ONSEMI NCS2511

NCS2511
1 GHz Current Feedback
Op Amp
NCS2511 is a 1 GHz current feedback monolithic operational
amplifier featuring high slew rate and low differential gain and phase
error. The current feedback architecture allows for a superior
bandwidth and low power consumption.
http://onsemi.com
Features
−3.0 dB Small Signal BW (AV = +2.0, VO = 0.5 Vp−p) 1 GHz Typ
Slew Rate 2500 V/ms
Supply Current 7.5 mA
Input Referred Voltage Noise 5.0 nV/ ǸHz
THD −67 dB (f = 5.0 MHz, VO = 2.0 Vp−p)
Output Current 120 mA
Pin Compatible with AD8001, TSH350, OPA681
This is a Pb−Free Device
Applications
•
•
•
•
•
•
High Resolution Video
Line Driver
High−Speed Instrumentation
Wide Dynamic Range IF Amp
Set Top Box
NTSC/PAL/HDTV
MARKING
DIAGRAM
5
SOT23−5
(TSOP−5)
SN SUFFIX
CASE 483
5
1
YB1
A
Y
W
G
YB1AYW
G
1
= NCS2511
= Assembly Location
= Year
= Work Week
= Pb−Free Package
SOT23−5 (TSOP−5) PINOUT
OUT
1
VEE
2
+IN
3
6
+
•
•
•
•
•
•
•
•
5
VCC
4
−IN
−
NORMALIZED GAIN (dB)
3
(Top View)
0
VOUT = 2.0 VPP
−3
ORDERING INFORMATION
−6
−9
−12
−15
10k
AV = +2
VS = "5 V
RF = 270 W
RL = 150 W
100k
VOUT = 0.5 VPP
1M
10M
100M
FREQUENCY (Hz)
1G
May, 2006 − Rev. 2
Package
Shipping†
NCS2511SNT1G
SOT23−5
(TSOP−5)
(Pb−Free)
3000/Tape & Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
10G
Figure 1. Frequency Response:
Gain (dB) vs. Frequency
Av = +2.0
© Semiconductor Components Industries, LLC, 2006
Device
1
Publication Order Number:
NCS2511/D
NCS2511
PIN FUNCTION DESCRIPTION
Pin
(SOT23/SC70)
Symbol
Function
1
OUT
Output
Equivalent Circuit
VCC
ESD
OUT
VEE
2
VEE
Negative Power Supply
3
+IN
Non−inverted Input
VCC
ESD
ESD
+IN
−IN
VEE
4
−IN
Inverted Input
5
VCC
Positive Power Supply
See Above
VCC
+IN
OUT
−IN
CC
VEE
Figure 2. Simplified Device Schematic
http://onsemi.com
2
NCS2511
ATTRIBUTES
Characteristics
Value
ESD
Human Body Model
Machine Model
Charged Device Model
2.0 kV (Note 1)
200 V
1.0 kV
Moisture Sensitivity (Note 2)
Flammability Rating
Level 1
Oxygen Index: 28 to 34
UL 94 V−0 @ 0.125 in
1. 0.8 kV between the input pairs +IN and −IN pins only. All other pins are 2.0 kV.
2. For additional information, see Application Note AND8003/D.
MAXIMUM RATINGS
Symbol
Rating
Unit
Power Supply Voltage
Parameter
VS
11
Vdc
Input Voltage Range
VI
vVS
Vdc
Input Differential Voltage Range
VID
vVS
Vdc
Output Current
IO
120
mA
Maximum Junction Temperature (Note 3)
TJ
150
°C
Operating Ambient Temperature
TA
−40 to +85
°C
Storage Temperature Range
Tstg
−60 to +150
°C
Power Dissipation
PD
(See Graph)
mW
RqJA
121
°C/W
Thermal Resistance, Junction−to−Air
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded.
