PD - 96101 IRF7103QPbF AUTOMOTIVE MOSFET Typical Applications l l l HEXFET® Power MOSFET Anti-lock Braking Systems (ABS) Electronic Fuel Injection Power Doors, Windows & Seats VDSS Benefits l l l l l l l Advanced Process Technology Dual N-Channel MOSFET Ultra Low On-Resistance 175°C Operating Temperature Repetitive Avalanche Allowed up to Tjmax Automotive [Q101] Qualified Lead-Free Description Specifically designed for Automotive applications, these HEXFET® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available RDS(on) max (mW) ID 130@VGS = 10V 3.0A 200@VGS = 4.5V 1.5A 50V 1 8 D1 G1 2 7 D1 S2 3 6 D2 4 5 D2 S1 G2 SO-8 Top View in Tape & Reel. Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 70°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ, TSTG Continuous Drain Current, VGS @ 4.5V Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Junction and Storage Temperature Range Max. Units 3.0 2.5 25 2.4 16 ± 20 22 See Fig.16c, 16d, 19, 20 12 -55 to + 175 A W mW/°C V mJ A mJ V/ns °C Thermal Resistance Symbol RθJL RθJA www.irf.com Parameter Junction-to-Drain Lead Junction-to-Ambient Typ. Max. Units ––– ––– 20 50 °C/W 1 07/23/07 IRF7103QPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current V(BR)DSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. 50 ––– ––– ––– 1.0 3.4 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.057 ––– ––– ––– ––– ––– ––– ––– ––– 10 1.2 2.8 5.1 1.7 15 2.3 255 69 29 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 130 VGS = 10V, ID = 3.0A mΩ 200 VGS = 4.5V, ID = 1.5A 3.0 V VDS = VGS, ID = 250µA ––– S VDS = 15V, ID = 3.0A 2.0 VDS = 40V, VGS = 0V µA 25 VDS = 40V, VGS = 0V, TJ = 55°C 100 VGS = 20V nA -100 VGS = -20V 15 ID = 2.0A ––– nC VDS = 40V ––– VGS = 10V ––– VDD = 25V ––– ID = 1.0A ns ––– RG = 6.0Ω ––– RD = 25Ω ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units 3.0 12 ––– ––– ––– ––– 35 45 1.2 53 67 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 1.5A, VGS = 0V TJ = 25°C, IF = 1.5A di/dt = 100A/µs D S Notes: Repetitive rating; pulse width limited by Starting TJ = 25°C, L = 4.9mH max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in square Cu board ISD ≤ 2.0A, di/dt ≤ 155A/µs, VDD ≤ V(BR)DSS, RG = 25Ω, IAS = 3.0A. (See Figure 12). TJ ≤ 175°C Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive avalanche performance. 2 www.irf.com IRF7103QPbF 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP TOP 4.5V 10 20µs PULSE WIDTH Tj = 25°C 1 10 1 20µs PULSE WIDTH Tj = 175°C 0.1 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 T J = 175°C T J = 25°C VDS = 25V 20µs PULSE WIDTH 1.00 3.0 6.0 9.0 12.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics 100.00 10.00 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics ID, Drain-to-Source Current (Α) 4.5V 15.0 ID = 3.0A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 VGS = 10V 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF7103QPbF 10000 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd 1000 Ciss Coss 100 Crss 10 1 10 6 3 0 100 0 3 100 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 10 TJ = 175 ° C 1 TJ = 25 ° C V GS = 0 V 0.8 1.0 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 9 12 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 0.6 6 QG, Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 0.1 0.4 VDS = 40V VDS = 25V VDS = 10V 9 VGS , Gate-to-Source Voltage (V) C, Capacitance(pF) Coss = Cds + Cgd I D = 2.0A 1.2 OPERATION IN THIS AREA LIMITED BY R DS(on) 10 1 100µsec 1msec 0.1 Tc = 25°C Tj = 175°C Single Pulse 0.01 0 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7103QPbF 3.0 RD VDS VGS ID , Drain Current (A) 2.4 D.U.T. RG + -V DD 1.8 VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 1.2 Fig 10a. Switching Time Test Circuit 0.6 VDS 0.0 90% 25 50 75 100 125 150 175 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms (Z thJA) 100 D = 0.50 10 0.20 Thermal Response 0.10 0.05 P DM 0.02 1 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = 2. Peak T 0.1 0.00001 0.0001 0.001 0.01 0.1 t1/ t 2 J = P DM x Z thJA +TA 1 10 t 1, Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 0.15 RDS (on) , Drain-to-Source On Resistance (Ω) RDS(on) , Drain-to -Source On Resistance (Ω) IRF7103QPbF 0.14 0.13 0.12 ID = 3.0A 0.11 0.10 0.09 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 2.500 2.000 1.000 0.500 0 5 10 15 20 25 30 35 40 ID , Drain Current (A) Fig 13. Typical On-Resistance Vs. Drain Current Fig 12. Typical On-Resistance Vs. Gate Voltage 2.0 70 60 1.8 50 ID = 250µA Power (W) V GS(th) Gate threshold Voltage (V) VGS = 10V 0.000 -V GS, Gate -to -Source Voltage (V) 1.5 40 30 20 1.3 10 1.0 -75 -50 -25 0 25 50 75 100 125 150 TJ , Temperature ( °C ) 6 VGS = 4.5V 1.500 Fig 14. Typical Threshold Voltage Vs. Junction Temperature 0 1.00 10.00 100.00 1000.00 Time (sec) Fig 15. Typical Power Vs. Time www.irf.com EAS , Single Pulse Avalanche Energy (mJ) IRF7103QPbF 60 TOP 48 BOTTOM ID 1.2A 2.5A 3.0A 15V 36 D.U.T RG 24 DRIVER L VDS + V - DD IAS 20V 12 tp A 0.01Ω Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( °C) V(BR)DSS Fig 16a. Maximum Avalanche Energy Vs. Drain Current tp I AS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 17. Gate Charge Test Circuit www.irf.com Charge Fig 18. Basic Gate Charge Waveform 7 IRF7103QPbF 1000 Duty Cycle = Single Pulse Avalanche Current (A) 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 10 1 0.01 0.1 0.05 0.10 0.01 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 25 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 3.0A 20 15 10 5 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 20. Maximum Avalanche Energy Vs. Temperature 8 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave) ·tav www.irf.com IRF7103QPbF SO-8 Package Outline Dimensions are shown in millimeters (inches) ' ,1&+(6 0,1 0$; $ $ E F ' ( H %$6,& H %$6,& + . / \ ',0 % $ + >@ ( ; $ H H ;E >@ $ $ 0,//,0(7(56 0,1 0$; %$6,& %$6,& .[ & \ >@ ;/ ;F & $ % 127(6 ',0(16,21,1*72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( )22735,17 ;>@ >@ ;>@ ;>@ SO-8 Part Marking (;$03/(7+,6,6$1,5)026)(7 ,17(51$7,21$/ 5(&7,),(5 /2*2 <:: ;;;; ) '$7(&2'(<:: < /$67',*,72)7+(<($5 :: :((. /27&2'( 3$57180%(5 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRF7103QPbF SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/2007 10 www.irf.com