IRF IRF7314Q

PD -93945A
IRF7314Q
HEXFET® Power MOSFET
Typical Applications
• Anti-lock Braking Systems (ABS)
• Electronic Fuel Injection
• Air bag
Benefits
• Advanced Process Technology
• Dual P-Channel MOSFET
• Ultra Low On-Resistance
• 175°C Operating Temperature
• Repetitive Avalanche Allowed up to Tjmax
• Automotive [Q101] Qualified
S1
G1
S2
G2
VDSS
RDS(on) max
ID
-20V
0.058@VGS = -4.5V
0.098@VGS = -2.7V
-5.2A
-4.42A
1
8
D1
2
7
D1
3
6
4
5
D2
D2
SO-8
T o p V ie w
Description
Specifically designed for Automotive applications, these HEXFET ® Power MOSFET’s in a Dual SO-8 package utilize the
lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these
Automotive qualified HEXFET Power MOSFET’s are a 175°C junction operating temperature, fast switching speed and
improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device
for use in Automotive applications and a wide variety of other applications.
The 175°C rating for the SO-8 package provides improved thermal performance with increased safe operating area and dual
MOSFET die capability make it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce
board space and is also available in Tape & Reel.
Absolute Maximum Ratings
Parameter
VDS
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
PD @TA = 70°C
VGS
EAS
IAR
EAR
TJ , TSTG
Max.
Drain-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain CurrentQ
Maximum Power DissipationS
Maximum Power DissipationS
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche EnergyR
Avalanche CurrentQ
Repetitive Avalanche Energy
Junction and Storage Temperature Range
-20
-5.2
-4.3
-43
2.4
1.7
16
± 12
610
-5.2
See Fig.14, 15, 16
-55 to + 175
Units
V
A
W
W
mW/°C
V
mJ
A
mJ
°C
Thermal Resistance
Parameter
RθJA
www.irf.com
Max.
Maximum Junction-to-Ambient S
Units
62.5
°C/W
1
03/20/02
IRF7314Q
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
∆V(BR)DSS/∆TJ
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
gfs
Gate Threshold Voltage
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
V(BR)DSS
IGSS
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
-20
–––
–––
–––
-0.7
6.8
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.009
0.049
0.082
–––
–––
–––
–––
–––
–––
19
2.1
9.3
18
26
41
38
913
512
260
Max. Units
Conditions
–––
V
VGS = 0V, ID = -250µA
––– V/°C Reference to 25°C, ID = -1mA
0.058
VGS = -4.5V, ID = -5.2A R
Ω
0.098
VGS = -2.7V, ID = -4.42A R
–––
V
VDS = VGS, ID = -250µA
–––
S
VDS = 10V, ID = -5.2A
-1.0
VDS = -16V, VGS = 0V
µA
-25
VDS = -16V, VGS = 0V, TJ = 150°C
-100
VGS = -12V
nA
100
VGS = 12V
29
ID = -5.2A
3.2
nC
VDS = -16V
14
VGS = -4.5V
–––
VDD = -10V
–––
ID = -1.0A
ns
–––
RG = 6.0Ω
–––
VGS = -4.5V R
–––
VGS = 0V
–––
pF
VDS = -15V
–––
ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) Q
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min. Typ. Max. Units
–––
–––
-3.0
–––
–––
-43
–––
–––
–––
–––
44
54
-1.0
66
81
A
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
TJ = 25°C, IS = -3.0A, VGS = 0V R
TJ = 25°C, I F = -3.0A
di/dt = -100A/µs R
D
S
Notes:
Q Repetitive rating; pulse width limited by
max. junction temperature.
R Starting TJ = 25°C, L = 45mH
RG = 25Ω, IAS = -5.2A.
2
S Surface mounted on FR-4 board, t ≤ 10sec.
T Pulse width ≤ 300µs; duty cycle ≤ 2%.
