MICRONAS SDA9380-B21

PRELIMINARY DATA SHEET
SDA 9380-B21
EDDC
Enhanced Deflection
Controller and
RGB Processor
Edition Feb. 28, 2001
6251-549-1PD
SDA 9380 - B21
Preliminary Data Sheet
Document Change Note
DS1
Date
2
31.03.98
Version 02
3
17.07.98
Document state 03 corresponds to silicon version A11
Page
Changes compared to previous issue
23.07.98
3
block diagram changed
23.07.98
46
bandwidth of YUV increased (new value 30 MHz)
27.07.98
27
Vertical component of SCP changed (not equals internal signal VBL!)
07.08.98
4, 5, 6
09.09.98
Pin configuration changed
14, 17, 20 Description of PMW byte changed
14.09.98
43
SCP output level changed (supply voltage for SCP is VDD(MC)
16.09.98
14,15
16.09.98
24
Bit SLBLKS added to RGB control byte 1
16.09.98
20
Detailed description of the I²C item PWM control byte
16.09.98
25, 26
Detailed description of the items Average beam current limit characteristics, Peak drive limit, Soft clipping
16.09.98
34
Explanation of the items Peak dark detection top border, bottom border,
left border, right border
18.09.98
21
I²C bit KILLZIP deleted, KILLZIP function remains implemented
Sequence of I²C control items changed, new items added
18.09.98
10, 21, 39 I²C bit HSWID deleted
18.09.98
10, 21, 39 I²C bit HSWMI added
18.09.98
10, 39
Positive and negative polarity of HSYNC allowed (int. normalization)
20.10.98 1, 3, 10, 39 18.75 kHz line frequency added
27.10.98
14, 31, 32 End of V-blanking also programmable by VBE if JMP=0
12.11.98
31
Specification of end of V-blanking component of SCP changed
19.11.98
21
3 MSBs of PLL control byte 1 must be 0 instead of don’t care
24.11.98
4
Pin configuration changed
02.12.98
40
HSAFE input voltage at 31.25 kHz and 38 kHz specified
04.12.98
40
VREFP, VREFH, VREFL are internal reference voltages
04.12.98
39
Input BSOIN, delay tD2 changed from 30 lines to 42 lines
04.12.98
15
Default value of saturation control changed form 0 to -12
18.01.99
19
I²C bus bits NR, NL2...NL0 of Vertical sync byte control deleted
21.01.99
1, 7, 11
21.01.99
11
Remark for switching to external clock mode added
22.01.99
5, 6
Pin description changed
05.02.99
7, 8
Description of Black Switch Off (BSO) changed
26.02.99
37
VSS, SUBST total voltage differentials added
15.03.99
2, 14, 46
15.03.99
15, 43
Contrast setting with resolution of 8 bit instead of 6 bit
15.03.99
15, 44
Brightness setting with resolution of 8 bit instead of 6 bit
16.03.99
43
Micronas
Text changed because the vertical noise reduction has been removed
Higher resolution of D/A output (6 bit -> 8 bit), INL changed (1 -> 2 LSB)
NTSC/US matrix changed
i
2001-01-29
SDA 9380 - B21
DS1
Preliminary Data Sheet
Date
Page
24.03.99
46
DAC output D/A: DNL changed from +-0.5 LSB to +-1 LSB
29.03.99
22
IIC bus: ABLTCS1, 0 added
29.03.99
25
IIC bus: GAIN2 added, MODE changed
30.03.99
26
IIC bus: Peak drive limit, bit 3 added (hidden bit for Black stretch)
07.04.99
38
Input BSOIN: hysteresis added
12.04.99
Changes compared to previous issue
22, 25, 15 IIC bus: ABLTCS1, 0 deleted, MODE default field frequent, Tdown
independent of MODE, default value for IIC reg. 27h set to -64
13.04.99
12
18.75kHz only possible with internal clock generation
19.04.99
45, 46
19.04.99
48
Hysteresis of H35K, H38K adjusted
19.04.99
19
PWMC data corrected in case of PWM output is used as switch output
20.04.99
53
Power-on reset thresholds added
I²C bus specification completed
20.04.99 17, 28, 29, default range of input IBEAM changed
39
20.04.99
17, 42
I²C bit RDCI added for switching of DCI input range
28.04.99
24, 50
Delay from SVM to RGB outputs reduced
28.04.99
49
Min. Bandwidth of RGB outputs specified
29.04.99
39
Pins for reference voltages VREFP, VREFL deleted
29.04.99 3,4,5,27,46 New output pin PROTON added
29.04.99 3,4,6,30,46 New output pin VBLO added
11.05.99
51, 52
Application information added
21.05.99
15, 43
Nominal saturation changed to -11
31.05.99
9
08.06.99
Delay of BG-pulse to HSYNC in internal clock mode changed
24, 40, 41 Differential input for RGB/YUV 1 removed
10.06.99
30
V-blanking component of SCP corresponds with internal blanking VBL
24.06.99
1, 2
RGB 1 input changed to RGB/YUV1, COR feature added
24.06.99
5
24.06.99
Test pins changed
12, 54, 55 Reset modes of IIC-Registers changed, POR delay changed to 32768
24.06.99 6,12,38,39, VREFP and VREFL removed, VREFH and VREFC changed
42, 46, 47,
48, 54, 55
24.06.99
40, 51, 52 External capacitances of the quartz oscillator changed to 15pF
24.06.99
40, 41
24.06.99
43
24.06.99
46, 47
24.06.99
50
SVM output: black level added
24.06.99
54
POR levels changed
28.06.99
12, 58
29.06.99
8
Second paragraph changed (protection circuit)
30.06.99
29
Equations of Vertical EHT compensation changed
Micronas
YUV and RGB inputs bias voltages added
Nominal value of saturation changed
DAC outputs (E/W, D/A, VD+, VD-) changed
Text RGB processing, diagrams black stretch and soft clipping added
ii
2001-01-29
SDA 9380 - B21
DS1
4
Date
Page
30.06.99
30
09.07.99
38, 39
09.07.99
21
Bit position 6 of PLL control byte 0 must be set to 0
19.07.99
55
diagrams of BSO modes added
16.08.99
20
PWM control: amplitude of V-parabola reduced
29.09.99
Changes compared to previous issue
Equations of Horizontal and AFC EHT compensation changed
Minimum ambient temperature at operating changed from -20 to 0 °C
Document state 04 corresponds to silicon version B11
29.09.99
41
29.09.99
23, 41
26.10.99
46
High level input voltage of I²C bus changed to 0.75*VDD(D)
15.11.99
42
Second value of VclampY in case of differential input deleted
18.11.99
7, 38, 49,
52, 53
19.11.99
50
Tolerances for black levels added (offset regulation)
19.11.99
39
Tolerances for supply voltages decreased
22.11.99
22.11.99
06.12.99
5
Preliminary Data Sheet
YUV input levels for HDTV added
Low level Y0 input added
HD output changed to open drain
16, 26, 27 IIC bit YLL moved to reg. 22h, SW and RDCI moved to reg. 29h
23
IIC bits IN1NOM and IN2NOM added
1, 13, 15, Control item Extreme corner pin correction at subaddress 0Eh added,
16, 55, 56 item D/A moved to subaddress 30h
06.12.99
47
Input leakage current of all inputs specified
13.12.99
26
ABL: Time constants changed
17.12.99
26
ABL: Up time constants changed
21.01.00
4, 5, 52
26.01.00
47
SCP output High level and blanking level changed
11.02.00
7
Last paragraph regarding soft start adapted
11.02.00
22
Warning 4 of previous edition deleted, warning 5 changed (now no. 4)
11.02.00
39
Any rise time of the supply voltages is allowed
10.03.00
49
Minimum value of maximum RGB output voltage changed
29.03.00
20
PWM control byte: specification of V-parabola amplitude changed
29.05.00
Pin X1 and X2 exchanged
Document state 05 corresponds to silicon version B12
29.05.00
3
block delay moved between the blocks brightness and blue stretch
29.05.00
43
Min./Max. values of matrices removed
29.05.00
44
Min./Max. values of black level stretch changed
29.05.00
47
Output LOW and output HIGH value of D/A changed
29.05.00 1, 7, 13, 21 Specified H-frequency range of 15 to 19kHz added
6
05.07.00
52
Circuit at DCI input changed
05.07.00
34
Explanation of average beam current limit added
25.08.00
Document state 06 corresponds to silicon version B21
18.08.00
39
Positive-going of BSOIN upper threshold increased by 50mV
25.08.00
44
Brightness control range changed, nom. brightness removed
Micronas
iii
2001-01-29
SDA 9380 - B21
DS1
Preliminary Data Sheet
Date
Page
Changes compared to previous issue
25.08.00
49
Nominal brightness and measurement levels changed
28.08.00
44
Black stretch level shift changed
28.08.00
50
Foot note 1) added
04.10.00
38
Absolute maximum rating of VDD(MC) = 9V
04.10.00
38
Absolute maximum rating of total power dissipation = 1.28W
04.10.00
46
Supply currents and total power dissipation specified
04.10.00
47
DAC output D/A: LOW and HIGH value changed
04.10.00
47
DAC output E/W: LOW and HIGH value changed
04.10.00
48
DAC output VD+, VD-: LOW and HIGH value changed
04.10.00
50
SVM output signal amplitude changed from 2V to 1.9V nom.
10.10.00
51
System overview Dig. TV 100 Hz changed
16.10.00
38...40
23.10.00
36
Equations for cut-off and white-drive currents added
25.10.00
29
Equations for Vertical EHT compensation modified
25.10.00
30
Equations for Horizontal EHT compensation modified
22.11.00
45
Max. input capacitance of YUV and RGB inputs specified
22.11.00
50
Standby current specified
22.11.00
50
Total power dissipation changed from max. 1.25W to max. 1.28W
29.01.01
all
Infineon logo changed to Micronas
Pin schematic inserted
1)... DS = Document state
Micronas
iv
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Data Classification
Maximum Ratings
Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.
Recommended Operating Conditions
Under this conditions the functions given in the circuit description are fulfilled. Nominal conditions specify mean values expected over the production spread and are the proposed values for interface and application. If not stated otherwise, nominal values will apply at
TA=25°C and the nominal supply voltage
Characteristics
The listed characteristics are ensured over the operating range of the integrated circuit.
Micronas
v
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Contents
1
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.1
Deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2
RGB Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.1
Functional description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.1.1
5.1.2
5.2
5.3
5.4
5.5
Deflection controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
RGB processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I²C-Bus control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
11
13
13
14
I²C-Bus address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
I²C-Bus format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
I²C-Bus commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Explanation of some control items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
6
Pin schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9
Characteristics (assuming recommended operating conditions) . . . . . . . . . . . . 50
10 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1 System overview Dig. TV 100Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 System overview multisysnc deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 Application circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55
55
55
56
11 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.1 Timing diagram of H35K and H38K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 Black Switch-Off diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 Power On/Off diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4 Standby mode, RESN diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.5 Function of H,V protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
57
57
59
60
61
Micronas
vi
2001-01-29
SDA 9380 - B21
11.6
11.7
Preliminary Data Sheet
Black Stretch diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Soft Clipping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
12 Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Micronas
vii
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
General description
1
General description
The SDA 9380 is a highly integrated deflection controller and RGB video processor for CTV receivers with 15 to 19kHz or 31 to 38kHz line frequencies. The deflection component controls among others an horizontal drive2001-01-29r circuit for a flyback line output stage, a DC coupled vertical sawtooth output stage and an East-West raster correction circuit. All adjustable output parameters are
I²C-Bus controlled. Inputs are HSYNC and VSYNC. The HSYNC signal is the reference for the internal clock system which includes the=Φ1=and Φ2=control loops.
The RGB processor has two YUV/RGB inputs and one RGB input. One YUV/RGB input and the
RGB input are for SVGA and text/OSD with fast blanking. The RGB output stage has two control
loops for cut off and white level with halt capability in vertical shrink modes. An overall Y output and
an adjustable delay of the RGB outputs related to this signal are suitable for a scan velocity modulation circuit.
The supply voltages of the IC are 3.3V and 8V. It is mounted in a P-MQFP package with 64 pins.
