IRF IRFB4321PBF

PD - 97103
IRFB4321PbF
Applications
l Motion Control Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l Hard Switched and High Frequency Circuits
Benefits
l Low RDSON Reduces Losses
l Low Gate Charge Improves the Switching
Performance
l Improved Diode Recovery Improves Switching &
EMI Performance
l 30V Gate Voltage Rating Improves Robustness
l Fully Characterized Avalanche SOA
HEXFET® Power MOSFET
VDSS
RDS(on) typ.
max.
ID
150V
12m:
15m:
83A
D
D
G
G
S
D
S
TO-220AB
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Max.
Units
ID @ TC = 25°C
Symbol
Continuous Drain Current, VGS @ 10V
83 c
A
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
59
IDM
Pulsed Drain Current d
330
PD @TC = 25°C
Maximum Power Dissipation
330
W
Linear Derating Factor
2.2
±30
W/°C
V
EAS (Thermally limited)
Gate-to-Source Voltage
Single Pulse Avalanche Energy e
120
mJ
TJ
Operating Junction and
-55 to + 175
°C
TSTG
Storage Temperature Range
VGS
Parameter
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
10lbxin (1.1Nxm)
Mounting torque, 6-32 or M3 screw
Thermal Resistance
Parameter
Typ.
Max.
RθJC
Junction-to-Case g
–––
0.45
RθCS
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient g
0.50
–––
–––
62
RθJA
www.irf.com
Units
°C/W
1
6/23/06
IRFB4321PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG(int)
Min. Typ. Max. Units
150
–––
–––
3.0
–––
–––
–––
–––
–––
–––
150
12
–––
–––
–––
–––
–––
0.8
Conditions
–––
V VGS = 0V, ID = 250µA
––– mV/°C Reference to 25°C, ID = 1mAd
15
mΩ VGS = 10V, ID = 33A f
5.0
V VDS = VGS, ID = 250µA
20
µA VDS = 150V, VGS = 0V
1.0
mA VDS = 150V, VGS = 0V, TJ = 125°C
100
nA VGS = 20V
-100
VGS = -20V
–––
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
130
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
71
24
21
18
60
25
35
4460
390
82
–––
110
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
ns
pF
Conditions
VDS = 25V, ID = 50A
ID = 50A
VDS = 75V
VGS = 10V f
VDD = 75V
ID = 50A
RG = 2.5Ω
VGS = 10V f
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
ISM
(Body Diode)
Pulsed Source Current
–––
VSD
trr
Qrr
IRRM
ton
(Body Diode)d
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current
Forward Turn-On Time
–––
A
MOSFET symbol
–––
330
A
showing the
integral reverse
D
G
p-n junction diode.
––– –––
1.3
V TJ = 25°C, IS = 50A, VGS = 0V f
–––
89
130
ns ID = 50A
––– 300 450
nC VR = 128V,
–––
6.5
–––
A di/dt = 100A/µs f
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.095mH
RG = 25Ω, IAS = 50A, VGS =10V. Part not recommended for use
above this value.
2
Conditions
83c
S
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
… Rθ is measured at TJ approximately 90°C
www.irf.com
IRFB4321PbF
1000
1000
100
BOTTOM
10
1
5.0V
100
BOTTOM
5.0V
10
≤ 60µs PULSE WIDTH
Tj = 175°C
≤ 60µs PULSE WIDTH
Tj = 25°C
1
0.1
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
3.5
1000
TJ = 175°C
10
TJ = 25°C
VDS = 25V
≤ 60µs PULSE WIDTH
0.1
3.0
4.0
5.0
6.0
7.0
8.0
VGS = 10V
3.0
2.5
(Normalized)
100
1
ID = 50A
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
2.0
1.5
1.0
0.5
9.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
7000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
5000
Ciss
4000
3000
Coss
2000
1000
Crss
10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
ID= 50A
VDS = 120V
16
VDS= 75V
VDS= 30V
12
8
4
0
0
1
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
6000
0
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
0
20
40
60
80
100
120
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB4321PbF
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000
100
TJ = 175°C
10
TJ = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100µsec
100
1msec
10
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1
VSD , Source-to-Drain Voltage (V)
ID , Drain Current (A)
70
60
50
40
30
20
10
0
50
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage
LIMITED BY PACKAGE
25
1000
190
180
170
160
150
140
-60 -40 -20
TC , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
5.0
EAS, Single Pulse Avalanche Energy (mJ)
500
4.0
Energy (µJ)
100
VDS , Drain-toSource Voltage (V)
90
80
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
3.0
2.0
1.0
0.0
ID
13A
20A
BOTTOM 50A
TOP
400
300
200
100
0
0
20
40
60
80
100
120
140
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
160
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRFB4321PbF
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.1
R1
R1
0.10
τJ
0.05
0.02
0.01
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
τC
τ2
τ1
τ3
τ2
Ci= τi/Ri
Ci= τi/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τ3
τ
τι (sec)
0.085239 0.000052
0.18817 0.00098
0.176912 0.008365
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
Duty Cycle = Single Pulse
Avalanche Current (A)
0.01
10
0.05
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
120
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 50A
100
80
60
40
20
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFB4321PbF
40
ID = 1.0A
ID = 1.0mA
ID = 250µA
5.0
30
4.0
IRRM - (A)
VGS(th), Gate threshold Voltage (V)
6.0
3.0
20
IF = 33A
VR = 128V
10
2.0
TJ = 125°C
TJ = 25°C
0
1.0
-75
-50 -25
0
25
50
75
100 200 300 400 500 600 700 800 900 1000
100 125 150 175
dif / dt - (A / µs)
TJ , Temperature ( °C )
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage Vs. Temperature
40
3200
2800
2400
QRR - (nC)
IRRM - (A)
30
20
10
0
2000
1600
1200
IF = 50A
VR = 128V
IF = 33A
VR = 128V
800
TJ = 125°C
TJ = 25°C
TJ = 125°C
TJ = 25°C
400
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
dif / dt - (A / µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
3200
2800
QRR - (nC)
2400
2000
1600
1200
800
400
0
IF = 50A
VR = 128V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB4321PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
LD
Fig 22b. Unclamped Inductive Waveforms
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 23a. Switching Time Test Circuit
tr
td(off)
tf
Fig 23b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
1K
VCC
Vgs(th)
Qgs1 Qgs2
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFB4321PbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
AS S EMBLED ON WW 19, 2000
IN T HE ASS EMBLY LINE "C"
Note: "P" in as sembly line pos ition
indicates "Lead - Free"
INT ERNAT IONAL
RECT IFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 0 = 2000
WEEK 19
LINE C
TO-220AB packages are not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/06
8
www.irf.com