PD -93945A IRF7314Q HEXFET® Power MOSFET Typical Applications • Anti-lock Braking Systems (ABS) • Electronic Fuel Injection • Air bag Benefits • Advanced Process Technology • Dual P-Channel MOSFET • Ultra Low On-Resistance • 175°C Operating Temperature • Repetitive Avalanche Allowed up to Tjmax • Automotive [Q101] Qualified S1 G1 S2 G2 VDSS RDS(on) max ID -20V 0.058@VGS = -4.5V 0.098@VGS = -2.7V -5.2A -4.42A 1 8 D1 2 7 D1 3 6 4 5 D2 D2 SO-8 T o p V ie w Description Specifically designed for Automotive applications, these HEXFET ® Power MOSFET’s in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET’s are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The 175°C rating for the SO-8 package provides improved thermal performance with increased safe operating area and dual MOSFET die capability make it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available in Tape & Reel. Absolute Maximum Ratings Parameter VDS ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C VGS EAS IAR EAR TJ , TSTG Max. Drain-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain CurrentQ Maximum Power DissipationS Maximum Power DissipationS Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche EnergyR Avalanche CurrentQ Repetitive Avalanche Energy Junction and Storage Temperature Range -20 -5.2 -4.3 -43 2.4 1.7 16 ± 12 610 -5.2 See Fig.14, 15, 16 -55 to + 175 Units V A W W mW/°C V mJ A mJ °C Thermal Resistance Parameter RθJA www.irf.com Max. Maximum Junction-to-Ambient S Units 62.5 °C/W 1 03/20/02 IRF7314Q Electrical Characteristics @ TJ = 25°C (unless otherwise specified) ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current V(BR)DSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. -20 ––– ––– ––– -0.7 6.8 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.009 0.049 0.082 ––– ––– ––– ––– ––– ––– 19 2.1 9.3 18 26 41 38 913 512 260 Max. Units Conditions ––– V VGS = 0V, ID = -250µA ––– V/°C Reference to 25°C, ID = -1mA 0.058 VGS = -4.5V, ID = -5.2A R Ω 0.098 VGS = -2.7V, ID = -4.42A R ––– V VDS = VGS, ID = -250µA ––– S VDS = 10V, ID = -5.2A -1.0 VDS = -16V, VGS = 0V µA -25 VDS = -16V, VGS = 0V, TJ = 150°C -100 VGS = -12V nA 100 VGS = 12V 29 ID = -5.2A 3.2 nC VDS = -16V 14 VGS = -4.5V ––– VDD = -10V ––– ID = -1.0A ns ––– RG = 6.0Ω ––– VGS = -4.5V R ––– VGS = 0V ––– pF VDS = -15V ––– ƒ = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Q Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units ––– ––– -3.0 ––– ––– -43 ––– ––– ––– ––– 44 54 -1.0 66 81 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = -3.0A, VGS = 0V R TJ = 25°C, I F = -3.0A di/dt = -100A/µs R D S Notes: Q Repetitive rating; pulse width limited by max. junction temperature. R Starting TJ = 25°C, L = 45mH RG = 25Ω, IAS = -5.2A. 2 S Surface mounted on FR-4 board, t ≤ 10sec. T Pulse width ≤ 300µs; duty cycle ≤ 2%. www.irf.com IRF7314Q 100 VGS -7.5V -5.0V -4.5V -3.5V -3.0V -2.7V -2.0V BOTTOM -1.5V 100 VGS -7.5V -5.0V -4.5V -3.5V -3.0V -2.7V -2.0V BOTTOM -1.5V TOP 10 1 -1.5V 0.1 -ID, Drain-to-Source Current (A) -ID, Drain-to-Source Current (A) TOP 10 -1.5V 1 20µs PULSE WIDTH Tj = 175°C 20µs PULSE WIDTH Tj = 25°C 0.1 0.01 0.1 1 10 0.1 100 Fig 1. Typical Output Characteristics 2.0 TJ = 175 ° C 1 V DS = -15V 20µs PULSE WIDTH 3.0 4.0 5.0 -VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com R DS(on) , Drain-to-Source On Resistance (Normalized) -I D, Drain-to-Source Current (A) TJ = 25 ° C 2.0 100 Fig 2. Typical Output Characteristics 100 0.1 1.0 10 -VDS, Drain-to-Source Voltage (V) -VDS, Drain-to-Source Voltage (V) 10 1 ID = -5.2A 1.5 1.0 0.5 0.0 -60 -40 -20 0 VGS = -4.5V 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF7314Q VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance (pF) 1600 1200 Ciss C oss 800 Crss 400 10 -VGS, Gate-to-Source Voltage (V) 2000 ID = -5.2A 6 4 2 0 1 10 0 100 8 24 32 40 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100 1000 OPERATION IN THIS AREA LIMITED BY R TJ = 175 ° C -II D , Drain Current (A) DS(on) 10 100 TJ = 25 ° C 1 0.1 0.2 16 QG , Total Gate Charge (nC) -VDS , Drain-to-Source Voltage (V) -ISD , Reverse Drain Current (A) VDS =-16V 8 0 V GS = 0 V 0.5 0.8 1.1 -VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 1.4 100us 1ms 10 10ms TC = 25 ° C TJ = 175 ° C Single Pulse 1 0.1 1 10 100 -VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7314Q 6.0 RD VDS -I D , Drain Current (A) 5.0 VGS D.U.T. RG + 4.0 VDD VGS 3.0 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 2.0 Fig 10a. Switching Time Test Circuit 1.0 td(on) tr t d(off) tf VGS 0.0 25 50 75 100 125 150 175 10% TC , Case Temperature ( ° C) 90% Fig 9. Maximum Drain Current Vs. Case Temperature VDS Fig 10b. Switching Time Waveforms 100 Thermal Response (Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 1 0.01 PDM t1 SINGLE PULSE (THERMAL RESPONSE) 0.1 0.01 0.00001 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 0.080 RDS ( on ) , Drain-to-Source On Resistance (Ω ) ( RDS(on), Drain-to -Source On Resistance Ω) IRF7314Q 0.070 0.060 ID = -5.2A 0.050 0.040 0.030 2.0 4.0 6.0 0.430 0.330 VGS = -2.7V 0.230 0.130 VGS = -4.5V 0.030 8.0 0 10 -VGS, Gate -to -Source Voltage (V) 20 30 40 50 -ID , Drain Current ( A ) Fig 11. Typical On-Resistance Vs. Gate Voltage Fig 12. Typical On-Resistance Vs. Drain Current QG 10 V 1600 QGS QGD ID -2.1A TOP -4.4A VG BOTTOM Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS 400 0 50 75 100 Starting Tj, Junction Temperature 3mA IG -5.2A 800 25 VGS 125 150 175 ( ° C) ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 E AS , Single Pulse Avalanche Energy (mJ) 1200 Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com IRF7314Q 100 - Avalanche Current (A) Duty Cycle = Single Pulse 10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 1 0.05 0.10 0.1 0.01 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 700 TOP Single Pulse BOTTOM 10% Duty Cycle ID = -5.2A EAR , Avalanche Energy (mJ) 600 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC ∆T/ [1.3·BV·Zth] Iav = 2∆ EAS (AR) = PD (ave)·t av 7 IRF7314Q SO-8 Package Details D DIM B 5 A 6 8 7 6 5 1 2 3 4 H E 0.25 [.010] A e e1 MIN 1.35 1.75 A1 .0040 .0098 0.10 0.25 C θ b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BAS IC 1.27 BAS IC .025 BAS IC 0.635 BAS IC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 0.25 [.010] MAX K x 45° A 8X b MILLIMET E RS MAX .0688 e1 6X INCHES MIN .0532 A A1 C A B 8X L 8X c 7 FOOT PRINT NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENSION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING T O A S UBS T RAT E. 3X 1.27 [.050] 8X 1.78 [.070] Part Marking 8 www.irf.com IRF7314Q Tape and Reel T E R M IN A L N U M B E R 1 1 2 .3 ( .48 4 ) 1 1 .7 ( .46 1 ) 8 .1 ( .31 8 ) 7 .9 ( .31 2 ) F E E D D IR E C T IO N N O TES: 1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E T E R S (IN C H E S ). 3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1. 33 0.0 0 (1 2 .9 9 2 ) M AX . 1 4 .4 0 ( .5 66 ) 1 2 .4 0 ( .4 88 ) N O TE S : 1. C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2. O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 . Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/02 www.irf.com 9