2
2.1
Features
Deflection
• =No external clock needed
• =Φ1=PLL and=Φ2=PLL on chip
•= =Standard line frequencies for NTSC and PAL
•= =18.75kHz line frequency for 625 lines/60 Hz
•= =Doubled line frequencies for NTSC and PAL, MUSE standard, DTV standard
• Also suitable for VGA, Macintosh (35kHz) and SVGA standard (38kHz, 800*600*60Hz)
• =Automatic switching between 31, 35 and 38kHz in Monitor mode with 2 digital outputs for
controlling B+ and 1 analog input to keep watch on it
• =I²C-Bus alignment of all deflection parameters
• =All EW-, V- and H- functions
• =Picture width and picture height EHT compensation
• =Dynamic PH EHT compensation (white bar)
• =Compensation of H-phase deviation (e.g. caused by white bar)
• =Upper/lower EW-corner correction separately adjustable
• =Extreme EW-corner correction (coefficient of sixth order) for super flat tubes
• =V-angle and V-bow correction
• =Two special control items for vertical zoom/shrink and scroll function with absolutely
correct tracking of the E/W and HD-output signals
• =No re-adjustment of E/W after changing vertical S-correction and linearity needed
• =H-frequent PWM output signal for generating an adjustable vertical frequent parabola or
a constant pulse width, selectable by I²C
• =H- and V-blanking time adjustable
• =Partial overscan adjustable to hide the cut off control measuring lines in the reduced
scan modes
• =Self adaptation of V-frequency / number of lines per field between 192 and 680 for
each possible line frequency
• =Selectable Black Switch-Off behaviour via I²C-Bus
Micronas
1-1
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Features
•
•
•
•
•
=Protection against EHT run away (X-rays protection)
=Protection against missing V-deflection (CRT-protection)
=D/A ouput with 8 bit resolution for general purpose
=Digital output for general purpose, controlled by I2C-Bus
=Selectable softstart of the H-output stage
2.2
RGB Video
• Two universal YUV/RGB inputs and one RGB input, one YUV/RGB and RGB input with
fast blanking capability
• One fast blank input with contrast reduction capability
• Switchable color difference matrix for PAL/SECAM, NTSC(U.S.), NTSC(Japan) and
HDTV
• Common saturation, brightness and contrast control for all three input channels possible
• Cut off and white level control loop
• Halt command for white level control loop to switch off the white level reference lines in
vertical shrink mode
• Black stretching of non-standard input signals
• Selectable blue stretch circuit shifting white towards light blue
• Peak drive limiter with soft clipping, adjustable per I²C
• Average beam current limiter, adjustable per I²C
• Luminance output signal SVM for scan velocity modulation; adjustable delay from SVM to
the RGB outputs
Micronas
2-2
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Block diagram
3
Block diagram
SWITCH D/A VBLO SCP HPROT SSD VPROT PROTON
SCL
PROTECTION
START UP
I²C
SDA
BSOIN
RESN
TEST
FH1_2
VSYNC
HSYNC
φ2
H-OUT
HD
V-OUT
VD+
VD-
EW-OUT
E/W
CONTROL
CLL
CLEXT
PWM
PWM
PW/PH-CORR
IBEAM
CLKI
HSAFE
H35K
H38K
PLL
AVERAGE
BEAM LIMITER
X1
X2
SVM
RGB 2
3
CLAMP
3
MATRIX
YUV
Y
3
BLACK
STRETCH
FBL 2
FBL 1
RGB/YUV 1
SWITCH
3
CLAMP
3
MATRIX
UV
YUV
2
3
SATURATION
CONTROL
3
YUV/RGB 0
Y
3
CLAMP
3
MATRIX
UV
RGB
MATRIX
YUV
3
BRIGHTNESS
CONTROL
VDD(A1..4)
3
CONTRAST
CONTROL
MEASURE
PULSES
3
3
VSS(A1..4)
CUT OFF +
WHITE POINT
DELAY
VDD(D1..2)
VSS(D1..2)
3
VDD(MC)
VSS(MC)
DCI
BLUE STRETCH
3
PEAK DRIVE
LIMITER
3
ROUT
GOUT
BOUT
OUTPUT
BUFFER
SUBST
VREFC
Micronas
3-3
VREFH
VREFN
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Pin configuration
FBL1
ROUT
VDD(MC)
B2
G2
R2
FBL2
VSS(MC)
SCP
BOUT
GOUT
SSD
VSS(D)
VDD(D)
SVM
Pin configuration
SWITCH
4
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
CLKI
X2
X1
CLEXT
TEST
SUBST
RESN
SCL
SDA
VDD(D)
VSS(D)
HD
H35K
H38K
PWM
VSYNC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
SDA 9380
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
B/V 1
G/U 1
R/Y 1
VSS(A4)
V/B 0
U/G 0
Y/R 0
VDD(A4)
DCI
VREFC
VREFN
VBLO
VREFH
PROTON
IBEAM
BSOIN
4-4
HSAFE
VD+
VDVDD(A3)
VSS(A3)
VPROT
HPROT
E/W
D/A
Φ=2
VDD(A2)
VSS(A2)
VSS(A1)
FH1_2
Micronas
HSYNC
VDD(A1)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Pin configuration
4.1
Pin description
Pin No.
Name
Type
Description
1
CLKI
I/TTL
Input for external line locked clock *)
2
X2
Q
Reference oscillator output, Crystal
3
X1
I
Reference oscillator input, Crystal
4
CLEXT
I/TTL
Switching between internal (L) and external clock (H) *)
5
TEST
I/TTL
Switching between normal operation (TEST=L) and test mode
(TEST=H: pins 4, 12, 13, 14, 15, 17, 49, 50, 63, 64 are additional test pins)
6
SUBST
S
7
RESN
I/TTL
8
SCL
I
I²C Bus clock
9
SDA
IQ
I²C Bus data
10
VDD(D)
S
Digital supply
11
VSS(D)
S
Digital ground
12
HD
Q
Control signal output for H driver stage (open drain)
13
H35K
Q/TTL
Goes High when frequency of HSYNC is about 35kHz or more
14
H38K
Q/TTL
Goes High when frequency of HSYNC is about 38kHz
15
PWM
Q/TTL
Pulse width modulated control signal output
16
VSYNC
I/TTL
V-sync input
17
FH1_2
I/TTL
Switching between 1fH mode (L) and 2fH mode (H)
18
HSYNC
I
HSYNC input (CLEXT=H: TTL; CLEXT=L: analog) *)
19
VDD(A1)
S
Analog supply
20
VSS(A1)
S
Analog ground
21
Φ2
I
Line flyback for H-delay compensation
22
VDD(A2)
S
Analog supply
23
VSS(A2)
S
Analog ground
24
E/W
Q
Control signal output for East-West raster correction
25
D/A
Q
Output of an I²C Bus controlled DC voltage
26
VD+
Q
Control signal output for DC coupled V-output stage
27
VD-
Q
Like VD+
28
VDD(A3)
S
Analog supply
29
VSS(A3)
S
Analog ground
30
VPROT
I
Watching external V-output stage (input is the V-saw-tooth from
feedback resistor)
31
HPROT
I
Watching EHT (input is e.g. H-flyback)
32
HSAFE
I
Watching B+ when frequency of HD has to be decreased
33
BSOIN
I
Input for starting Black Switch-Off
34
IBEAM
I
Input for a beam current dependent signal for stabilization of
width, height and H-phase
35
PROTON
Q/TTL
Micronas
Substrate pin, has to be connected to ground whenever a
power supply or signal is applied
Reset input, active Low
Protection on (goes High after response of H- or V-protection)
4-5
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Pin configuration
Pin No.
Name
Type
Description
36
VREFH
IQ
37
VBLO
Q/TTL
38
VREFN
IQ
39
VREFC
I
Reference current input
40
DCI
I
Dark current input for cut off and white level control
41
VDD(A4)
S
Analog supply
42
Y/R 0
I
Luminance or R input
43
U/G 0
I
U signal or G input
44
V/B 0
I
V signal or B input
45
VSS(A4)
S
Analog ground
46
R/Y 1
I
First R or Y input for insertion
47
G/U 1
I
First G or U input for insertion
48
B/V 1
I
First B or V input for insertion
49
FBL1
I
Fast blanking input for RGB1
50
FBL2
I
Fast blanking input for RGB2
51
R2
I
Second R input for insertion
52
G2
I
Second G input for insertion
53
B2
I
Second B input for insertion
54
VDD(MC)
S
Analog supply for RGB output stage
55
ROUT
Q
R output
56
GOUT
Q
G output
57
BOUT
Q
B output
58
SCP
Q
Blanking signal with H- and color burst component
(V-component selectable by I²C Bus)
59
VSS(MC)
S
Analog ground for RGB output stage
60
SVM
Q
Luminance output for scan velocity modulation circuit
61
VDD(D)
S
Digital supply
62
VSS(D)
S
Digital ground
63
SSD
I/TTL
Disables softstart
64
SWITCH
Q/TTL
Output of an I²C Bus controlled switch (register 00, bit SW)
Reference voltage
Vertical blanking output
Ground for VREFH
*) The external clock mode can not be used with 18.75, 33.75kHz, 35kHz and 38kHz line frequency.
Micronas
4-6
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
5
5.1
System description
Functional description
5.1.1 Deflection controller
The main input signals are HSYNC with a frequency range of about 31 to 38kHz and VSYNC with
vertical frequencies of 50 to 120 Hz. When connecting pin FH1_2 with Low level a line frequency of
15 to 19kHz is suitable.
For displaying computer signals horizontal frequencies up to 38 kHz can be processed.
In the selectable Monitor mode the adaptation to the input frequency in the range of 31.25 to 38kHz
is done automatically. Two output pins (H35K and H38K) for controlling e.g. the supply voltage of the
line output stage indicate the frequency of HSYNC. When the H-frequency is increasing, these outputs are stable until the frequency of HSYNC appears on the output HD (see 11.1). In case of
decreasing H-frequency they are changed immediately to flag the new detected frequency but
change of the PLL frequency will be not allowed until the supply voltage of the H-output stage (B+)
is decreased. Pin HSAFE is used to watch B+.
The output signals control the horizontal as well as the vertical deflection stages and the East-West
raster correction circuit.
The H-output signal HD (open drain output) compensates the delays of the line output stage and its
phase can be modulated vertical frequent to remove horizontal distortions of vertical raster lines (VBow, V-Angle). Time reference is the middle of the front and back edge of the line flyback pulse. A
positive HD pulse switches off the line output transistor. Maximal H-shift is about 2.25 µsec for
fH=31kHz.
Picture tubes with 4:3 or 16:9 aspect ratio can be used by adapting the raster to the aspect ratio of
the source signal.
The V-output saw-tooth signals VD- and VD+ controls a DC coupled output stage and can be disabled. Suitable blanking signals are delivered by the IC.
The East-West output signal E/W is a vertical frequent parabola of 6th order, enabling an extreme
corner correction for super flat tubes. The common corner correction realised with coefficients of
fourth order, is separately adjustable for the upper and lower part of the screen.
The pulse width modulated horizontal frequent output signal PWM has two options. A vertical frequent parabolic function or a constant pulse width in each line, selectable by I²C, is available. After
external integration the parabola may be used for vertical dynamic focusing rsp. the DC voltage for
adjustment of H-offset or rotation.
The output D/A delivers a variable DC signal and an I2C Bus controlled digital output is available for
general purpose.
The picture width and picture height compensation (PW/PH Comp) processes the beam current
dependent input signal IBEAM with effect to the outputs E/W and VD to keep width and height constant and independent of brightness.
The alignment parameter AFC EHT Compensation enables to adjust the influence of the input signal IBEAM on the horizontal phase.
The selectable start up circuit controls the energy supply of the H-output stage during the receiver's
run up time by smooth decreasing the line output transistors switching frequency down to the normal operating value (softstart). HD starts with about 1.7 times the line frequency and converges
Micronas
5-7
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
within 85ms to its final value. The high time is kept constant. The normal operating pulse ratio H/L is
either 45/55 or 40/60 (selectable by I²C). A watch dog function limits an increasing of the HD period
to max. +10%.
The implemented Black Switch-Off behaviour is defined by two I2C bits (BSO1, BSO0). When
enabled the signal at BSOIN (e.g. the supply voltage of the line output stage) is watched. If its level
does not come up to a defined threshold Black Swich-Off is started (see 11.2). At first the RGB outputs are switched to continuous blanking immediately and the vertical output signals are changed to
about 115..120% overscan. After a delay of 42 lines the picture tube capacitance is discharged with
a current of some mA. From now the vertical overscan rate is calculated depending on the actual
voltage at BSOIN to get the desired deflection angle. Three relations are selectable by I2C. After the
voltage at BSOIN is dropped down to about 20% of its initial value the output HD and the overscan
calculation may stop.
The protection circuit watches an EHT reference and the saw-tooth of the vertical output stage. If
the EHT succeeds a defined threshold or if the V-deflection fails (refer to 11.5) the related bit is set in
the status byte and the output PROTON goes High. The output HD is deactivated (H-level) immediately independent of the selected Black Switch-Off function.