MAXIMUM POWER DISSIPATION
MAXIMUM POWER DISSIPATION (mW)
1800
The maximum power that can be safely dissipated is
limited by the associated rise in junction temperature. For
the plastic packages, the maximum safe junction
temperature is 150°C. If the maximum is exceeded
momentarily, proper circuit operation will be restored as
soon as the die temperature is reduced. Leaving the device
in the “overheated’’ condition for an extended period can
result in device damage. To ensure proper operation, it is
important to observe the derating curves.
1600
1400
SOT23 Pkg
1200
1000
800
600
400
200
0
−50
−25
0
50
75
25
100
AMBIENT TEMPERATURE (°C)
125 150
Figure 3. Power Dissipation vs. Temperature
http://onsemi.com
3
NCS2511
AC ELECTRICAL CHARACTERISTICS (VCC = +5.0 V, VEE = −5.0 V, TA = −40°C to +85°C, RL = 150 W to GND, RF = 270 W,
AV = +2.0, Enable is left open, unless otherwise specified).
Symbol
Characteristic
Conditions
Min
Typ
Max
Unit
FREQUENCY DOMAIN PERFORMANCE
BW
GF0.1dB
Bandwidth
3.0 dB Small Signal
3.0 dB Large Signal
0.1 dB Gain Flatness
Bandwidth
MHz
AV = +2.0, VO = 0.5 Vp−p
AV = +2.0, VO = 2.0 Vp−p
1000
800
AV = +2.0
50
MHz
dG
Differential Gain
AV = +2.0, RL = 150 W, f = 3.58 MHz
0.01
%
dP
Differential Phase
AV = +2.0, RL = 150 W, f = 3.58 MHz
0.01
°
Slew Rate
AV = +2.0, Vstep = 2.0 V
2500
V/ms
Settling Time
0.1%
AV = +2.0, Vstep = 2.0 V
13
ns
(10%−90%) AV = +2.0, Vstep = 2.0 V
1.5
ns
TIME DOMAIN RESPONSE
SR
ts
tr tf
Rise and Fall Time
HARMONIC/NOISE PERFORMANCE
THD
Total Harmonic Distortion
f = 5.0 MHz, VO = 2.0 Vp−p
−67
dB
HD2
2nd Harmonic Distortion
f = 5.0 MHz, VO = 2.0 Vp−p
−72
dBc
HD3
3rd Harmonic Distortion
f = 5.0 MHz, VO = 2.0 Vp−p
−70
dBc
IP3
Third−Order Intercept
f = 10 MHz, VO = 1.0 Vp−p
35
dBm
Spurious−Free Dynamic
Range
f = 5.0 MHz, VO = 2.0 Vp−p
70
dBc
SFDR
eN
Input Referred Voltage Noise
f = 1.0 MHz
5.0
nVń ǸHz
iN
Input Referred Current Noise
f = 1.0 MHz, Inverting
f = 1.0 MHz, Non−Inverting
20
30
pAń ǸHz
http://onsemi.com
4
NCS2511
DC ELECTRICAL CHARACTERISTICS (VCC = +5.0 V, VEE = −5.0 V, TA = −40°C to +85°C, RL = 150 W to GND, RF = 270 W,
AV = +2.0, Enable is left open, unless otherwise specified).
