PD -95525 IRG4PH50SPbF INSULATED GATE BIPOLAR TRANSISTOR Standard Speed IGBT Features C Standard: Optimized for minimum saturation voltage and low operating frequencies ( < 1kHz) Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 Industry standard TO-247AC package Lead-Free VCES =1200V VCE(on) typ. = 1.47V G @VGE = 15V, IC = 33A E n-channel Benefits Generation 4 IGBT's offer highest efficiency available IGBT's optimized for specified application conditions Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBT's TO-247AC Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 1200 57 33 114 114 ±20 270 200 80 -55 to +150 V A V mJ W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. 0.24 6.0 (0.21) 0.64 40 Units °C/W g (oz) 1 7/16/04 IIRG4PH50SPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 1200 — Emitter-to-Collector Breakdown Voltage 18 — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 1.22 — 1.47 Collector-to-Emitter Saturation Voltage — 1.75 VCE(ON) — 1.55 VGE(th) Gate Threshold Voltage 3.0 — DVGE(th)/DTJ Temperature Coeff. of Threshold Voltage — -11 gfe Forward Transconductance 27 40 — — ICES Zero Gate Voltage Collector Current — — — — IGES Gate-to-Emitter Leakage Current — — V(BR)CES V(BR)ECS Max. Units Conditions — V VGE = 0V, IC = 250µA — V VGE = 0V, IC = 1.0 A — V/°C VGE = 0V, IC = 2.0 mA 1.7 IC = 33A VGE = 15V — IC = 57A See Fig.2, 5 V — IC = 33A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100V, IC = 33A 250 VGE = 0V, VCE = 1200V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 1000 VGE = 0V, VCE = 1200V, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Q gc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. 167 25 55 32 29 845 425 1.80 19.6 21.4 32 30 1170 1000 37 13 3600 160 30 Max. Units Conditions 251 IC = 33A 38 nC VCC = 400V See Fig. 8 83 VGE = 15V — — TJ = 25°C ns 1268 IC = 33A, VCC = 960V 638 VGE = 15V, RG = 5.0Ω — Energy losses include "tail" — mJ See Fig. 9, 10, 14 44 — TJ = 150°C, — IC = 33A, VCC = 960V ns — VGE = 15V, RG = 5.0Ω — Energy losses include "tail" — mJ See Fig. 10,11,14 — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz Notes: Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0Ω, (See fig. 13a) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4PH50SPbF For both: Load Current (A) Triangular wave: Duty cycle: 50% TJ = 125°C Tsink= 90°C Gate drive as specified Power Dissipation = 40W 60 40 Clamp voltage: 80% of rated Square wave: 60% of rated voltage 20 Ideal diodes A 0 0.1 1 10 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) I C, Collector-to-Emitter Current (A) TJ = 25 °C I C , Collector-to-Emitter Current (A) 1000 1000 100 100 TJ = 150 °C 10 1 0.0 V GE = 15V 80µs PULSE WIDTH 1.0 2.0 3.0 4.0 5.0 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com TJ = 150 °C TJ = 25 °C 10 1 V CC = 50V 5µs PULSE WIDTH 5 6 7 8 9 10 11 12 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IIRG4PH50SPbF 2.5 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 60 50 40 30 20 10 0 25 50 75 100 125 150 VGE = 15V 80 us PULSE WIDTH IC = 66 A 2.0 IC = 33 A 1.5 IC =16.5 A 1.0 -60 -40 -20 TC , Case Temperature ( °C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 0.001 0.00001 SINGLE PULSE (THERMAL RESPONSE) PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PH50SPbF 7000 Cies VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 6000 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 5000 4000 Coes 3000 2000 Cres 1000 0 1 10 15 10 5 0 100 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 1000 V CC = 960V V GE = 15V TJ = 25 °C I C = 33A 23.0 22.0 0 10 20 30 40 , Gate Resistance (Ohm) RR GG, Gate Resistance ( Ω ) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 25 50 75 100 125 150 175 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 24.0 21.0 0 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 25.0 VCC = 400V I C = 33A 50 5Ω RG = 15Ω 5Ohm VGE = 15V VCC = 960V IC = 66 A 100 IC = 33 A IC = 16.5 A 10 1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IIRG4PH50SPbF RG TJ VCC 100 VGE 1000 = 55Ohm Ω = 150 ° C = 960V = 15V I C , Collector Current (A) Total Switching Losses (mJ) 120 VGE = 20V T J = 125 oC 100 80 60 40 10 20 0 0 10 20 30 40 50 60 I C , Collector Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 70 1 SAFE OPERATING AREA 1 10 100 1000 10000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Reverse Bias SOA www.irf.com IRG4PH50SPbF L D.U.T. VC * 50V RL = 1000V 480µF 960V 0-960V c 960V 4 X IC@25°C d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L Driver* VC D.U.T. Loss Test Circuit 50V 1000V c d Fig. 14a - Switching e * Driver same type as D.U.T., VC = ----V Fig. 14b - Switching Loss Waveforms www.irf.com 7 IIRG4PH50SPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: T HIS IS AN IRFPE30 WIT H ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE AS SEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INT ERNATIONAL RECT IFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/04 8 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/