HPROT:
input Vi < V2
Vi > V1
V2 ≤=Vi < V1
continuous blanking
HD disabled
operating range
VPROT:
vertical saw-tooth voltage
Vi < V1 in first half of V-period
or Vi > V2 in second half : HD disabled
The pin SCP delivers the composite blanking signal SCP. It contains burst (Vb), H-blanking HBL
(VHBL) and selectable V-blanking (control bit SSC). The phase and width of the H-blanking period
can be varied by I2C-Bus. For the timing following settings are possible :
BD = 1
BD = 0, BSE = 0 (default value)
BD = 0, BSE = 1(alignment range)
SSC = 0
SSC = 1
Micronas
: TBL = 0
: THBL = tf (H-flyback time)
: THBL = (4 * H_blanking-time + 1) / CLL
: TDBL = (H_shift + 4 * H_blanking_phase
- 2*H_blanking_time + 45) / CLL
: TBL = TVBL during V-blanking period
: TBL is always THBL
5-8
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
BG-pulse width tb
Delay to HSYNC tdb
Micronas
54 / CLL
internal clock:
external clock:
5-9
(78-4*Internal_H-sync_phase)/ CLL
(38-4*Internal_H-sync_phase)/ CLL
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
5.1.2 RGB processing
To provide an accurate biasing of the picture tube the offsets and gains of the RGB output stages
are continuously adjusted by a cut off and white level control loop. Leakage, cut off and white current
are measured each frame during vertical flyback at the DCI input. The position of the measurement
lines is adjustable by IIC bus (see page 31). The reference currents for the cut off and white levels
are adjusted by IIC bus with a 6 bit parameter for each output and a common 3 bit gain parameter.
Because the video amplifiers are part of the control loops, the overall gain and offset is no more
adjustable in this stage. For proper dimensioning of the video amplifiers there is an IIC status bit
(CLOW), which is 0 when all offset and gain actuators of the RGB outputs are within 50% of its full
range. The control loops can be switched to halt mode to switch off the measurement lines in vertical shrink mode. When the TV screen is switched on brightness and contrast ramp up in a soft start
mode as soon as the cut off control loop is locked.
There are three circuits implemented for beam current limiting:
-First there is a circuit for accurate average beam current limiting. The beam current is measured at
the Ibeam input and limited by reducing first contrast and, after half contrast is reached, brightness
too. All parameters (limit value, gain, up time constant and down time constant) are adjustable by IIC
bus.
-Second a peak drive limiter circuit is implemented for the higher frequency content of the video signal. It reduces contrast when a limit value is exceeded by the R, G or B video signals. Also all
parameters (limit value, up time constant and down time constant) are adjustable by IIC bus.
-Third there is a soft clipper for the very high frequency content of the video signal. It limits the R, G
or B video signals according to the diagram at 11.7. Limit value and slope are adjustable by IIC bus.
The TV screen can be switched to blue by IIC bus when no video signal is available.
When the blue stretch function is activated by IIC bus, the gain of the red and green output is
reduced by 17% for amplitudes more than 80% of the nominal amplitude. This shifts white towards
light blue.
A black stretch function (switchable by IIC bus) stretches video signals with a black level which is
higher than the clamping level towards black. Therefore the peak dark value of the video signal is
stored. The height of the peak dark value determines the amount of stretch (diagram at 11.6). The
screen area in which the peak dark detector is enabled is programmable by IIC bus. So it is possible
to screen black borders of the picture (e.g. letter box format) which otherwise prevent the desired
function of black stretch.
An overall luminance output is provided for supplying a circuit for scan velocity modulation. The
delay of the RGB outputs to the luminance output is adjustable by IIC bus. So a proper alignment of
the video signals and the current in the SVM coil is possible.
Micronas
5-10
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
5.2
Circuit description
The HSYNC is reference for a numeric PLL. This PLL generates a clock which is phase locked to
the incoming horizontal sync pulse and exactly 864 times faster than the horizontal frequency. The
polarity of the external horizontal sync pulses may be positive (see figure below) or negative. In
case of negative polarity the incoming HSYNC signal is automatically inverted for an easier application in VGA or SVGA mode.
VHSmax
VHSpp
VHSmin
tW
Incoming signal HSYNC (internal clock)
Pulse width tw for I2C-bus Bit ’HSWMI’=0:
1.5 µs ... 4.5µs (High or Low level)
3.0 µs ... 9.0µs (High or Low level)
FH1_2 = High
FH1_2 = Low
Pulse width tw for I2C-bus Bit ’HSWMI’=1:
0.8 µs ... 4.5µs (High or Low level)
1.7 µs ... 9.0µs (High or Low level)
FH1_2 = High
FH1_2 = Low
(The specified pulse width depends on the I²C-bus bits INCR4...INCR0 rsp. PLL clock frequency.
The above values are valid for INCR = 6. For higher INCR values the allowed pulse width is
decreasing proportional to the increasing PLL clock frequency.)
The described input signal is first applied to an A/D converter. Conversion takes place with 7 bits
and a nominal frequency of 27 MHz. The digital PLL uses a low pass filter to obtaine defined slopes
for further measurements (PAL/NTSC applications). In addition the actual high and low level of the
signal as well as a threshold value is evaluated and used to calculate the phase error between internal clock and external horizontal sync pulse. By means of digital PI filtering an increment is gained
from this. The PI filter can be set by the I2C-bus VCR bit so that the lock-in behaviour of the PLL is
optimal in relation to either the TV or VCR mode. Moreover it is possible to adapt the nominal frequency by means of 5 I2C-bus bits (INCR4..INCR0) to different horizontal frequencies. An additional
bus bit GENMOD offers the possibility to use the PLL as a frequency generator which frequency is
controlled by the INCR bits.
Micronas
5-11
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
Once an increment has been obtained, either from the PI-filter or the I2C-bus, it can be used to
operate the Digital Timing Oscillator. The DTO generates a saw-tooth with a frequency that is proportional to the increment. The saw-tooth is converted into a sinusoidal clock signal by means of sin
ROM’s and D/A converters and applied to an analog PLL which multiplies the frequency by 4 (for
detailed explanation see pinning and I2C-bus description) and minimizes residual jitter. In this manner the required line locked clock is provided to operate the other functional parts of the circuit. If no
HSYNC is applied to pin 18 the system holds its momentary frequency for 2040 lines and following
resets the PLL to its nominal frequency. The status bit CON indicates the lock state of the PLL.
The system also provides a stable HS-pulse for internal use. The phase between this internal pulse
and the external HSYNC is adjustable via I2C bus bits HPHASE. It can be shifted over the range of
one TV line.
An external clock (CLKI) can be provided by pin selection (CLEXT = H) or I²C control (SCLIIC = H,
CLEXTIIC = H). This is recommended when using the SDA 9380 with a scan rate conversion system. The clock frequency has to be 864 · fHSYNC. The external clock mode can not be used with
18.75, 33.75kHz, 35kHz and 38kHz line frequency. Therefore switching to external clock mode is
only possible when INCR = 6, but always allowed during operating without any danger for the H-output stage.
The input signal at VSYNC is the vertical time reference. It has to pass a window avoiding too short
or long V-periods in the case of distorted or missing VSYNC pulses. The window allows a VSYNC
pulse only after a minimum number of lines from its predecessor and sets an artificial one after a
maximum number of lines. The window size is programmable by I2C-bus.
Values which influence shape and amplitude of the output signals are transmitted as reduced binary
values to the SDA 9380 via I²C bus. A CPU which is designed for speed reasons in a pipe line structure calculates in consideration of feedback signals (e.g. IBEAM) values which exactly represent the
output signals. These values control after D/A conversion the external deflection and raster correction circuits.
The CPU firmware is stored in an internal ROM.
Micronas
5-12
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
5.3
Reset modes
The circuit is only completely reset at power-on/off (timing diagram ref. 11.3). If the pin RESN has Llevel or during standby operation some parts of the circuit are not affected (timing diagram ref. 11.4):
Power-On-Reset
External Reset
(pin RESN=0)
Standby mode
(I2C bit STDBY=1)
High
active
active
inactive
active
active
HD output
H-protection
1)
active1)
V-protection
inactive
active
IIC-Interface (SDA, SCL)
tristate
ready
ready
IIC-Register 01..1C
set to default values
set to default values
set to default values
IIC-Register 00, 1D...30h
set to default values
not affected
not affected
set to 1
not affected
not affected
not affected
inactive
inactive
inactive
inactive
2)
Status bit PONRES
set to 1
VREFH
CPU
1)
2)
Note:
5.4
: inactive if HPROT < V2 (typ. 1.5V)
: can only be read after Power-On-Reset is finished
Power-On-Reset state is deactivated after ca. 32768 cycles of the X1/X2 oscillator clock.
RESN=Low and standby state are deactivated after ca. 42 cycles of the CLL clock.
Frequency ranges
H
V
nL
15.625 kHz
50 Hz
625 I
15.75 kHz
60 Hz
525 I
18.75 kHz*
60 Hz
625 I
31.25 kHz
50 Hz
100 Hz
625 NI / 1250 I
625 I
31.5 kHz
60 Hz
70 Hz
120 Hz
525 NI / 1050 I
449 NI
525 I
33.75 kHz*
60 Hz
1125 I
35 kHz*
66.7 Hz
525 NI
38 kHz*
60 Hz
72 Hz
632 NI
525 NI
*) only with internal clock generation
The allowed deviation of all input line frequencies is max. ±4.5%.
nL :
number of lines per frame
Micronas
5-13
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
I:
NI :
interlaced
non interlaced
If NSA = 0 (subaddr. 01/D5) number of lines per field is selfadaptable between 192 and 680 for each
specified H-frequency.
5.5
I²C-Bus control
5.5.1 I²C-Bus address
1 0 0 0 1 1 0
5.5.2 I²C-Bus format
write:
S1 0 0 0 1 1 0 0 A
Subaddress
A
Data Byte
A
*****
Status byte
A
Data Byte n
A
*****
A
P
read:
S1 0 0 0 1 1 0 1 A
NA P
Reading starts at the last write address n. Specification of a subaddress in reading mode is not possible.
S: Start condition
A: Acknowledge
P: Stop condition
NA: Not Acknowledge
An automatically address increment function is implemented.
After switching on the IC, all bits are set to defined states.
Micronas
5-14
2001-01-29
D5
B7
B7
B7
B7
B7
B7
B7
B7
B7
B7
B7
B7
B7
B7
B6
B7
B7
B5
B3
X
X
B5
B2
X
B6
B6
B6
B6
B6
B6
B6
B6
B6
B6
B6
B6
B6
B6
B5
B6
B6
B4
B2
X
X
B4
B1
X
B5
B5
B5
B5
B5
B5
B5
B5
B5
B5
B5
B5
B5
B5
B4
B5
B5
B3
B1
X
B5
B3
B0
X
B7
B7
B6
B6
B5
B5
B7
B6
B5
D4
D3
see below
see below
B4 B3
B4 B3
B4 B3
B4 B3
B4 B3
B4 B3
B4 B3
B4 B3
B4 B3
B4 B3
B4 B3
B4 B3
B4 B3
B4 B3
B3 B2
B4 B3
B4 B3
B2 B1
B0 X
X
B3
B4 B3
B2 B1
X
X
B4 B3
see below
B4 B3
B4 B3
see below
see below
see below
B4 B3
D2
D1
D0
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B1
B2
B2
B0
X
B2
B2
B0
X
B2
B1
B1
B1
B1
B1
B1
B1
B1
B1
B1
B1
B1
B1
B1
B0
B1
B1
X
X
B1
B1
X
X
B1
B0
B0
B0
B0
B0
B0
B0
B0
B0
B0
B0
B0
B0
B0
X
B0
B0
X
X
B0
B0
X
X
B0
B2
B2
B1
B1
B0
B0
B2
B1
B0
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-64..+63
-128..+127
-128..+127
-32..+31
0..+15
0..+15
0..+63
-32..+31
0..+7
0..+31
0..+255
0..+255
0..+31
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-128..+127
-64..+63
-128..+127
-128..+127
-32..+31
0..+15
0..+15
0..+63
-32..+31
0..+7
0..+31
0..+255
0..+255
6..+21
-96..+119
Default
Default Disabled
Resoluvalue if
tion
value
by
disabled
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1/CLL
0
0
0
0
line
0
BSE = 0
4
line
0
BSE = 0 H-flyback 4/CLL
0
4/CLL
0
0
line
0
GBE = 0
3
half line
0
0
2 lines
0
2 lines
0
s. below
0
0
4/CLL
Preliminary Data Sheet
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
14
15
16
17
17
18
19
1A
1B
1C
1D
1E
D6
Effective
range
System description
2001-01-29
Deflection control 0
Deflection control 1
Vertical scroll *)
Vertical aspect *)
Vertical shift *)
Vertical size *)
Vertical linearity *)
Vertical S-correction *)
Vertical EHT compensation *)
Horizontal size
Pin phase
Pin amp
Upper corner pin correction
Lower corner pin correction
Extreme corner pin correction
Horizontal EHT compensation *)
Horizontal shift
Vertical angle
Vertical bow
AFC EHT compensation *)
Vertical blanking start*)
RGB Reference pulse position*)
Horizontal blanking time
Horizontal blanking phase
Vertical blanking end*)
Guard band *)
Vertical sync control
Min. No. of lines / field *)
Max. No. of lines / field *)
PWM control
PLL control 0
PLL control 1
Internal H-sync phase
D7
Allowed
range
SDA 9380 - B21
5-15
Subaddr.