Symbol
Characteristic
Conditions
Min
Typ
Max
Unit
−10
0
+10
mV
DC PERFORMANCE
VIO
DVIO/DT
IIB
DIIB/DT
Input Offset Voltage (Note 4)
Input Offset Voltage
Temperature Coefficient
Input Bias Current
6.0
mV/°C
+Input (Non−Inverting), VO = 0 V
−Input (Inverting), VO = 0 V (Note 4)
"3.0
"6.0
+Input (Non−Inverting), VO = 0 V
−Input (Inverting), VO = 0 V
+40
−10
nA/°C
"3.0
"4.0
V
40
50
dB
150
70
kW
W
1.0
pF
0.1
30
W
Input Bias Current Temperature Coefficient
"35
"35
mA
INPUT CHARACTERISTICS
VCM
CMRR
Input Common Mode Voltage
Range (Note 4)
Common Mode Rejection
Ratio (Note 4)
RIN
Input Resistance
CIN
Differential Input Capacitance
(See Graph)
+Input (Non−Inverting)
−Input (Inverting)
OUTPUT CHARACTERISTICS
ROUT
Output Resistance
Closed Loop
Open Loop
VO
Output Voltage Range
"3.0
"4.0
V
IO
Output Current
"90
"120
mA
10
V
7.5
mA
55
dB
POWER SUPPLY
VS
Operating Voltage Supply
IS
Power Supply Current
PSRR
Power Supply Rejection Ratio
(Note 4)
VO = 0 V
(See Graph)
4. Guaranteed by design and/or characterization.
http://onsemi.com
5
40
NCS2511
AC ELECTRICAL CHARACTERISTICS (VCC = +2.5 V, VEE = −2.5 V, TA = −40°C to +85°C, RL = 150 W to GND, RF = 270 W,
AV = +2.0, Enable is left open, unless otherwise specified).
Symbol
Characteristic
Conditions
Min
Typ
Max
Unit
FREQUENCY DOMAIN PERFORMANCE
BW
GF0.1dB
Bandwidth
3.0 dB Small Signal
3.0 dB Large Signal
0.1 dB Gain Flatness
Bandwidth
MHz
AV = +2.0, VO = 0.5 Vp−p
AV = +2.0, VO = 1.0 Vp−p
800
500
AV = +2.0
40
MHz
dG
Differential Gain
AV = +2.0, RL = 150 W, f = 3.58 MHz
0.01
%
dP
Differential Phase
AV = +2.0, RL = 150 W, f = 3.58 MHz
0.01
°
Slew Rate
AV = +2.0, Vstep = 1.0 V
1500
V/ms
Settling Time
0.1%
AV = +2.0, Vstep = 1.0 V
10
ns
(10%−90%) AV = +2.0, Vstep = 1.0 V
1.2
ns
TIME DOMAIN RESPONSE
SR
ts
tr tf
Rise and Fall Time
HARMONIC/NOISE PERFORMANCE
THD
Total Harmonic Distortion
f = 5.0 MHz, VO = 1.0 Vp−p
−57
dB
HD2
2nd Harmonic Distortion
f = 5.0 MHz, VO = 1.0 Vp−p
−62
dBc
HD3
3rd Harmonic Distortion
f = 5.0 MHz, VO = 1.0 Vp−p
−60
dBc
IP3
Third−Order Intercept
f = 10 MHz, VO = 0.5 Vp−p
28
dBm
Spurious−Free Dynamic
Range
f = 5.0 MHz, VO = 1.0 Vp−p
60
dBc
SFDR
eN
Input Referred Voltage Noise
f = 1.0 MHz
5.0
nVń ǸHz
iN
Input Referred Current Noise
f = 1.0 MHz, Inverting
f = 1.0 MHz, Non−Inverting
20
30
pAń ǸHz
http://onsemi.com
6
NCS2511
DC ELECTRICAL CHARACTERISTICS (VCC = +2.5 V, VEE = −2.5 V, TA = −40°C to +85°C, RL = 150 W to GND, RF = 270 W,
AV = +2.0, Enable is left open, unless otherwise specified).