www.irf.com
IRF7314Q
100
VGS
-7.5V
-5.0V
-4.5V
-3.5V
-3.0V
-2.7V
-2.0V
BOTTOM -1.5V
100
VGS
-7.5V
-5.0V
-4.5V
-3.5V
-3.0V
-2.7V
-2.0V
BOTTOM -1.5V
TOP
10
1
-1.5V
0.1
-ID, Drain-to-Source Current (A)
-ID, Drain-to-Source Current (A)
TOP
10
-1.5V
1
20µs PULSE WIDTH
Tj = 175°C
20µs PULSE WIDTH
Tj = 25°C
0.1
0.01
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
2.0
TJ = 175 ° C
1
V DS = -15V
20µs PULSE WIDTH
3.0
4.0
5.0
-VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
R DS(on) , Drain-to-Source On Resistance
(Normalized)
-I D, Drain-to-Source Current (A)
TJ = 25 ° C
2.0
100
Fig 2. Typical Output Characteristics
100
0.1
1.0
10
-VDS, Drain-to-Source Voltage (V)
-VDS, Drain-to-Source Voltage (V)
10
1
ID = -5.2A
1.5
1.0
0.5
0.0
-60 -40 -20 0
VGS = -4.5V
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF7314Q
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance (pF)
1600
1200
Ciss
C
oss
800
Crss
400
10
-VGS, Gate-to-Source Voltage (V)
2000
ID = -5.2A
6
4
2
0
1
10
0
100
8
24
32
40
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
1000
OPERATION IN THIS AREA LIMITED
BY R
TJ = 175 ° C
-II D , Drain Current (A)
DS(on)
10
100
TJ = 25 ° C
1
0.1
0.2
16
QG , Total Gate Charge (nC)
-VDS , Drain-to-Source Voltage (V)
-ISD , Reverse Drain Current (A)
VDS =-16V
8
0
V GS = 0 V
0.5
0.8
1.1
-VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1.4
100us
1ms
10
10ms
TC = 25 ° C
TJ = 175 ° C
Single Pulse
1
0.1
1
10
100
-VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7314Q
6.0
RD
VDS
-I D , Drain Current (A)
5.0
VGS
D.U.T.
RG
+
4.0
VDD
VGS
3.0
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
2.0
Fig 10a. Switching Time Test Circuit
1.0
td(on)
tr
t d(off)
tf
VGS
0.0
25
50
75
100
125
150
175
10%
TC , Case Temperature ( ° C)
90%
Fig 9. Maximum Drain Current Vs.
Case Temperature
VDS
Fig 10b. Switching Time Waveforms
100
Thermal Response (Z thJA )
D = 0.50
0.20
10
0.10
0.05
0.02
1
0.01
PDM
t1
SINGLE PULSE
(THERMAL RESPONSE)
0.1
0.01
0.00001
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJA + TA
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
0.080
RDS ( on ) , Drain-to-Source On Resistance (Ω )
(
RDS(on), Drain-to -Source On Resistance Ω)
IRF7314Q
0.070
0.060
ID = -5.2A
0.050
0.040
0.030
2.0
4.0
6.0
0.430
0.330
VGS = -2.7V
0.230
0.130
VGS = -4.5V
0.030
8.0
0
10
-VGS, Gate -to -Source Voltage (V)
20
30
40
50
-ID , Drain Current ( A )
Fig 11. Typical On-Resistance Vs.
Gate Voltage
Fig 12. Typical On-Resistance Vs.
Drain Current
QG
10 V
1600
QGS
QGD
ID
-2.1A
TOP
-4.4A
VG
BOTTOM
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
400
0
50
75
100
Starting Tj, Junction Temperature
3mA
IG
-5.2A
800
25
VGS
125
150
175
( ° C)
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
E AS , Single Pulse Avalanche Energy (mJ)
1200
Fig 14. Maximum Avalanche Energy
Vs. Drain Current
www.irf.com
IRF7314Q
100
- Avalanche Current (A)
Duty Cycle = Single Pulse
10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
1
0.05
0.10
0.1
0.01
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
700
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = -5.2A
EAR , Avalanche Energy (mJ)
600
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC
∆T/ [1.3·BV·Zth]
Iav = 2∆
EAS (AR) = PD (ave)·t av
7
IRF7314Q
SO-8 Package Details
D
DIM
B
5
A
6
8
7
6
5
1
2
3
4
H
E
0.25 [.010]
A
e
e1
MIN
1.35
1.75
A1 .0040
.0098
0.10
0.25
C
θ
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BAS IC
1.27 BAS IC
.025 BAS IC
0.635 BAS IC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
0.25 [.010]
MAX
K x 45°
A
8X b
MILLIMET E RS
MAX
.0688
e1
6X
INCHES
MIN
.0532
A
A1
C A B
8X L
8X c
7
FOOT PRINT
NOT ES :
1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994.
8X 0.72 [.028]
2. CONT ROLLING DIMENSION: MILLIMET ER
3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ].
4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA.
5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006].
6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010].
6.46 [.255]
7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING T O
A S UBS T RAT E.
3X 1.27 [.050]
8X 1.78 [.070]
Part Marking
8
www.irf.com
IRF7314Q
Tape and Reel
T E R M IN A L N U M B E R 1
1 2 .3 ( .48 4 )
1 1 .7 ( .46 1 )
8 .1 ( .31 8 )
7 .9 ( .31 2 )
F E E D D IR E C T IO N
N O TES:
1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R .
2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E T E R S (IN C H E S ).
3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1.
33 0.0 0
(1 2 .9 9 2 )
M AX .
1 4 .4 0 ( .5 66 )
1 2 .4 0 ( .4 88 )
N O TE S :
1. C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R .
2. O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 .
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/02
www.irf.com
9