5.5.3 I²C-Bus commands
Micronas
Control item
(for deflection)
5-16
Subaddr.
RGB control 0
RGB control 1
RGB control 2
Video input mode
Brightness
Contrast
Saturation
Average beam current limit *)
Average beam current limit characteristics
Peak drive limit
RGB control 3
Peak dark detection top border *)
Peak dark detection bottom border *)
Peak dark detection left border *)
Peak dark detection right border *)
White control R *)
White control G *)
White control B *)
D/A
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2C
2D
2E
2F
30
D7
D6
D5
B7
B7
B5
B7
B6
B6
B4
B6
B5
B5
B3
B5
B7
B7
B3
X
B5
B5
B5
B7
B6
B6
B2
X
B4
B4
B4
B6
B5
B5
B1
X
B3
B3
B3
B5
D4
D3
see below
see below
see below
see below
B4 B3
B4 B3
B2 B1
B4 B3
see below
see below
see below
B4 B3
B4 B3
B0 X
X
B3
B2 B1
B2 B1
B2 B1
B4 B3
D2
D1
D0
B2
B2
B0
B2
B1
B1
X
B1
B0
B0
X
B0
B2
B2
X
B2
B0
B0
B0
B2
B1
B1
X
B1
X
X
X
B1
B0
B0
X
B0
X
X
X
B0
Allowed
range
Effective
range
Default
value
Resolution
-128..+127
-128..+127
-32..+31
-128..+127
0..+255
0..+255
0..+15
0..+15
-32..+31
-32..+31
-32..+31
-128..+127
-128..+127
-128..+127
-32..+31
-128..+127
0..+255
0..+255
0..+15
0..+15
-32..+31
-32..+31
-32..+31
-128..+127
0
0
0
128
0
0
-11
0
-64
0
0
16
71
8
8
0
0
0
0
2 lines
4 lines
16 pixels
16 pixels
-
SDA 9380 - B21
Micronas
Control item
(for RGB)
*) see 5.5.5 Explanation of some control items
Preliminary Data Sheet
System description
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
At power on most of the data are zero by default (if not otherwise specified) before transferring individual values via IIC-bus.
Allowed values out of the effective range are limited, e.g. Internal H-sync phase =127 is limited to
119.
There are two bits (BSE, GBE) in the deflection control byte 1 for disabling some control items. If
one of these bits is “0”, the value of the corresponding control item will be ignored and replaced by
the value “default value if disabled” in the table above.
Micronas
5-17
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
5.5.4 Detailed description
The Deflection control byte 0 includes the following bits:
VOFF
STDBY
MON
SCLIIC
RIBM
CLEXTIIC
HDDC
- VOFF:
Vertical off
0: normal vertical output due to control items
1: vertical saw-tooth is switched off,
vertical protection is disabled
- STDBY:
Stand-by mode
0: normal operation
1: stand-by mode (all internal clocks are disabled)
- MON:
Monitor mode (GENMOD bit must be set to 0)
0: line frequency must be defined by INCR4..0 (register 1D)
1: automatic detection of line frequency
- SCLIIC:
Select clock by IIC
0: select clock by pin CLEXT
1: select clock by IIC bit CLEXTIIC
- RIBM:
Input range of IBEAM
0: 0...2.7V
1: 1.8...2.7V
HDE
- CLEXTIIC:External clock selected by IIC (only effective if bit SCLIIC = 1)
0: internal clock selected by IIC
1: external clock selected by IIC
- HDDC:
HD duty cycle
0: duty cycle of output HD is 45%
1: duty cycle of output HD is 40%
- HDE:
HD enable
0: line is switched off (HD disabled, that is H-level)
If BSO1 =1 or BSO0 = 1, no switch-off is possible.
1: line is switched on (HD enabled)
Default value depends on pin SSD
SSD=Low: 0
SSD=High: 1
Micronas
5-18
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
The Deflection control byte 1 includes the following bits:
BSO1
- BSO1..
BSO0
BSO0
NSA
NCLP
GBE
VDC
JMP
BSE
Black Switch-Off behaviour
00: no Black Switch-Off
01: Black Switch-Off mode 1 (see section 11.2)
10: Black Switch-Off mode 2 (see section 11.2)
11: Black Switch-Off mode 3 (see section 11.2)
- NSA:
No self adaptation
0: self adaptation on
1: self adaptation off
- NCLP:
No clipping of vertical and east/west drive signals
0: Clipping of vertical and east/west drive signals in vertical zoom mode
(vertical aspect > 0) to reduce power consumption
1: No clipping in vertical zoom mode (vertical aspect > 0)
- GBE:
Guard band enable
0: control item for guard band is disabled
1: control item for guard band is enabled
- VDC:
Vertical dynamic compensation
0: influence of the beam current input IBEAM on the
vertical saw-tooth is static (´zooming´ correction)
1: influence of the beam current input IBEAM on the
vertical saw-tooth is dynamic (´ripple´ correction)
- JMP:
Jump of vertical drive up to overscan position in vertical shrink mode
0: complete reduction of the vertical drive in shrink mode (vertical aspect < 0)
1: no reduction of the vertical drive in shrink mode (vertical aspect < 0) during
RGB reference pulse lines
- BSE:
Blanking select enable
0: control items for blanking times are disabled
1: control items for blanking times are enabled
Micronas
5-19
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
The Vertical sync control byte includes the following bits:
X
X
SSC
X
NI
- SSC:
Sandcastle without VBL
0: output SCP with VBL component
1: output SCP without VBL component
- NI:
Non interlace
0: interlace depends on source
1: no interlace
X
X
X
PWMC0
PWMS1
PWMS0
The PWM control byte includes the following bits:
PWMC5
PWMC4
PWMC3
PWMC2
PWMC1
- PWMS1..
PWMS0: PWM select
x0: same duty cycle in each line selected (adjustable by PWMC)
01: positive V-parabola after external integration available (amplitude
adjustable by PWMC)
11: negative V-parabola after external integration available (amplitude
adjustable by PWMC)
- PWMC5..
PWMC0: PWM control
These bits control either the duty cycle or the parabola amplitude
depending on PWMS0 according to the following table (if PWMS0 = 0
also PWMS1 defines the the duty cycle):
1)
PWMC5...PWMC0
Duty cycle
(PWMS0 = 0)
Amplitude of V-parabola
(ext. integration, PWMS0 = 1)
100000
PWMS1/108
0.46 * (VOH -VOL) 1)
110000
(32+PWMS1)/108
0.58 * (VOH -VOL) 1)
000000
(64+PWMS1)/108
0.69 * (VOH -VOL) 1)
010000
(96+PWMS1)/108
0.81 * (VOH -VOL) 1)
011111
1
0.91 * (VOH -VOL) 1)
VOH: PWM output High level, VOL: PWM output Low level
The PWM output may be used as switching output when PWMS0 = 0. If PWMC = 100000
and PWMS1 = 0 the output is Low. If PWMC = 011111 the output is continously High.
Micronas
5-20
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
The PLL control byte 0 includes the following bits:
0
0
-INCR4..0:
X
INCR4
INCR3
INCR2
INCR1
INCR0
Nominal PLL output frequency
INCR=INT((FH*55296)/FQ-64.625)
(for typical values see table below)
specified range:6≤INCR≤21
(FQ=24.576MHz)
Application
FH[Hz]
INCR
FH1_2
PAL (50Hz)
15625
6
Low
NTSC (60Hz)
15750
6
Low
PAL (60Hz)
18750
20
Low
PAL (100Hz)
31250
6
High
NTSC (120Hz)
31500
6
High
ATV
32400
8
High
MUSE
33750
11
High
Macintosh
(640*480*67Hz)
35000
14
High
SVGA
(800*600*60Hz)
38000
21
High
Internal default value:
INCR = 6
INCR = 6
INCR = 20
Default value read by IIC bus: INCR = 0
if FH1_2 = High
if FH1_2 = Low, SSD = Low
if FH1_2 = Low, SSD = High
The PLL control byte 1 includes the following bits:
0
0
0
GENMOD
VCR
NOISY
VCR
HSWMI
TC_3RD
-GENMOD: Clock generator mode
0: normal PLL mode
1: generator mode (fixed frequency output, controlled by INCR..)
-VCR:
Micronas
PLL filter optimized for
0: TV mode
1: VCR mode
5-21
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
- NOISYVCR:Handling of noisy input signals in VCR mode
0: normal handling
1: improved handling
Note: this bit is don’t care if bit VCR = 0 (TV mode)
- HSWMI:
Minimum width of HSYNC
0: 1.5µs
1: 0.8µs
- TC_3RD:
Third time constant
0: slow VCR time constant
1: fast VCR time constant
Note: this bit is don’t care if bit VCR = 0 (TV mode)
Warnings/Notes:
1) A change of INCR causes changes of the generated clock frequency more than the
specified 4.5%.
Switching from PLL mode to Generator mode (GENMOD) with constant INCR values does not
result in exceeding the specified frequency deviation range.
2) If pin SSD has H-level the output signal HD starts immediately after power on. In this case the
starting horizontal frequency is 31.25kHz (if FH1_2 = High). Starting with other frequencies requires
L-level at SSD so that INCR can be changed before enabling HD with HDE=1.
3) When SSD = High and FH1_2 = Low the horizontal frequency is fixed to 18.75 kHz (INCR = 20)
and cannot be changed via I²C bus. Other H-frequencies in the range of 15.6 kHz to 19 kHz are possible when SSD = Low.
4) The timing of the built-in soft start circuit (starting frequency, period, ending frequency) depends
on INCR. The starting frequency of the output HD is approx. 1.71* FH, the frequency stops at FH
defined by INCR (see table on previous page) The total soft start takes about 2.66*10³/FH. If the frequency of the HSYNC input signal is outside the lock range of the PLL (+/- 4.5%), that means the
PLL cannot lock, the timing of the soft start may change max. +/- 4.5% due to the unlocked PLL.
Micronas
5-22
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
The RGB control byte 0 includes the following bits:
IN2NOM
IN1NOM
CONTB
BD
VINP2E
FBL2E
VINP1E
FBL1E
- IN2NOM: Nominal saturation and contrast for video input 2
0: variable saturation and contrast for video input 2 (defined by reg. 24, 25)
1: fixed saturation and contrast for video input 2 (nominal values)
- IN1NOM: Nominal saturation and contrast for video input 1
0: variable saturation and contrast for video input 1 (defined by reg. 24, 25)
1: fixed saturation and contrast for video input 1 (nominal values)
- CONTB: Continuous blanking
0: off
1: on
- BD:
Blanking disable
0: horizontal and vertical blanking enabled
1: horizontal and vertical blanking disabled
- VINP2E, FBLE2, VINP1E, FBL1E: Selection of input signals (see table below)
VINP2E FBL2E VINP1E FBL1E
Micronas
selected input signals
0
0
0
0
YUV/RGB 0
0
0
0
1
RGB/YUV 1 when FBL1=High else
YUV/RGB 0
0
0
1
X
RGB/YUV 1
0
1
0
0
RGB2 when FBL2=High else
YUV/RGB 0
0
1
0
1
RGB2 when FBL2=High
else RGB/YUV 1 when FBL1=High
else YUV/RGB 0
0
1
1
X
RGB2 when FBL2=High else
RGB/YUV 1
1
X
X
X
RGB 2
5-23
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
The RGB control byte 1 includes the following bits:
BLUES
SLBLKS
BLCKS
CTLPD
WHITD
CATH2
CATH1
CATH0
- BLUES: Blue stretch
0: off
1: on
- SLBLKS: Slow Black stretch
0: short time constant
1: long time constant
- BLCKS: Black stretch
0: off
1: on
- CTLPD: Control loop disable
0: cut off and white level control loop are active
1: cut off and white level control loop are inactive (halt mode)
- WHITD: White level control loop disable
0: white level control loop is active
1: white level control loop is inactive (halt mode)
- CATH2..
CATH0: Cathode drive level (see 5.5.5 Explanation of some control items)
100: minmum level
..
011: +100% (maximum level)
The RGB control byte 2 includes the following bits:
BLUEB
FBL2L
COR1
COR0
DELOFF
SVMOFF
DEL1
DEL0
- BLUEB: Blue background
0: off
1: on
- FBL2L:
Micronas
FBL2 input switching level
0: high switching levels
1: low switching levels
5-24
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
- COR1..0: Contrast reduction of the channel 0 and 1 at FBL2
00: 0 %
01: 25 %
10: 50 %
11: 75 %
- DELOFF:Delay from SVM output to RGB output
0: delay on (see below)
1: delay off (basic delay = 15ns)
- SVMOFF:SVM output
0: active (Y signal at SVM output)
1: off (SVM output is high)
- DEL1..0: Delay from SVM output to RGB output
00: delay = 25ns
.. ..