Symbol
Characteristic
Conditions
Min
Typ
Max
Unit
−10
0
+10
mV
DC PERFORMANCE
VIO
DVIO/DT
IIB
DIIB/DT
Input Offset Voltage (Note 5)
Input Offset Voltage
Temperature Coefficient
Input Bias Current
6.0
mV/°C
+Input (Non−Inverting), VO = 0 V
−Input (Inverting), VO = 0 V (Note 5)
"3.0
"6.0
+Input (Non−Inverting), VO = 0 V
−Input (Inverting), VO = 0 V
+40
−10
nA/°C
"1.1
"1.5
V
40
50
dB
150
70
kW
W
1.0
pF
0.1
30
W
Input Bias Current Temperature Coefficient
"35
"35
mA
INPUT CHARACTERISTICS
VCM
CMRR
Input Common Mode Voltage
Range (Note 5)
Common Mode Rejection
Ratio (Note 5)
RIN
Input Resistance
CIN
Differential Input Capacitance
(See Graph)
+Input (Non−Inverting)
−Input (Inverting)
OUTPUT CHARACTERISTICS
ROUT
Output Resistance
Closed Loop
Open Loop
VO
Output Voltage Range
"1.1
"1.5
V
IO
Output Current
"90
"120
mA
5.0
V
6.5
mA
55
dB
POWER SUPPLY
VS
Operating Voltage Supply
IS
Power Supply Current
PSRR
VO = 0 V
Power Supply Rejection Ratio
(Note 5)
(See Graph)
40
5. Guaranteed by design and/or characterization.
VIN
+
−
VOUT
RL
RF
RF
Figure 4. Typical Test Setup
(AV = +2.0, RF = 270 W, RL = 150 W)
http://onsemi.com
7
6
6
3
3
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
NCS2511
0
VOUT = 2.0 VPP
−3
−6
−9
−12
−15
10k
VOUT = 0.5 VPP
AV = +2
VS = "5 V
RF = 270 W
RL = 150 W
100k
VOUT = 1 VPP
0
−3
−6
VOUT = 0.5 VPP
−9
−12
1M
10M
100M
FREQUENCY (Hz)
1G
−15
10k
10G
6
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
AV = +2
−6
−12
−15
10k
VOUT= 1.0 VPP
VS = ±5 V
RF = 270 W
RL = 150 W
100k
1M
10M
100M
1G
10G
AV = +1
3
0
−9
1M
10M
100M
FREQUENCY(Hz)
6
AV = +1
−3
100k
Figure 6. Frequency Response
Gain (dB) vs. Frequency
Av = +1.0
Figure 5. Frequency Response:
Gain (dB) vs. Frequency
Av = +2.0
3
AV = +1
VS = "5 V
RF = 270 W
RL = 150 W
1G
0
−3
AV = +2
−6
−9
−12
−15
10k
10G
VOUT= 0.5 VPP
VS = ±5 V
RF = 270 W
RL = 150 W
100k
FREQUENCY (Hz)
1M
10M
100M
FREQUENCY (Hz)
1G
Figure 7. Large Signal Frequency Response
Gain (dB) vs. Frequency
Figure 8. Small Signal Frequency Response
Gain (dB) vs. Frequency
VS = ±5 V
VS = ±5 V
Vin
Vin
Vout
Vout
Figure 10. Large Signal Step Response
Vertical: 2.0 V/div
Horizontal: 10 ns/div
Figure 9. Small Signal Step Response
Vertical: 1.0 V/div
Horizontal: 10 ns/div
http://onsemi.com
8
10G
NCS2511
−40
−40
VOUT = 2 VPP
VS = ±5 V
RF = 270 W
RL = 150 W
−50
−55
THD
HD3
−60
−65
−75
1
−50
−55
−60
THD
−65
HD3
HD2
−70
f = 5 MHz
VS = ±5 V
RF = 270 W
RL = 150 W
−45
DISTORTION (dB)
DISTORTION (dB)
−45
−70
−75
100
10
HD2
0
1
0.5
1.5
FREQUENCY (MHz)
0
VS = ±5 V
4.5
4
VS = "5 V
−10
50
−20
CMRR (dB)
VOLTAGE NOISE (nV/√Hz)
70
40
30
20
−30
−40
−50
10
0
100
1k
10k
100k
FREQUENCY (Hz)
−60
10k
1M
Figure 13. Input Referred Voltage Noise vs.
