PD - 95568 IRG4PC60UPbF UltraFast Speed IGBT INSULATED GATE BIPOLAR TRANSISTOR Features C UltraFast: Optimized for high operating frequencies up to 50 kHz in hard switching, >200 kHz in resonant mode. Generation 4 IGBT design provides tighter parameter distribution and higher efficiency. Industry standard TO-247AC package. Lead-Free VCES = 600V VCE(on) typ. = 1.6V G @VGE = 15V, IC = 40A E n-channel Benefits Generation 4 IGBT's offer highest efficiency available. IGBT's optimized for specified application conditions. Designed for best performance when used with IR Hexfred & IR Fred companion diodes. TO-247AC Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Max. Units Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. 600 75 40 300 300 ± 20 200 520 210 -55 to + 150 V A V mJ W 300 (0.063 in. (1.6mm from case ) 10 lbfin (1.1Nm) °C Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. ---0.24 ---6 (0.21) 0.24 ---40 ---- Units °C/W g (oz) 1 07/15/04 IRG4PC60UPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ---Emitter-to-Collector Breakdown Voltage 17 ---∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ---- 0.28 ---- 1.7 VCE(ON) Collector-to-Emitter Saturation Voltage ---- 1.9 ---- 1.6 VGE(th) Gate Threshold Voltage 3.0 ---∆V GE(th)/∆TJ Temperature Coeff. of Threshold Voltage ---- -12 gfe Forward Transconductance 44 59 ------ICES Zero Gate Voltage Collector Current ---- ------- ---IGES Gate-to-Emitter Leakage Current ---- ---V(BR)CES V(BR)ECS Max. Units Conditions ---V VGE = 0V, IC = 250µA ---V VGE = 0V, IC = 1.0A ---- V/°C VGE = 0V, IC = 1.0mA 2.0 IC = 40A VGE = 15V ---IC = 75A See Fig.2, 5 V ---IC = 40A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA ---- mV/°C VCE = VGE, IC = 250µA ---S VCE ≥ 100V, IC = 40A 250 V GE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 5000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 n A VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. ---------------------------------------------------------- Typ. 310 41 110 39 42 200 100 0.28 1.1 1.3 36 42 300 160 2.6 13 5860 370 75 Max. Units Conditions 320 IC = 40A 46 nC VCC = 480V See Fig. 8 120 VGE = 15V ------TJ = 25°C ns IC = 40A, VCC = 480V VGE = 15V, RG = 5.0Ω ---Energy losses include "tail" ---mJ See Fig. 10, 11, 13, 14 1.8 ---TJ = 150°C, ---IC = 40A, VCC = 480V ns ---VGE = 15V, RG = 5.0Ω ---Energy losses include "tail" ---mJ See Fig. 13, 14 ---nH Measured 5mm from package ---VGE = 0V ---pF VCC = 30V See Fig. 7 --- = 1.0MHz Notes: Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC = 80%(VCES), VGE = 20V, L = TBD µH, RG = 5.0W. (See fig. 13a) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4PC60UPbF 80 Triangular wave: Square wave: 60% of rated voltage 60 Clamp voltage: 80% of rated Load Current ( A ) Ideal diodes 40 For both: Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 73W 20 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) 1000 T J = 150°C 100 10 T J = 25°C 1 VGE = 15V 20µs PULSE WIDTH IC, Collector-to-Emitter Current (A) IC, Collector t-to-Emitter Current (A) 1000 100 T J = 150°C T J = 25°C 10 VCC = 10V 5µs PULSE WIDTH 1 0.1 0.0 1.0 2.0 3.0 4.0 5.0 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 4 5 6 7 8 9 10 11 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PC60UPbF 80 3.0 VCE , Collector-to Emitter Voltage (V) V GE = 15V Maximum DC Collector Current (A) 70 60 50 40 30 20 10 VGE = 15V 80µs PULSE WIDTH IC = 80A 2.0 IC = 40A IC = 20A 1.0 0 25 50 75 100 125 150 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) T C, Case Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z ) thJC 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 0.001 0.00001 0.0001 0.001 0.01 1. Duty factor D = t1/ t 2 2. Peak T J = P DM x Z thJC +TC 0.1 1 t1, Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PC60UPbF 20 Cies C, Capacitance (pF) 8000 V GE = 0V, f = 1MHz C ies = C ge + C gc , C ce SHORTED C res = C gc C oes = C ce + C gc 6000 Coes 4000 Cres 2000 12 8 4 0 0 1 10 0 100 100 200 300 400 QG, Total Gate Charge (nC) VCE , Collector-to-Emitter Voltage (V) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 100 5.00 RG = 5.0Ω VGE = 15V VCC = 480V VGE = 15V TJ = 25°C I C = 40A 4.00 Total Switching Losses (mJ) Total Switching Losses (mJ) V = 480V VccCC = 400V Ic = 40V I C = 40A 16 VGE , Gate-to-Emitter Voltage (V) 10000 3.00 2.00 VCC = 480V 10 IC = 80A IC = 40A 1 IC = 20A 0.1 1.00 0 10 20 30 40 RG, Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 50 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J, Junction Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PC60UPbF 1000 7.0 RG = 5.0Ω TJ = 150°C VGE = 15V 6.0 VCC = 480V IC, Collector-to-Emitter Current (A) Total Switching Losses (mJ) 8.0 5.0 4.0 3.0 2.0 1.0 100 SAFE OPERATING AREA 10 1 0.0 20 30 40 50 60 70 IC, Collector Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 VGE = 20V T J = 125° 80 0.1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4PC60UPbF L D.U.T. RL = VC * 50V 0 - 480V 1000V 480V 4 X IC@ 25°C 480µF 960V c d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Fig. 13b - Pulsed Collector Fig. 13a - Clamped Inductive Current Test Circuit Load Test Circuit IC L Driver* D.U.T. Fig. 14a - Switching Loss Test Circuit VC 50V 1000V c d e * Driver same type as D.U.T., VC = 480V c d 90% e VC 10% 90% Fig. 14b - Switching Loss t d(off) 10% I C 5% Waveforms tf tr t d(on) t=5µs E on E off E ts = (Eon +Eoff ) www.irf.com 7 IRG4PC60UPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WIT H ASS EMBLY LOT CODE 5657 ASS EMBLED ON WW 35, 2000 IN THE ASS EMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" PART NUMBER INT ERNATIONAL RECT IFIER LOGO IRFPE30 56 AS S EMBLY LOT CODE 035H 57 DATE CODE YEAR 0 = 2000 WEEK 35 LINE H Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/04 8 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/