11: delay = 55ns
The Video input mode includes the following bits:
RGBEN1
MAT11
MAT10
0
RGBEN0
MAT01
MAT00
YLL
- RGBEN1:RGB/YUV 1 input
0: YUV input
1: RGB input
- MAT11..0:RGB/YUV 1 input, YUV input standard
00: PAL/SECAM
01: NTSC/Jap.
10: NTSC/US
11: HDTV
- RGBEN0:YUV/RGB 0 input
0: YUV input
1: RGB input
- MAT01..0:YUV/RGB 0 input, YUV input standard
00: PAL/SECAM
01: NTSC/Jap.
10: NTSC/US
11: HDTV
Micronas
5-25
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
- YLL:
Y0 input low level for PAL and NTSC matrices
0: 1 V (black-to-white value)
1: 0.7 V (black-to-white value)
The Average beam current limit characteristics includes the following bits:
GAIN2
GAIN1
GAIN0
TUP1
TUP0
TDOWN1
TDOWN0
MODE
- GAIN2..0:
Gain adjustment
100: 0.25
101: 0.375
110: 0.5 (default value)
111: 0.625
000: 0.875
001: 1.125
010: 1.5
011: 2
- TUP1..0:
Time constant of increasing contrast/brightness (current contrast is lower
than the adjusted contrast by I²C, ABLIM is not exceeded)
10: approximately 0.25 second
11: approximately 0.5 second
00: approximately 1 second
01: approximately 2 second
- TDOWN1..0: Time constant of decreasing contrast/brightness when ABLIM is exceeded
10: approximately 30 ms
11: approximately 60 ms
00: approximately 120 ms
01: approximately 240 ms
- MODE:
Micronas
Updating of contrast/brightness
0: with field frequency
1: with line frequency
5-26
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
The Peak drive limit register includes the following bits:
PDLIM3
PDLIM2
PDLIM1
PDLIM0
0
PDLT1
PDLT0
PDLD
SCSLP1
SCSLP0
- PDLIM3..0: Peak drive limit
1000: minimum level
...
0000: default level
...
0111: maximum level
- PDLT1..0:
Peak drive limiter time constant
10: faster
11: fast
00: normal (default)
01: slow
- PDLD:
Peak drive limiter disable
0: peak drive limiter is enabled
1: peak drive limiter is disabled
The RGB control byte 3 register includes the following bits:
SW
0
0
RDCI
SCLEV1
- SW:
Setting of output SWITCH
0: output SWITCH has L-level
1: output SWITCH has H-level
- RDCI:
Input range of DCI
0: 0...2.7V
1: 1.8..2.7V
SCLEV0
- SCLEV1..0: Soft clip level relative to peak drive limit
10: 100%
11: 105%
00: 110% (default)
01: infinite
- SCSLP1..0: Soft clipping slope
10: 0.125
11: 0.375
00: 0.625
01: 0.875
Micronas
5-27
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
The Status byte includes the following bits:
HPON
VPON
CON
H38K
H35K
CLOW
-
PONRES
- HPON:
H-protection on
0: normal operation of the line output stage
1: upper threshold on input HPROT has been exceeded *)
- VPON:
V-protection on
0: normal operation of the vertical output stage
1: incorrect signal on input VPROT has been detected *)
- CON:
Coincidence not
0: H-coincidence detected
1: no H-coincidence detected
- H38K:
38 kHz line frequency
0: 38 kHz line frequency not detected
1: 38 kHz line frequency detected
- H35K:
35 kHz line frequency
0: 35 kHz line frequency not detected
1: 35 kHz line frequency detected
- CLOW:
Control loop out of window
0: all control loops inside of window
1: one of the control loop out of window
- PONRES:
Power On Reset
0: after bus master has read the status byte
1: after each detected reset
*) Also output PROTON (pin 35) goes High if HPON=1 or VPON=1.
Note!
Micronas
PONRES is reset after this byte has been read.
5-28
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
5.5.5 Explanation of some control items
Vertical aspect,
Vertical scroll:
Two special control items are implemented for the user to adjust the
vertical height (control item: Vertical aspect) and the vertical position
(Vertical scroll). These items may be stored for every display mode to
get an individual height and position if desired. Changing these parameters automatically influences the outputs VD+, VD-, E/W, HD in such
a way that absolutely no raster distortion happens. There is no need
for the user to re-adjust any geometry parameter.
The difference of the function of Vertical size and Vertical aspect is
the following: Varying Vertical size causes a linear stretching of the
saw-tooth to eliminate the tolerance of linear components (e.g. feedback resistor). But adjusting Vertical aspect takes into consideration
that more or less picture height needs very more or less S-correction
(no linear relation). Therefore Vertical aspect should be used for changing the aspect ratio (e.g. 16:9 source on 4:3 CRT) or if an individual
picture height is desired for the various PC graphic standards. Vertical
aspect = -128(minimum value) results in a vertical reduction to 37.5%.
Vertical size,
Vertical shift:
The purpose of these control parameters is the alignment in the factory
and service to adapt the output signals VD+, VD- to the picture tube and
to eliminate tolerances of the hardware and deflection yoke. Only one
set of these parameters is required for all display modes.
Vertical linearity,
Changing the vertical linearity and S-correction has no influence on the
Vertical S-correction: E/W-geometry. That means, straight vertical lines remain straight. The
output signals E/W and HD are automatically changed so no re-adjustment of the related control items is needed. This feature saves time for
adjustment of the so called ’smart’ mode (4:3 source on 16:9 CRT)
Guard band:
This control item is useful for optimizing self adaptation. Video signals
with different number of lines in consecutive fields (e.g. VCR search
mode) must not start the procedure of self adaptation. But switching
between different TV standards has to change the slope of the vertical
saw-tooth getting always the same amplitude (self adaptation). To avoid
problems with flicker free TV systems which have alternating number of
lines per field an average value of four consecutive fields is calculated. If
the deviation of these average values (e.g. PAL : 312.5 lines or 625 half
lines) is less or equals Guard band, no adaptation takes place. When it
exceeds Guard band, the vertical slope will be changed.
Vertical EHT comp.:
This item controls the influence of the beam current dependent input
signal IBEAM on the outputs VD+ and VD- according to the following
equation:
Vertical_EHT_compensation + 128
∆V VDPP = ∆V IBEAM ⋅ ------------------------------------------------------------------------------------- ⋅ 0.59 (if RIBM=0)
1536
Vertical_EHT_compensation + 128
∆V VDPP = ∆V IBEAM ⋅ ------------------------------------------------------------------------------------- ⋅ 0.59 (if RIBM=1)
512
∆VVDPP : variation of VD+ and VD-peak-to-peak voltage
Micronas
5-29
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
∆VIBEAM : variation of IBEAM input voltage
If Vertical EHT compensation = -128 the outputs VD+ and VD- are
independent of the input signal IBEAM.
Horizontal EHT comp.:This item controls the influence of the input signal IBEAM on the output
E/W according to the following equation:
Horizontal_EHT_compensation + 128
∆V EW = ∆V IBEAM ⋅ -------------------------------------------------------------------------------------------- ⋅ 2.14 (if RIBM=0)
384
Horizontal_EHT_compensation + 128
∆V EW = ∆V IBEAM ⋅ -------------------------------------------------------------------------------------------- ⋅ 2.14 (if RIBM=1)
128
∆VEW : variation of E/W output voltage
∆VIBEAM : variation of IBEAM input voltage
If Horizontal EHT compensation = -128 the output E/W is independent
of the input signal IBEAM.
AFC EHT comp.:
Deviation of the horizontal phase caused by high beam current (e.g.white
bar) can be eliminated by this control item. The beam current dependent
input signal IBEAM is multiplied by AFC EHT compensation. Additional to
the control items Vertical angle, Vertical bow and Horizontal shift, this product influences the horizontal phase at the output HD according to the
following equation:
AFC_EHT_compensation 58
∆ φ = ∆V IBEAM ⋅ --------------------------------------------------------------------- ⋅ -----------192
CLL
(if RIBM=0)
AFC_EHT_compensation 58
∆ φ = ∆V IBEAM ⋅ --------------------------------------------------------------------- ⋅ -----------64
CLL
(if RIBM=1)
∆φ
: variation of horizontal phase at the output HD
(positive values: shift left, negatives values: shift right)
∆VIBEAM : variation of IBEAM input voltage (units: Volt)
CLL
: 864 · fH
Micronas
5-30
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
Vertical blanking start (VBS), RGB ref. pulse pos. (RPP), Vertical blanking end (VBE):
The control item RPP defines the position of the three reference pulses for
R, G, B:
Red ref. pulse = RPP + 16; (odd field)
Green ref. pulse = RPP + 17; (odd field)
Blue ref. pulse = RPP + 18; (odd filed)
(def. value 20)
(def. value 21)
(def. value 22)
If bit BSE (Blanking Select Enable) = 0 the control item RPP is replaced by its
default value (=4). So the R, G, B ref. pulses are generated in line 20, 21, 22 in
the odd field rsp. line 21, 22 , 23 in the even field (see diagram below).
VBS defines the start as well of the internal vertical blanking pulse VBL as of
the output signal VBLO. The end of the internal signal VBL is defined by RPP
and VBE. This also applies to the end of VBLO with one exception. There is at
least one line between the cutoff/white level measurement line for blue and the
end of VBLO. The vertical component of the SCP signal is always identical
with the internal vertical blanking pulse VBL.
Both VBL as well as VBLO are synchronized with the leading edge of HSYNC.
It always starts and stops at the beginning of line and never in the center.
Therefore the end and width of VBL is one line more in the even field than in
the odd field.
If the vertical drive signals VD+, VD- are clipped in zoom mode (vertical
aspect > 0) at the top and bottom of the screen the vertical blanking pulse is
extended to blank all lines in this area without any additional programming.
a) Description of VBL when JMP= 0
Start of VBL = VBS lines before the first complete line of the next field
(def. value 0)
if BSE = 0
end of VBL = end of line (VBE + 22) (odd field)
width of VBL = (VBS + VBE + 22) lines (odd field)(def. value 22)
After power on the control bit BSE is 0, also VBS = 0 and VBE = 0. Therefore
22 lines (odd field) will be blanked before any programming of the IC.
if BSE = 1
end of VBL = end of line (RPP + VBE + 18) (odd field)
width of VBL = (VBS + RPP + VBE + 18) lines (odd field)
The number of lines between the last ref. pulse and the end of VBL is defined
by VBE in the range of 0 (VBE = 0) to 7 (VBE = 7).
If VBS = 0 (minimum value) VBL starts (point A in fig. below) 0...0.5 line (new
odd field) or 0.5...1 line (new even field) prior to the vertical flyback.
Micronas
5-31
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
A
HSYNC
1
2
15
16
17
18
19
20
21
22
R
G
B
R
G
23
24
25
VSYNC
1 line
VDstart of even field
start of odd field
VBL
(default:
BSE=0,
VBS=0,
VBE=0)
22 lines
odd field
even field
2 lines
R
VBL
(BSE=0,
VBS=2,
VBE=0)
G
B
R
G
24 lines
odd field
B
even field
R
VBL
(BSE=1,
RPP=1,
VBS=0,
VBE =1)
B
G
B
R
G
20 lines
odd field
B
even field
Internal vertical blanking pulse VBL when JMP = 0 and number of lines per field = constant
b) Description of VBL when JMP= 1
Start of VBL = VBS lines before the first complete line of the next field
(def. value 0)
if BSE = 0
end of VBL = end of line (VBE + 29) (odd field)
width of VBL = (VBS + VBE + 29) lines (odd field)(def. value 29)
if BSE = 1
end of VBL = end of line (RPP + VBE + 25) (odd field)
width of VBL = (VBS + RPP + VBE + 25) lines (odd field)
Note! If JMP = 1 the number of lines between the last ref. pulse and the end of
VBL is defined by VBE in the range of 7 (VBE = 0) to 14 (VBE = 7).
Micronas
5-32
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
A
HSYNC
1
2
20
21
22
23
24
25
26
27
28
29
30
31
32
VSYNC
1 line
VDstart of even field
start of
odd field
R
VBL
(default:
BSE=0,
VBS=0)
B
R
G
29 lines
odd field
B
even field
2 lines
R
VBL
(BSE=0,
VBS=2)
G
B
R
G
31 lines
odd field
B
even field
R
VBL
(BSE=0,
VBS=0,
VBE=1)
G
G
B
R
G
30 lines
odd field
B
even field
Internal vertical blanking pulse VBL when JMP = 1 and number of lines per field = constant
Micronas
5-33
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
Min. No. of lines / field:
It defines the minimum number of lines per field for the vertical synchronization. If the TV standard at the inputs VSYNC and HSYNC has less lines per
field than defined by Min. No. of lines / field no synchronization is possible.
