoff ) www.irf.com 7 IRG4IBC30SPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information E X AMP L E : T H IS IS AN IR F I84 0G WIT H AS S E MB L Y L OT CODE 3432 AS S E MB L E D ON WW 24 1999 IN T H E AS S E MB L Y L IN E "K " P AR T NU MB E R IN T E R NAT IONAL R E CT IF IE R L OGO IR F I840G 924 K 34 Note: "P" in assembly line position indicates "Lead-Free" AS S E MB L Y L OT CODE 32 DAT E CODE YE AR 9 = 1999 WE E K 24 L IN E K Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/04 8 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/