Frequency
1M
FREQUENCY (Hz)
0.02
0.015
DIFFERENTIAL GAIN (%)
−10
−20
−30
10M
100M
4.43 MHz
0.01
VS = ±5 V
RL = 150 W
AV = +2
20 MHz
3.58 MHz
0.005
0
−0.005
−40
+5 V
−50
100k
1M
FREQUENCY (Hz)
−0.01
50 MHz
−0.015
−5 V
−60
10k
100k
Figure 14. CMRR vs. Frequency
0
PSRR (dB)
3.5
Figure 12. THD, HD2, HD3 vs. Output Voltage
Figure 11. THD, HD2, HD3 vs. Frequency
60
2
2.5
3
Vout (VPP)
10M
100M
−0.02
−0.8
Figure 15. PSRR vs. Frequency
−0.6
10 MHz
0.2
−0.4 −0.2
0
0.4
OFFSET VOLTAGE (V)
Figure 16. Differential Gain
http://onsemi.com
9
0.6
0.8
NCS2511
0.02
10
0.01
0.005
VS = ±5 V
RL = 150 W
AV = +2
4.43 MHz
9
CURRENT (mA)
DIFFERENTIAL PHASE (°)
0.015
3.58 MHz
0
−0.005
−0.01
20 MHz
−0.015 10 MHz
−0.02
−0.8
8
25°C
7
−40°C
6
5
50 MHz
0.4
−0.4 −0.2
0
0.2
OFFSET VOLTAGE (V)
−0.6
85°C
4
0.6 0.8
4
5
Figure 17. Differential Phase
6
7
8
9
POWER SUPPLY VOLTAGE (V)
11
Figure 18. Supply Current vs. Power Supply
(Enabled)
8
1M
7.5
7
VS = ±5.0 V
RF = 270 W
RL = 150 W
100k
6.5
TRANSIMPEDANCE (W)
OUTPUT VOLTAGE (VPP)
10
25°C
6
85°C
5.5
−40°C
5
4.5
4
10k
1k
100
3.5
3
4
5
6
8
7
9
10
10
10k
11
100k
1M
POWER SUPPLY VOLTAGE (V)
Figure 19. Output Voltage Swing vs. Supply Voltage
10G
6
NORMALIZED GAIN (dB)
OUTPUT RESISTANCE (W)
1G
9
VS ±5.0 V
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
10k
100M
Figure 20. Transimpedance (ROL) vs. Frequency
2.0
1.8
10M
FREQUENCY (Hz)
3
0
10 pF
−3
47 pF
−6
−9
−12
100k
1M
10M
100M
−15
10k
AV = +2
VOUT = 0.5 Vpp
VS = ±5.0 V
RF = 270 W
RL = 150 W
100k
100 pF
1M
10M
100M
1G
10G
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 21. Closed−Loop Output Resistance
vs. Frequency
Figure 22. Frequency Response vs. Capacitive
Load
http://onsemi.com
10
NCS2511
General Design Considerations
use a current feedback amplifier with the output shorted
directly to the inverting input.
The current feedback amplifier is optimized for use in
high performance video and data acquisition systems. For
current feedback architecture, its closed−loop bandwidth
depends on the value of the feedback resistor. The
closed−loop bandwidth is not a strong function of gain, as is
for a voltage feedback amplifier, as shown in Figure 23.
100 W
150 W
Proper high speed PCB design rules should be used for all
wideband amplifiers as the PCB parasitics can affect the
overall performance. Most important are stray capacitances
at the output and inverting input nodes as it can effect
peaking and bandwidth. A space (3/16″ is plenty) should be
left around the signal lines to minimize coupling. Also,
signal lines connecting the feedback and gain resistors
should be short enough so that their associated inductance
does not cause high frequency gain errors. Line lengths less
than 1/4″ are recommended.