The relationship between Min. No. of lines / field and the minimum number
of lines is given in the following table:
Min. No. of lines /
field
minimum number
of lines per field
0
1
...
127
128
...
254
255
192
194
...
446
448
...
700
702
Max. No. of lines / field:
It defines the maximum number of lines per field for the vertical synchronization. If the TV standard at the inputs VSYNC and HSYNC has more lines per
field than defined by Max. No. of lines / field no synchronization is possible.
The relationship between Max. No. of lines / field and the maximum number
of lines is given in the following table:
Max. No. of lines / maximum number
field
of lines per field
0
1
2
...
127
128
...
255
702
192
194
...
444
446
...
700
Average beam current limit:
Brightness and contrast is reduced when the average beam current limit level
is exceeded. The beam current is measured at pin IBEAM. High voltage at this
input indicates low beam current, low voltage high beam current. The limit
range of -128 to 127 complies to a voltage at IBEAM of 2.5 to 0.84V at RIBM =
0 and 2.63 to 2.08V at RIBM = 1.
Micronas
5-34
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
Peak dark detection (PDD) top border, bottom border, left border, right border:
These four control items define the picture area insides the peak dark detector
is enabled. The peak dark detector is storing the lowest level of the luminance
signal. If this value is higher than the clamping level the luminance signal is
stretched towards clamping level (Black stretch function). Those parts of the
picture with a luminance signal less than 50% of nominal amplitude are getting more dark.
It is possible with these four control items to screen black borders of the picture (e.g. letter box format) which otherwise prevent the desired function of
black stretch.
line
The following figure and table show their definitions:
line=0
PDD top
border [7:0]
peak dark detection for
black stretch enabled
PDD bottom
border [7:0]
vertical and horizontal blanking
last line of
field
pixel=0
PDD left
border [3:0]
PDD right
border [3:0]
pixel=863
pixel
Micronas
PDD
top border
PDD
bottom border
PDD
left border
PDD
right border
Width
8 bit (0...255)
8 bit (0...255)
4 bit (0...15)
4 bit (0...15)
Resolution
2 lines/bit
4 lines/bit
16 pixels/bit
16 pixels/bit
Range
line 0...510
line 0...1020
pixel 64...304
pixel 576...816
Default value
16 (line 32)
71 (line 284)
8 (pixel 192)
8 (pixel 704)
5-35
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
System description
White control R, white control G, white control B, CATH[2:0]:
These four control items define the nominal values of the cut-off and whitedrive currents during the measurement lines. They can be calculated with the
following equations:
Icut-off = 0.00325 * (White control x + 64) / RDCI
(if RDCI=0)
Icut-off = 0.00108 * (White control x + 64) / RDCI
(if RDCI=1)
Iwhite-drive = Icut-off * (CATH[2:0] + 18) / 8
White control x: White control register for R, G or B (range -32...+31)
Micronas
RDCI:
Resulting resistor to ground at DCI input
CATH[2:0]:
Cathode drive level (range -4...+3) in register RGB control 1
5-36
2001-01-29
Characteristics
Notes
Vertical Vertical
scroll
aspect
BSE
GBE WHITD JMP
5-37
N0
normal mode
RGB ref. pulse position = line 20... 22 (odd field) mode after power on
(for 4:3 source, Letterbox) end of V-blanking = line 22 (odd field)
guard band = 1.5 lines
with default settings
0
0
0
0
0
0
N1
normal mode
RGB ref. pulse position = line (RPP + 16)
(for 4:3 source, Letterbox) ...(RPP + 18) (odd field)
with user defined settings end of V-blanking = line (RPP + 18) (odd field)
guard band = Guard band/2 [lines]
0
0
1
1
0
0
0
0
1
0
RGB reference pulse position
adjustable,
guard band adjustable
VGA or SVGA mode
RGB ref. pulse position = line 20... 22 (odd field) Vertical scroll/Vertical aspect
for user defined V-position/Vwith user defined V-posi- end of V-blanking = line 22 (odd field)
VGA tion/V-size
size,
guard band = 1.5 lines
WHITD disables RGB white
level ref. pulses
RGB ref. pulse position = line 20... 22 (odd field) Vertical aspect = -50
end of V-blanking = line 22 (odd field)
causes V-reduction to 75%,
guard band = 1.5 lines
JMP = 0 causes V-shrink incl.
flyback
RGB ref. pulse positon adjust.,
JMP = 1 causes V-shrink excl.
flyback,
WHITD disables RGB white
level ref. pulses
guard band adjustable
-50
0
0
0
0
0
-50
1
1
1
1
2001-01-29
Preliminary Data Sheet
S1
shrink mode 75%
RGB ref. pulse position = line (RPP + 16)
(for 16:9 source)
...(RPP + 18) (odd field)
with user defined settings end of V-blanking = line (RPP + VBE + 25) (odd)
start of reduced V-ramp = line (RPP + 19) (odd)
guard band = Guard band/2 [lines]
0
System description
S0
shrink mode 75%
(for 16:9 source)
with default settings
variable variable
SDA 9380 - B21
Description
Most important V-Deflection modes for 4:3 CRT
Micronas
Mode
Characteristics
Notes
5-38
N1
normal mode
RGB ref. pulse position = line (RPP + 16)
(for 16:9 or 4:3 source)
...(RPP + 18) (odd field)
with user defined settings end of V-blanking = line (RPP + 18) (odd field)
guard band = Guard band/2 [lines]
RGB reference pulse position
adjustable,
guard band adjustable
Z
zoom mode
RGB ref. pulse position = line 20... 22 (odd field)
(for 4:3 source, Letterbox) end of V-blanking = line 22 (odd field)
zoom factor ca. Vertical aspect/2 [%]
guard band = 1.5 lines
Vertical aspect controls
zoom factor,
clipping of VD+, VD-, E/W
when NCLP = 0
scroll mode
(for 4:3 source, Letterbox
with subtitles)
RGB ref. pulse position = line 20... 22 (odd field)
end of V-blanking = line 22 (odd field)
zoom factor ca. Vertical aspect/2 [%]
guard band = 1.5 lines
as above,
Vertical scroll can be additionally used for adjustment of
vertical position
S2
shrink mode 66%
(for two 4:3 sources)
with default settings
RGB ref. pulse position = line 20... 22 (odd field) Vertical aspect = -68
end of V-blanking = line 22 (odd field)
causes V-reduction to 66%,
guard band =1.5 lines
JMP = 0 causes V-shrink incl.
flyback
S3
shrink mode 66%
RGB ref. pulse position = line (RPP + 16)
(for two 4:3 sources)
...(RPP + 18) (odd field)
with user defined settings end of V-blanking = line (RPP + VBE + 25) (odd)
start of reduced V-ramp = line (RPP + 19) (odd)
guard band = Guard band/2 [lines]
S4
shrink mode 50%
(for two 16:9 sources)
with default settings
SC
RGB ref. pulse position = line 20... 22 (odd field) mode after power on
end of V-blanking = line 22 (odd field)
guard band = 1.5 lines
RGB ref. pulse positon adjust.,
JMP = 1 causes V-shrink excl.
flyback,
WHITD disables RGB white
level ref. pulses
guard band adjustable
RGB ref. pulse position = line 20... 22 (odd field) vertical aspect = -102
end of V-blanking = line 22 (odd field)
causes V-reduction to 50%,
guard band = 1.5 lines
JMP = 0 causes V-shrink incl.
flyback
GBE WHITD JMP
0
0
0
0
0
0
0
0
1
1
0
0
0
>0
0
0
0
0
variable
>0
0
0
0
0
0
-68
0
0
0
0
0
-68
1
1
1
1
0
-102
0
0
0
0
Preliminary Data Sheet
normal mode
(for 16:9 or 4:3 source)
with default settings
BSE
System description
2001-01-29
N0
Vertical Vertical
scroll
aspect
SDA 9380 - B21
Description
Most important V-Deflection modes for 16:9 CRT
Micronas
Mode
SDA 9380 - B21
Preliminary Data Sheet
Pin schematic
6
Pin schematic
pin
ROUT,
GOUT,
BOUT
schematic
remark
PAD
ESD
protection
SCP
PAD
ESD
protection
HD
ESD protection
bipolar
output stage,
supply
voltage:
VDD(MC)
bipolar
output stage,
supply
voltage:
VDD(MC)
open drain
output
PAD
Micronas
6-39
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Pin schematic
pin
schematic
X1, X2
remark
crystal
oscillator
(X1: input,
X2: output)
ESD protection
PAD X2
PAD X1
SVM
ESD protection
analog
output
PAD
CLKI,
CLEXT,
TEST,
RESN, SCL,
SDA, H35K,
H38K, PWM,
VSYNC,
FH1_2,
HSYNC,
PHI2,
PROTON,
VBLO, FBL1,
FBL2,
SWITCH
Micronas
ESD protection
PAD
6-40
digital input/
output
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Pin schematic
pin
E/W, D/A,
VD+, VD-,
VPROT,
HPROT,
HSAFE,
BSOIN,
IBEAM,
VREFH,
VREFN,
VREFC, DCI,
Y/R0, U/G0,
V/B0, Y/R1,
U/G1, V/B1,
R2, G2, B2
Micronas
schematic
remark
ESD protection
ESD protection
analog input/
output
PAD
6-41
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Absolute maximum ratings
7
Absolute maximum ratings
Parameter
Symbol
Min
Max
Unit
Operating temperature
TA
0
70
°C
-40
125
°C
Junction temperature
125
°C
Soldering temperature
260
°C
Storage temperature
Remark
Input voltage
VSS-0.3V
VDD+0.3V
not valid for SDA, SCL,
CLKI, HD
Input voltage
VSS-0.3V
5.5V
SDA, SCL, CLKI, HD
Output voltage
VSS-0.3V
VDD+0.3V
Supply voltages
VDD(D)
VDD(A1..4)
-0.3
3.8
V
Supply voltage
VDD(MC)
-0.3
9
V
Supply total voltage
difference
-0.25
0.25
V
between VDD(D),
VDD(A1..4)
VSS, SUBST total voltage
difference
-0.25
0.25
V
between SUBST,
VSS(MC), VSS(D),
VSS(A1..4)
1.28
W
100
mA
Total power dissipation
Latch-up protection
-100
all inputs/outputs
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions or at any other condition beyond those indicated in the operational sections of this specification is not implied.
Micronas
7-42
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Recommended operating conditions
8
Recommended operating conditions
Parameter
Symbol
Min
Nom
Max
Unit
Remark
Supply voltages
VDD(D)
VDD(A1..4)
3.0
3.3
3.45
V
1
)
Supply voltage
VDD(MC)
7.2
8.0
8.4
V
1
)
Ambient temperature
TA
0
25
70
°C
1
) Any sequence and any rise time of the 3.3V and 8V supply voltage is allowed at power on. But all VSS
pins as well as SUBST pin have to be connected to ground when applying any voltage.
TTL Inputs: VSYNC, RESN, TEST, FH1_2, CLEXT, SSD
High-level input voltage
VIH
2.0V
VDD
V
Low-level input voltage
VIL
0
0.8
V
TTL Inputs: CLKI (CLEXT=High)
High-level input voltage
VIH
2.0V
5.5
V
Low-level input voltage
VIL
0
0.8
V
Input VPROT
Threshold V1
1.4
1.5
1.6
V
Threshold V2
0.9
1.0
1.1
V
Threshold V1
2.65
2.7
2.75
V
Threshold V2
1.4
1.5
1.6
V
Input HPROT
Input BSOIN
Upper threshold (negative-going)
VTHn
2.625
2.675*) 2.725
V
Upper threshold (positive-going)
VTHp
2.725
2.775*) 2.825
V
0.5
V
Lower threshold
0.7
see 11.2
*) The comparator has a hysteresis of typ. 100mV.
Input HSAFE
Low input voltage
1.8
V
Full range input voltage
2.7
V
Input voltage at 31.25 kHz
V31.25k
1.9
2.0
2.1
V
Input voltage at 38 kHz
V38k
1.225
1.24
1.26
V31.25k related to V31.25k!
