PD - 94391B IRF7341Q HEXFET® Power MOSFET Typical Applications • Anti-lock Braking Systems (ABS) • Electronic Fuel Injection • Air bag Benefits • • • • • • VDSS RDS(on) max ID 55V 0.050@VGS = 10V 0.065@VGS = 4.5V 5.1A 4.42A Advanced Process Technology Dual N-Channel MOSFET Ultra Low On-Resistance 175°C Operating Temperature Repetitive Avalanche Allowed up to Tjmax Automotive [Q101] Qualified Description Specifically designed for Automotive applications, these HEXFET ® Power MOSFET’s in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET’s are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The 175°C rating for the SO-8 package provides improved thermal performance with increased safe operating area and dual MOSFET die capability make it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available in Tape & Reel. S1 G1 S2 G2 1 8 D1 2 7 D1 3 6 4 5 D2 D2 SO-8 Top View Absolute Maximum Ratings Parameter VDS ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C VGS EAS IAR EAR TJ , TSTG Max. Drain-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Junction and Storage Temperature Range 55 5.1 4.2 42 2.4 1.7 16 ± 20 140 5.1 See Fig. 14, 15, 16 -55 to + 175 Units V A W W mW/°C V mJ A mJ °C Thermal Resistance Parameter RθJA www.irf.com Max. Maximum Junction-to-Ambient Units 62.5 °C/W 1 02/15/05 IRF7341Q Electrical Characteristics @ TJ = 25°C (unless otherwise specified) ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance V(BR)DSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Min. 55 ––– ––– 1.0 10.4 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.052 0.043 0.056 ––– ––– ––– ––– ––– ––– 29 2.9 7.3 9.2 7.7 31 12.5 780 190 66 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 0.050 VGS = 10V, ID = 5.1A Ω 0.065 VGS = 4.5V, ID = 4.42A ––– V VDS = VGS, ID = 250µA ––– S VDS = 10V, ID = 5.2A 2.0 VDS = 44V, VGS = 0V µA 25 VDS = 44V, VGS = 0V, TJ = 150°C 100 VGS = 20V nA -100 VGS = -20V 44 ID = 5.2A 4.4 nC VDS = 44V 11 VGS = 10V ––– VDD = 28V ––– ID = 1.0A ns ––– RG = 6.0Ω ––– VGS = 10V ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units 2.4 42 ––– ––– ––– ––– 51 76 1.2 77 114 A V ns nC Conditions D MOSFET symbol showing the G integral reverse p-n junction diode. S TJ = 25°C, IS = 2.6A, VGS = 0V TJ = 25°C, I F = 2.6A di/dt = 100A/µs Notes: Repetitive rating; pulse width limited by Surface mounted on FR-4 board, t ≤ 10sec. max. junction temperature. Pulse width ≤ 300µs; duty cycle ≤ 2%. 2 www.irf.com IRF7341Q 100 VGS 15.0V 10.0V 7.0V 5.5V 4.5V 4.0V 3.5V BOTTOM 2.7V 100 VGS 15.0V 10.0V 7.0V 5.5V 4.5V 4.0V 3.5V BOTTOM 2.7V 10 2.7V 1 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 2.7V 1 20µs PULSE WIDTH Tj = 175°C 20µs PULSE WIDTH Tj = 25°C 0.1 0.1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 2.5 R DS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) TJ = 25 ° C TJ = 175 ° C 10 V DS = 25V 20µs PULSE WIDTH 4.0 5.0 6.0 7.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 100 Fig 2. Typical Output Characteristics 100 3.0 10 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1 2.0 1 ID = 5.2A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 VGS = 10V 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF7341Q 20 VGS = 0V, f = 1 MHZ C iss = Cgs + Cgd , SHORTED C, Capacitance(pF) 1200 Cds VGS , Gate-to-Source Voltage (V) 1400 Crss = Cgd Coss = Cds + Cgd 1000 Ciss 800 600 400 Coss 200 ID = 5.2A VDS = 44V VDS = 27V VDS = 11V 16 12 8 4 Crss 0 1 10 0 100 0 10 VDS, Drain-to-Source Voltage (V) 100 40 50 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) TJ = 175 ° C 100 I D , Drain Current (A) ISD , Reverse Drain Current (A) 30 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10 TJ = 25 ° C 1 10us 100us 10 1ms 10ms 1 0.1 0.2 V GS = 0 V 0.5 0.8 1.1 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 20 QG , Total Gate Charge (nC) 1.4 TC = 25 ° C TJ = 175 ° C Single Pulse 0.1 0.1 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7341Q 6.0 V DS VGS I D , Drain Current (A) 5.0 RD D.U.T. RG + - VDD 4.0 10V 3.0 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 2.0 Fig 10a. Switching Time Test Circuit 1.0 VDS 90% 0.0 25 50 75 100 125 150 175 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 100 Thermal Response (Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 1 0.01 PDM SINGLE PULSE (THERMAL RESPONSE) 0.1 t1 t2 0.01 0.00001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 0.070 RDS ( on ) , Drain-to-Source On Resistance Ω ( ) ( RDS(on), Drain-to -Source On ResistanceΩ) IRF7341Q 0.060 0.050 0.040 ID = 7.1A 0.030 0.020 2.0 4.0 6.0 8.0 10.0 12.0 14.0 0.100 0.080 0.060 VGS = 4.5V 0.040 VGS = 10V 0.020 16.0 0 10 VGS, Gate -to -Source Voltage (V) 20 30 40 50 60 ID , Drain Current ( A ) Fig 11. Typical On-Resistance Vs. Gate Voltage Fig 12. Typical On-Resistance Vs. Drain Current QG 10 V 400 QGS QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ .2µF .3µF D.U.T. + V - DS BOTTOM 240 160 80 0 25 VGS 50 75 100 Starting Tj, Junction Temperature 3mA IG 125 150 175 ( ° C) ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 EAS , Single Pulse Avalanche Energy (mJ) 320 12V ID 2.1A 4.3A 5.1A TOP Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com IRF7341Q 100 Duty Cycle = Single Pulse Avalanche Current (A) 10 1 0.01 0.1 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 0.001 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 140 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 5.1A 120 100 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·t av 7 IRF7341Q SO-8 Package Outline Dimensions are shown in millimeters (inches) D 5 A 8 7 6 5 6 H 0.25 [.010] 1 2 3 A 4 MAX MIN .0532 .0688 1.35 1.75 A1 .0040 e e1 0.25 .0098 0.10 .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° A C y 0.10 [.004] 8X b 0.25 [.010] MAX b e1 6X MILLIMETERS MIN A E INCHES DIM B A1 8X L 8X c 7 C A B F OOTPRINT NOT ES : 1. DIMENS IONING & TOLERANCING PER ASME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENS ION IS T HE LENGT H OF LEAD FOR SOLDERING TO A S UBST RAT E. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: T HIS IS AN IRF7101 (MOSFET ) INT ERNAT IONAL RECT IFIER LOGO XXXX F7101 DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) Y = LAS T DIGIT OF T HE YEAR WW = WEEK A = AS S EMBLY S IT E CODE LOT CODE PART NUMBER 8 www.irf.com IRF7341Q SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Data and specifications subject to change without notice. This product has been designed and qualified for the Autyomotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/05 www.irf.com 9