270 W
330 W
GAIN (dB)
24
21
18
15
12
9
6
3
0
−3
−6
−9
−12
−15 AV = +2
−18 VCC = +5 V
−21 RL = 150 W
−24
10k
100k
Printed Circuit Board Layout Techniques
400 W
450 W
500 W
1M
10M
100M
Video Performance
1G
This device designed to provide good performance with
NTSC, PAL, and HDTV video signals. Best performance is
obtained with back terminated loads as performance is
degraded as the load is increased. The back termination
reduces reflections from the transmission line and
effectively masks transmission line and other parasitic
capacitances from the amplifier output stage.
10G
FREQUENCY (Hz)
ESD Protection
Figure 23. Frequency Response vs. RF
All device pins have limited ESD protection using internal
diodes to power supplies as specified in the attributes table
(see Figure 24). These diodes provide moderate protection
to input overdrive voltages above the supplies. The ESD
diodes can support high input currents with current limiting
series resistors. Keep these resistor values as low as possible
since high values degrade both noise performance and
frequency response. Under closed−loop operation, the ESD
diodes have no effect on circuit performance. However,
under certain conditions the ESD diodes will be evident. If
the device is driven into a slewing condition, the ESD diodes
will clamp large differential voltages until the feedback loop
restores closed−loop operation. Also, if the device is
powered down and a large input signal is applied, the ESD
diodes will conduct.
NOTE: Human Body Model for +IN and –IN pins are
rated at 0.8kV while all other pins are rated at
2.0kV.
The −3.0 dB bandwidth is, to some extent, dependent on
the power supply voltages. By using lower power supplies,
the bandwidth is reduced, because the internal capacitance
increases. Smaller values of feedback resistor can be used at
lower supply voltages, to compensate for this affect.
Feedback and Gain Resistor Selection for Optimum
Frequency Response
A current feedback operational amplifier’s key advantage
is the ability to maintain optimum frequency response
independent of gain by using appropriate values for the
feedback resistor. To obtain a very flat gain response, the
feedback resistor tolerance should be considered as well.
Resistor tolerance of 1% should be used for optimum
flatness. Normally, lowering RF resistor from its
recommended value will peak the frequency response and
extend the bandwidth while increasing the value of RF
resistor will cause the frequency response to roll off faster.
Reducing the value of RF resistor too far below its
recommended value will cause overshoot, ringing, and
eventually oscillation.
Since each application is slightly different, it is worth
some experimentation to find the optimal RF for a given
circuit. A value of the feedback resistor that produces
X0.1 dB of peaking is the best compromise between
stability and maximal bandwidth. It is not recommended to
VCC
Internal
Circuitry
External
Pin
VEE
Figure 24. Internal ESD Protection
http://onsemi.com
11
NCS2511
PACKAGE DIMENSIONS
TSOP−5
SN SUFFIX
CASE 483−02
ISSUE E
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. MAXIMUM LEAD THICKNESS INCLUDES
LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS
OF BASE MATERIAL.
4. A AND B DIMENSIONS DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
D
S
5
4
1
2
L
A
3
B
G
J
C
0.05 (0.002)
DIM
A
B
C
D
G
H
J
K
L
M
S
H
M
K
MILLIMETERS
MIN
MAX
2.90
3.10
1.30
1.70
0.90
1.10
0.25
0.50
0.85
1.05
0.013
0.100
0.10
0.26
0.20
0.60
1.25
1.55
0_
10 _
2.50
3.00
INCHES
MIN
MAX
0.1142 0.1220
0.0512 0.0669
0.0354 0.0433
0.0098 0.0197
0.0335 0.0413
0.0005 0.0040
0.0040 0.0102
0.0079 0.0236
0.0493 0.0610
0_
10 _
0.0985 0.1181
SOLDERING FOOTPRINT*
0.95
0.037
1.9
0.074
2.4
0.094
1.0
0.039
0.7
0.028
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer
purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
12
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCS2511/D