Micronas
8-43
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Recommended operating conditions
Parameter
Symbol
Input voltage when watching of
HSAFE is disabled
Min
Nom
0
Max
Unit
1.5
V
Remark
Input IBEAM
Low input voltage
Full range input voltage
0
V
control bit RIBM=0
1.8
V
control bit RIBM=1
2.7
V
RIBM=0
2.7
V
RIBM=1
V
tolerance +- 2%
Reference Voltage Pins
VREFH voltage
1.568
1.6
1.632
VREFN voltage
0
V
VREFC resistor to VREFN
27
kΩ
tolerance +- 2%
Input Φ2
Low-level input voltage
VIL
0
0.7
High-level input voltage
VIH
2.0V
VDD
Input voltage range
VHSpp
2V
VDD
Input voltage Low level
VHSmin
0V
Input voltage High level
VHSmax
Pulse width (HSWMI=0)
tw
V
Input HSYNC (CLEXT=Low)
Pulse width (HSWMI=1)
tw
see 5.2
see 5.2
VDD
see 5.2
1.5
4.5
µs
*), FH1_2 = High
3.0
9.0
µs
*), FH1_2 = Low
0.8
4.5
µs
*), FH1_2 = High
1.7
9.0
µs
*), FH1_2 = Low
V
*) High or Low level allowed, INCR = 6, see 5.2
Input HSYNC (CLEXT=High)
Low-level input voltage
VIL
0
0.8
High-level input voltage
VIH
2.0V
VDD
Setup time
tSU
7
ns
referred to rising
edge of CLKI
Hold time
tH
6
ns
referred to rising
edge of CLKI
Micronas
8-44
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Recommended operating conditions
Parameter
Symbol
Min
Nom
Max
Unit
Remark
Input VSYNC
Pulse width high
100 ns
100/fH
FH1_2=1, NI=0
Pulse width high
200 ns
100/fH
FH1_2=0, NI=0
Pulse width high
1.5/fH
100/fH
NI=1
Input CLKI (external clock mode, CLEXT=high)
Input frequency
25
27
30
MHz
Quartz Oscillator Input / Output X1, X2
Crystal frequency
24.576
Crystal resonant impedance
MHz
40
External capacitance
15
fundamental
crystal type, e.g.
Saronix
9922 520 00282
Ω
pF
see 10
YUV Inputs
Y input voltage (black-to-white value) VP-P
1
0.7
1.5
1.05
V
V
U input voltage (peak-to-peak value) VP-P
1.33
0.7
2
1.05
V
V
U = - (B - Y),
at HDTV matrix
V input voltage (peak-to-peak value) VP-P
1.05
0.7
1.6
1.05
V
V
V = - (R - Y),
at HDTV matrix
DC input current between clamping
Ii
100
nA
Input capacitance
Ci
7
pF
Maximum input current during
clamping
Ii-clamp
Internal bias during clamping at Yinput
VclampY
100
Internal bias during clamping at UV- VclampUV
inputs
only Y0 input at
YLL = 1, or at
HDTV matrix
µA
0.6
V
1.1
V
RGB Inputs (RGB2, RGB/YUV1 if RGBEN1=1, YUV/RGB0 if RGBEN0=1)
Input voltage (black-to-white value)
VP-P
DC input current between clamping
Input capacitance
Micronas
0.7
1
V
Ii
100
nA
Ci
7
pF
8-45
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Recommended operating conditions
Parameter
Symbol
Min
Maximum input current during
clamping
Ii-clamp
100
Internal bias during clamping
Vclamp
Difference between black level of
internal and external signals at the
outputs
∆Vo
Delay difference of the three
channels
∆td
Nom
Max
Unit
Remark
µA
0.6
V
50
0
mV
ns
1)
Fast Blanking Input FBL1 (RGB/YUV 1)
Input voltage no data insertion
Vi-n
Input voltage data insertion
Vi-y
Maximum input voltage
Vi-max
0.5
0.9
V
Difference between transit times for ts - ti
signal switching and signal insertion
Suppression of internal video signals
(insertion) or external video signals
(no insertion)
V
3.3
V
10
ns
1)
dB
fi = 0 to 10 MHz, 1)
55
Fast Blanking/Contrast Reduction Input FBL2 (RGB2)
Maximum input voltage
Vi-max
Difference between transit times for ts - ti
signal switching and signal insertion
Suppression of internal video signals
(insertion) or external video signals
(no insertion)
3.3
V
10
ns
1)
dB
fi = 0 to 10 MHz, 1)
55
Fast Blanking (Control bit COR1..COR0 = 00)
Input voltage no data insertion
Vi-n
Input voltage data insertion
Vi-y
0.5
0.9
V
V
Fast Blanking and Contrast Reduction (Control bit COR1..COR0 = 01...11)
Input voltage no contrast reduction
of internal RGB signals
Vicr-n
Input voltage contrast reduction of
internal RGB signals
Vicr-y
Contrast reduction (control bit
COR1..COR0)
Input voltage no data insertion
Micronas
1.4
0.5
1.7
0.9
0
Vi-n
8-46
V
FBL2L = 0
FBL2L = 1
V
FBL2L = 0
FBL2L = 1
75
%
2
1.2
V
FBL2L = 0
FBL2L = 1
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Recommended operating conditions
Parameter
Symbol
Min
Input voltage data insertion
Vi-y
2.5
1.8
Nom
Max
Unit
Remark
V
FBL2L = 0
FBL2L = 1
0
V
control bit RDCI=0
1.8
V
control bit RDCI=1
2.7
V
Dark current input DCI for cut off and white level control
Low input voltage
Full range input voltage
Maximum input current
Ii-DCImax
10
mA
Vi-DCI > Vdd
Input RGB matrices
PAL/SECAM mode
RGB matrix coefficients:
R=Y-V
G = Y + PuU + PvV
B=Y-U
Pu
0.19
U = - (B - Y)
V = - (R - Y)
Pv
0.51
Jur
Jvr
Jug
Jvg
Jub
0.068
−=1.38
0.15
0.46
−=1
U = - (B - Y)
V = - (R - Y)
Aur
Avr
Aug
Avg
Aub
Avb
0.12
−=1.32
0.25
0.42
−=1.08
0.035
U = - (B - Y)
V = - (R - Y)
NTSC/Jap mode
RGB matrix coefficients:
R = Y + JurU + JvrV
G = Y + JugU + JvgV
B = Y + JubU
NTSC/US mode
RGB matrix coefficients:
R = Y + AurU + AvrV
G = Y + AugU + AvgV
B = Y + AubU + AvbV
HDTV mode (according to SMPTE Standard 274M and EIA-770.3-A)
RGB matrix coefficients:
R = Y + HvrV
G = Y + HugU + HvgV
B = Y + HubU
1.575
−=0.187
−=0.468
1.856
Hvr
Hug
Hvg
Hub
U = P’B =
= 0.539 (B - Y)
V = P’R =
= 0.635 (R - Y)
Internal RGB matrices
See PAL/SECAM mode
Internal colour difference matrices
See PAL/SECAM mode
Micronas
8-47
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Recommended operating conditions
Parameter
Symbol
Min
Nom
Max
Unit
Remark
dB
63 steps
Saturation control (control bit B0...B5; subaddress 25h)
Saturation control range
52
Nominal saturation
B7...B2 = 110001
0
dB
Contrast control (control bit B7...B0; subaddress 24h)
Contrast control range
20
dB
Nominal contrast
B7...B0 = 00000000
0
dB
Tracking between the three channels
over a control range of 10 dB
0.5
255 steps
dB
Brightness control (control bit B7...B0; subaddress 23h)
Brightness control range
+- 0.75
V
255 steps
Black level stretch (control bit BLCKS; subaddress 20h)
Maximum black level shift
15
21
27
IRE
Level shift at 100% peak white
-1
0
1
IRE
Level shift at 50% peak white
-1
3
IRE
Level shift at 15% peak white
8
14
IRE
11
Peak drive limit (control byte peak drive limit, bits B7...B0; bit PDD)
Peak detector
Peak detector level (at the R, G or B
output at nominal white drive relative
to cut off)
IIC bus: peak drive limit B7...B4
minimum value (range -8)
maximum value (range +7)
1.5
3.5
V
V
100
105
110
infinite
%
%
%
Soft clipper
Starting level (relative to peak detektors level)
IIC bus: peak drive limit B3, B2
10
11
00
01 (soft clipper off)
Micronas
8-48
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Recommended operating conditions
Parameter
Symbol
Min
Slope
IIC bus: peak drive limit B1,B0
10
11
00
01
Nom
Max
Unit
Remark
0.125
0.375
0.625
0.875
Blue stretch (control bit BLUES; subaddress 20h)
Decrease of small signal gain for red
and green at nominal input amplitudes and nominal settings of contrast
and brightness
17
%
Percentage of nominal input voltage
at which decrease of gain begins
(nominal settings of contrast and
brightness)
80
%
I²C Bus (all values are referred to min(VIH) and max(VIL))
SCL clock frequency
fSCL
0
400
kHz
High-level input voltage
VIH
0.75*
VDD(D)
5.25
V
Low-level input voltage
VIL
0
1.5
V
Load capacitance
Cb
400
pF
Rise times of SCL, SDA
tR
20+0.1*
Cb/pF*)
300*)
ns
Fall times of SCL, SDA
tF
20+0.1*
Cb/pF*)
300
ns
Set-up time DATA
tSU;DAT
100
ns
Hold time DATA
tHD;DAT
0
ns
Spike duration at inputs
Cb
0
50
ns
*) Fast-mode (fSCL = 400 kHz)
Micronas
8-49
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Characteristics (assuming recommended operating conditions)
9
Characteristics (assuming recommended operating conditions)
Parameter
Symbol
Min
Nom
Max
Unit
Remark
Average supply current of
VDD(D) +VDD(A1..4)
245
290
mA
DEL1...0 = 11
(maximum delay)
Average supply current of VDD(MC)
32
40
mA
1.28
W
25
mA
Total power dissipation
Standby supply current of
VDD(D) +VDD(A1..4)
15
no standby mode
for VDD(MC)
TTL Inputs CLKI, VSYNC, RESN, TEST, FH1_2, CLEXT, SSD
Input leakage current
|Ileak|
10
µA
|Ileak|
50
µA
|Ileak|
100
µA
Input X1
Input leakage current
Input HSYNC
Input leakage current
Analog Inputs HPROT, VPROT, HSAFE, BSOIN, IBEAM, FBL1, FBL2
Input leakage current
|Ileak|
10
µA
Analog Inputs Y/R0, U/G0, V/B0, R/Y1, G/U1, B/V1, R2, G2, B2, DCI
Input leakage current
|Ileak|
100
nA
VOL
0.6
V
IO = 6 mA
V
1)
I²C Input/Output SDA
SDA output Low level
I²C Inputs SDA/SCL
Hysteresis of Schmitt trigger inputs
Vhys
0.2
Input leakage current
|Ileak|
10
µA
Output Low level
VOL
0.4
V
IO = 1 mA
Output High level
VOH
V
IO = -1 mA
V
IO = 1 mA
V
IO = -1 mA
Output Pins SWITCH, VBLO
2.4
Output PROTON
Output Low level
(if HPON=0 and VPON=0)
VOL
Output High level
(if HPON=1 or VPON=1)
VOH
Micronas
0.4
2.4
9-50
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Characteristics (assuming recommended operating conditions)
Parameter
Symbol
Min
Nom
Max
Unit
Remark
0.4
V
IO = 1 mA
V
IO = -1 mA
Output PWM
Output Low level
VOL
Output High level
VOH
Period
TPWM
TH
TH = hor. period
Resolution
tR
TH/108
PWMS0=0
(subaddress 1A)
TH/864
PWMS0=1
2.4
Output SCP
Output Low level
VOL
0
Output BLanking level
VOHBL
VDD(MC) VDD(MC) VDD(MC)
/2
/2
/2
-0.6V
+0.3V
Output High level
VOH
VDD(MC)
-1.3V
1
V
IO = 1 mA
| IO | = 100 µA
VDD(MC)
IO = -1 mA
DAC Output D/A
DAC Resolution
8
bit
DAC Output LOW
0.20
V
DAC Output HIGH
2.98
V
Load Capacitance
30
pF
Output Load
20
kOhm
Offset Error
-3%
3%
Gain Error
-3%
3%
INL
-2
2
LSB
DNL
-1
1
LSB
DAC Output E/W
DAC resolution
10
bit
linear range:
100...900
DAC output LOW
0.64
V
input data = 100
DAC output HIGH
2.48
V
input data = 900
Load capacitance
30
Output load
20
Zero error
-2%
Micronas
9-51
pF
kOhm
2%
DAC output
voltage = 1.6V,*)
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Characteristics (assuming recommended operating conditions)
Parameter
Symbol
Min
Nom
Max
Unit
Remark
Gain error
-5%
5%
*)
INL
-0.2%
0.2%
*)
DNL
-0.1%
0.1%
*)
*) input range = 100...900
DAC Output VD+, VDDAC resolution
14
bit
linear range:
1500...15000
DAC output LOW (VD-)
0.62
V
input data = 1500
DAC output HIGH (VD-)
2.6
V
input data = 15000
DAC output LOW (VD-) - (VD+)
-1.90
V
input data = 1500
DAC output HIGH (VD-) - (VD+)
1,96
V
input data = 15000
Load capacitance
30
pF
Output load
20
kOhm
Zero error
-1%
1%
(VD-)-(VD+)=0V, *)
Gain error
-5%
5%
*)
INL
-0.5%
0.5%
*)
DNL
monotonous
guaranteed by
design
*) input range = 1500...15000
Reference Output VREFH
Output voltage
1.568
1.6
1.632
V
tolerance +-2%
1
V
IO = 8 mA
Open Drain Output HD
Output Low level
VOL
Maximum Voltage
VOH
5.5
V
Output Low level
VOL
0.4
V
IO = 1 mA
Output High level
VOH
V
IO = -1 mA
Positive-going threshold of fHSYNC
fTH1
33.9
kHz
see 11.1
Negative-going threshold of fHSYNC
fTH2
33.3
kHz
see 11.1
Hysteresis
fTH1 - fTH2
0.6
kHz
0
Output H35K
Micronas
2.4
9-52
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Characteristics (assuming recommended operating conditions)
Parameter
Symbol
Delay from positive-going threshold
of fHSYNC to output
tD1
Min
Nom
Max
Unit
Remark
(14 - int(27/12 *
fH0[kHz] -64)) * TV
Delay from negative-going threshold tD2
of fHSYNC to output
100
ns
see 11.1
V
IO = 1 mA
V
IO = -1 mA
Output H38K
Output Low level
VOL
Output High level
VOH
Positive-going threshold of fHSYNC
fTH3
36.9
kHz
see 11.1
Negative-going threshold of fHSYNC
fTH4
36.4
kHz
see 11.1
Hysteresis
fTH3 - fTH4
0.5
kHz
Delay from positive-going threshold
of fHSYNC to output
tD3
0.4
2.4
(21 - int(27/12 *
fH0[kHz] -64)) * TV
Delay from negative-going threshold tD4
of fHSYNC to output
100
ns
see 11.1
RGB Output
Differential output resistance
Ro
Maximum output current
Io
Minimum output voltage
Vo-min
Maximum output voltage
Vo-max
Output signal amplitude (peak-topeak value)
Vo(p-p)
Maximum output signal amplitude
(peak-to-peak value)
Vo(p-p)max
25
4
30
5
mA
0.8
VDD(MC) 7
-1.3
2.1
3.3
Ω
V
V
V
V
Nominal black level voltage
2.5
V
Control range of the black current
stabilisation
+-1
V
Blanking level
Leakage measurement level
Cut off measurement level
White point measurement level
-0.4
-0.05
0.25
0.36
V
V
V
V
Micronas
9-53
at nominal luminance input signal,
nominal contrast
and white-point
control
at nominal brightness = +30
difference with
nominal black level
at nominal contrast and white
point
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Characteristics (assuming recommended operating conditions)
Parameter
Symbol
Min
Nom
Max
Unit
Variation of black level with
temperature1)
1
mV/K
Gain range of white point control
loop
+-6
dB
Relative variation in black level between all inputs during variation of:
Supply voltage (+-10%)1)
Saturation (50 dB)1)
20
20
mV
mV
Contrast (20 dB)1)
20
mV
Brightness (+-0.5V)1)
Temperature (range 40 °C)1)
20
20
mV
mV
Signal-to-noise ratio of the output
signal 1)
S/N
Bandwidth of the output signals for
all inputs:
Delay off (DELOFF = 1):
Maximum delay (DELOFF = 0,
DEL1 = 1, DEL0 = 1):
B
60
dB
Remark
nominal controls
nom. contrast and
white point
nom. saturation
and white point
nominal controls
nominal controls
V0(p-p)/RMSnoise
bandwidth 10 MHz
at -3 dB
30
MHz
20
MHz
Scan velocity modulation output SVM (Y output)
Output signal amplitude (peak-topeak value)
VSVM(p-p)
Maximum output current
Io-svm
Output signal at black level
Differential output resistance
1.9
V
5
mA
VSVM-black
0.6
V
Ro-svm
25
Bandwidth of the output signal for all BSVM
inputs
4
30
Total delay from SVM output to RGB Dsvm0
outputs
DEL 1, DEL0:
00
01
10
11
30
SVMOFF = 0
Ω
MHz
at -3 dB
DELOFF = 0
Total delay from SVM output to RGB Dsvm1
outputs
25
35
45
55
ns
ns
ns
ns
15
ns
DELOFF = 1
(basic delay)
1)
not tested during production but characterization in pre-production
Micronas
9-54
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Application information
10 Application information
10.1
System overview Dig. TV 100Hz
R
Y
CVBS1
CVBS7
SDA 9380
V
RGB
Processor,
Deflection
Controller
B
SDA
9402
RGB1
G
U
PRIMUS
H, V
RGB2
H-Drive
V-Drive
CLK
E/W
10.2
System overview Multisync Deflection
SCP
B+
Control
HPROT
B+
VPROT
HSAFE
IBEAM
BSOIN
H35K
H38K
15pF X1
24,576
MHz
15pF X2
HD
SDA
9380
E/W
VSYNC
HSYNC
VDVD+
IBEAM
Micronas
VPROT
10-55
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Application information
10.3
Application circuit diagram
VSYNC
HSYNC
IBeam
UB Sense
B+ Sense
V-Sawtooth
-V-Drive
+V-Drive
E/W-Parabola
H-Flyback
+3.3 V
+3.3 V
100n
+3.3 V
100n
+3.3 V
100n
+3.3 V
36
37
38
27k
27k
40
+3.3 V
100n
YUV
In
39
41
22n
42
22n
43
22n
44
45
75
75
75
RGBFB1
In
22n
46
22n
47
22n
48
FH1_2
VDD(A1)
HSYNC
Φ=2
VSS(A1)
VSS(A2)
VDD(A2)
SDA 9380
VSYNC
PWM
H38K
H35K
HD
VSS(D)
VDD(D)
SDA
SCL
RESN
SUBST
TEST
CLEXT
X1
X2
CLKI
SWITCH
100n
SVM
VDD(D)
VSS(D)
SSD
35
BSOIN
IBEAM
PROTON
VREFH
VBLO
VREFN
VREFC
DCI
VDD(A4)
Y/R 0
U/G 0
V/B 0
VSS(A4)
R/Y 1
G/U 1
B/V 1
FBL1
FBL2
R2
G2
B2
VDD(MC)
ROUT
GOUT
BOUT
SCP
VSS(MC)
33
34
HSAFE
HPROT
VPROT
VSS(A3)
VDD(A3)
VDVD+
D/A
E/W
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
+5 V
16
15
14
B+ Control_1
B+ Control_0
H-Drive
13
12
11
100n
10
+3.3 V
9
8
7
+3.3 V
6
5
4
3
2
+3.3 V
15p
15p
1
24.576 MHz
75
22n
75
22n
75
22n
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
75
100n
+8 V
100n
+3.3 V
SVM-Out
RGBFB2
In
RGB-Out
75
75
75
Sense
75
CLK
IIC bus
Micronas
10-56
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Waveforms
11 Waveforms
11.1
Timing diagram of H35K and H38K
fH at
HSYNC
31 kHz
35 kHz
f TH1
38 kHz
f TH3
f TH4
35 kHz
f TH2
31 kHz
38 kHz
f H at HD
35 kHz
35 kHz
31 kHz
31 kHz
**)
**)
tD1
H35K
*)
*)
*)
*)
tD3
H38K
*) new H-frequency detected
**) depends on decrease of B+
11.2
Black Switch-Off diagrams
VTH
BSOIN
ca. 20% VTH
VBL component of
SCP
t D1
overscan depends on selected BSO mode (s. next page)
VD+
BSOIN controls VD+, VD- in mode 2, 3
tD2
ROUT,
BOUT,
GOUT
HD
continuously HD pulses until Power-On-Reset is going High
tD1: 2...2.5 lines
Micronas
tD2: 42 lines
11-57
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Waveforms
Mode 1 (constant overscan, BSO = 01):
V-overscan = f (voltage at BSOIN)
160
V-overscan in %:
152
f( 100) 115
V-overscan in %
144
136
128
f( 75) 115
120
112
f( 50) 115
104
96
88
f( 25) 115
80
0
10
20
30
40
50
60
70
80
90
100
voltage BSOIN in %
Mode 2 (parabolic function, BSO = 10):
V-overscan = f (voltage at BSOIN)
140
V-overscan in %:
132
f( 100) 120.7
V-overscan in %
124
116
108
f( 75) 111.1
100
92
f( 50) 99.6
84
76
68
f( 25) 86
60
0
10
20
30
40
50
60
70
80
90
100
voltage BSOIN in %
Mode 3 (linear function, BSO = 11):
V-overscan = f (voltage at BSOIN)
120
V-overscan in %:
112
f( 100) 116.5
V-overscan in %
104
96
88
f( 75) 98.8
80
72
f( 50) 81
64
56
48
f( 25) 63
40
0
10
20
30
40
50
60
70
80
90
100
voltage BSOIN in %
Micronas
11-58
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Waveforms
11.3
Power On/Off diagram
Supply
Voltage
max. 2.6V
min. 1.5V
PowerOnReset
32768
cycles
32768
cycles
X1, X2
SSD=0: ~ 8 lines
SSD=1: ~12 lines
SSD=0: ~ 8 lines
SSD=1: ~12 lines
HD
IIC registers 01..1C
programmable
I2C-Bus
tristate
IIC registers 01..1C
programmable
tristate
ready
ready
tristate
VREFH
Protection
(HPROT
>1.5V)
I2C-Reg.
00, 1D..30h
active
inactive
default
I2C-Reg.
01..1C
default
programmable
default
programmable
programmable
default
programmable
default
default
CLL
~ 42 cycles
CPU
active
inactive
power on
Micronas
glitch
11-59
power off
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Waveforms
11.4
Standby mode, RESN diagram
Standby
RESN
~ 42 CLL
cycles
HD
Phi2-loop
~ 42 CLL
cycles
Phi2-loop
free run
free run
Phi2-loop
active
CPU
inactive
active
VREFH
Protection
(HPROT
>1.5V)
I2C-Reg.
01..1C
inactive
active
inactive
programmable
default values
I2C-Reg.
00, 1D..30h
default values
programmable
programmable
Standby mode
Micronas
programmable
ext. reset
11-60
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Waveforms
11.5
Function of H,V protection
HPROT
VPROT
Mode
V1
1
or
V2
3
VPON b)
(IIC-Bus)
continuous
blanking
0
0
H, V in
operation
a)
0
0
EHT overvoltage
continuous
blanking
after t2
1
after t2
0
continuous
blanking
after t0
if SSC = 0
0
0
continuous
blanking
after t0
if SSC = 0
0
1
after t1
continuous
blanking
after t2
1
after t2
1
after t1
H in
operation
4
HPON b)
(IIC-Bus)
start up
V2
V1
2
SCP
or
or
V short
failure
t0 < t < t 1
V longer
failure
or
5
or
H off
after t1
t > t1
or
6
EHT
short overvoltage
t > t1
t0 = 2/fv...3/fv
t1 = 64/fv...128/fv
t2 = 1/fv...2/fv
a) depends on IIC control items
b) HPON = 1 or VPON = 1: HD = 1(off)
Micronas
11-61
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Waveforms
11.6
Black Stretch diagram
Output (IRE)
100
50
0
50
100
Input (IRE)
maximum black stretch
-30
(R, G, B voltage measured at
the output relative to cut-off at
nominal white drive)
Soft Clipping diagram
Output
11.7
5V
range
+1
0
-1
-2
4V
3V
Slope: IIC
soft clipping,
bits B1, B0
2V
1V
0
0
1V
2V
A B
3V
4V
5V
Input
Micronas
11-62
2001-01-29
SDA 9380 - B21
Preliminary Data Sheet
Package outlines
12 Package outlines
P-MQFP-64
Micronas
12-63
2001-01-29
SDA 9380-B21
Micronas GmbH
Hans-Bunte-Strasse 19
D-79108 Freiburg (Germany)
P.O. Box 840
D-79008 Freiburg (Germany)
Tel. +49-761-517-0
Fax +49-761-517-2174
E-mail: [email protected]
Internet: www.micronas.com
Printed in Germany
Order No. 6251-549-1PD
72
PRELIMINARY DATA SHEET
All information and data contained in this data sheet are without any
commitment, are not to be considered as an offer for conclusion of a
contract, nor shall they be construed as to create any liability. Any new
issue of this data sheet invalidates previous issues. Product availability
and delivery are exclusively subject to our respective order confirmation
form; the same applies to orders based on development samples delivered. By this publication, Micronas GmbH does not assume responsibility for patent infringements or other rights of third parties which may
result from its use.
Further, Micronas GmbH reserves the right to revise this publication and
to make changes to its content, at any time, without obligation to notify
any person or entity of such revisions or changes.
No part of this publication may be reproduced, photocopied, stored on a
retrieval system, or transmitted without the express written consent of
Micronas GmbH.
Micronas