To all our customers Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER DESCRIPTION ●Interrupts ............................................................ 19 types, 7 levels ●Multiple-function 16-bit timer ................................................. 5 + 3 ●Serial I/O (UART or clock synchronous) ...................................... 3 ●10-bit A-D converter .............................................. 8-channel inputs ●12-bit watchdog timer ●Programmable input/output (ports P0, P1, P2, P3, P4, P5, P6, P7, P8) ............................... 68 ●Clock generating circuit ........................................ 2 circuits built-in ●Small package ..................... 80-pin plastic molded fine-pitch QFP (80P6D-A;0.5 mm lead pitch) The M37735M4LXXXHP is a single-chip microcomputer using the 7700 Family core. This single-chip microcomputer has a CPU and a bus interface unit. The CPU is a 16-bit parallel processor that can be an 8-bit parallel processor, and the bus interface unit enhances the memory access efficiency to execute instructions fast. This microcomputer also includes a 32 kHz oscillation circuit, in addition to the ROM, RAM, multiple-function timers, serial I/O, A-D converter, and so on. Its strong points are the low power dissipation, the low supply voltage and the small package. APPLICATION FEATURES Control devices for general commercial equipment such as office automation, office equipment, personal information equipment, and so on. Control devices for general industrial equipment such as communication equipment, and so on. ●Number of basic instructions .................................................. 103 ●Memory size ROM ................................................. 32 Kbytes RAM ................................................ 2048 bytes ●Instruction execution time The fastest instruction at 12 MHz frequency ...................... 333 ns ●Single power supply ...................................................... 2.7–5.5 V ●Low power dissipation (At 3 V supply voltage, 12 MHz frequency) ............................................ 9 mW (Typ.) 42 41 44 43 46 45 47 49 48 51 50 52 54 53 55 57 56 58 61 40 62 39 63 38 64 37 65 36 66 35 67 34 68 33 69 32 70 31 M37735M4LXXXHP 71 30 72 29 73 28 74 27 75 26 76 25 77 24 19 20 18 17 16 14 15 13 12 11 9 10 8 6 7 5 21 4 80 3 22 1 23 79 2 78 P66/TB1IN P65/TB0IN P64/INT2 P63/INT1 P62/INT0 P61/TA4IN P60/TA4OUT P57/TA3IN/KI3 P56/TA3OUT/KI2 P55/TA2IN/KI1 P54/TA2OUT/KI0 P53/TA1IN P52/TA1OUT P51/TA0IN P50/TA0OUT P47 P46 P45 P44 P43 P85/CLK1 P84/CTS1/RTS1 P83/TXD0 P82/RXD0/CLKS0 P81/CLK0 P80/CTS0/RTS0/CLKS1 VCC AVCC VREF AVSS VSS P77/AN7/XCIN P76/AN6/XCOUT P75/AN5/ADTRG/TXD2 P74/AN4/RXD2 P73/AN3/CLK2 P72/AN2/CTS2 P71/AN1 P70/AN0 P67/TB2IN/φSUB 59 60 P86/RxD1 P87/TxD1 P00/CS0 P01/CS1 P02/CS2 P03/CS3 P04/CS4 P05/RSMP P06/A16 P07/A17 P10/A8/D8 P11/A9/D9 P12/A10/D10 P13/A11/D11 P14/A12/D12 P15/A13/D13 P16/A14/D14 P17/A15/D15 P20/A0/D0 P21/A1/D1 PIN CONFIGURATION (TOP VIEW) Outline 80P6D-A P22/A2/D2 P23/A3/D3 P24/A4/D4 P25/A5/D5 P26/A6/D6 P27/A7/D7 P30/WEL P31/WEH P32/ALE P33/HLDA VSS E/RDE XOUT XIN RESET CNVSS BYTE P40/HOLD P41/RDY P42/φ1 Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER External data bus width Reference selection input voltage input VREF BYTE Data Bus(Even) Data Bus(Odd) P0(8) Instruction Queue Buffer Q0(8) P1(8) Instruction Queue Buffer Q2(8) Address Bus Input/Output port P1 Instruction Queue Buffer Q1(8) AVCC Instruction Register(8) Data Buffer DBL(8) Input/Output port P0 Data Buffer DBH(8) Incrementer(24) Incrementer/Decrementer(24) (0V) VSS Program Counter PC(16) Program Bank Register PG(8) Input/Output port P2 Input/Output port P3 P2(8) A-D Converter(10) CNVss Data Address Register DA(24) P3(4) (0V) AVSS Program Address Register PA(24) 2 Input/Output port P4 Input/Output port P5 Input/Output port P6 Input/Output port P7 P4(8) P5(8) Timer TB0(16) Timer TA0(16) P6(8) Timer TB1(16) UART1(9) Timer TB2(16) Timer TA1(16) P7(8) E 2048 bytes RAM Accumulator A(16) Input/Output port P8 32 Kbytes P8(8) XCOUT XCIN Arithmetic Logic Unit(16) ROM Clock Generating Circuit Enable output Accumulatcr B(16) Watchdog Timer XCOUT XCIN Index Register X(16) Timer TA4(16) Stack Pointer S(16) Timer TA2(16) RESET Direct Page Register DPR(16) Index Register Y(16) Clock input Clock output XIN XOUT M37735M4LXXXHP BLOCK DIAGRAM Reset input Processor Status Register PS(11) Timer TA3(16) Input Butter Register IB(16) UART0(9) UART2(9) VCC Data Bank Register DT(8) Y NAR I MITSUBISHI MICROCOMPUTERS . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL M37735M4LXXXHP P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER FUNCTIONS OF M37735M4LXXXHP Parameter Number of basic instructions Instruction execution time Memory size Input/Output ports Multi-function timers ROM RAM P0 – P2, P4 – P8 P3 TA0, TA1, TA2, TA3, TA4 TB0, TB1, TB2 Serial I/O A-D converter Watchdog timer Interrupts Clock generating circuit Supply voltage Power dissipation Input/Output characteristic Memory expansion Operating temperature range Device structure Package Input/Output voltage Output current Functions 103 333 ns (the fastest instruction at external clock 12 MHz frequency) 32 Kbytes 2048 bytes 8-bit ✕ 8 4-bit ✕ 1 16-bit ✕ 5 16-bit ✕ 3 (UART or clock synchronous serial I/O) ✕ 3 10-bit ✕ 1 (8 channels) 12-bit ✕ 1 3 external types, 16 internal types Each interrupt can be set to the priority level (0 – 7.) 2 circuits built-in (externally connected to a ceramic resonator or a quartz-crystal oscillator) 2.7 – 5.5 V 9 mW (at 3 V supply voltage, external clock 12 MHz frequency) 22.5 mW (at 5 V supply voltage, external clock 12 MHz frequency) 5V 5 mA Maximum 1 Mbytes –40 to 85 °C CMOS high-performance silicon gate process 80-pin plastic molded fine-pitch QFP (80P6D-A;0.5 mm lead pitch) 3 MITSUBISHI MICROCOMPUTERS Y NAR I M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER PIN DESCRIPTION Pin Vcc, Vss CNVss Name Input/Output Power source Apply 2.7 – 5.5 V to Vcc and 0 V to Vss. CNVss input Input RESET Reset input Input XIN Clock input Input XOUT Clock output Enable output Output Output External data bus width selection input Analog power source input Reference voltage input I/O port P0 Input ________ _ E BYTE AVcc, AVss VREF P00 – P07 Input I/O P10 – P17 I/O port P1 I/O P20 – P27 I/O port P2 I/O P30 – P33 I/O port P3 I/O P40 – P47 I/O port P4 I/O P50 – P57 I/O port P5 I/O P60 – P67 I/O port P6 I/O P70 – P77 I/O port P7 I/O P80 – P87 I/O port P8 I/O 4 Functions This pin controls the processor mode. Connect to Vss for the single-chip mode and the memory expansion mode, and to Vcc for the microprocessor mode. When “L” level is applied to this pin, the microcomputer enters the reset state. These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartzcrystal oscillator between XIN and XOUT. When an external clock is used, the clock source should be connected to the XIN pin, and the XOUT pin should be left open. In the single-chip mode, this pin functions as the enable signal output pin which indicates the access status in the internal bus. _____ In the memory expansion mode or the microprocessor mode, this pin functions as the RDE signal output pin. In the memory expansion mode or the microprocessor mode, this pin determines whether the external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when “L” signal is input and an 8-bit width when “H” signal is input. Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss. This is reference voltage input pin for the A-D converter. In the single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in the input mode when reset. _ _ _ _ _ _ _ _ _ _ _ In the memory expansion mode or the microprocessor mode, these pins output CS0 – CS4, ______ RSMP signals, and address (A16, A17). In the single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to “L” in the memory expansion mode or the microprocessor mode and external data bus has a 16-bit width, high-order data (D8 – D15) is input/output or an address (A8 – A15) is output. When the BYTE pin is “H” and an external data bus has an 8-bit width, only address (A8 – A15) is output. In the single-chip mode, these pins have the same functions as port P0. In the memory expansion mode or the microprocessor mode, low-order data (D0 – D7) is input/output or an address (A0 – A7) is output. In the single-chip mode, these pins have the same function as port P0. In the memory expansion _ _ _ _ _ _ _ _ _ _ _ _ ______ mode or the microprocessor mode, WEL, WEH, ALE, and HLDA signals are output. In the single-chip mode, these pins have the same functions as__ port P0. In__the memory expansion _ _ _ _ _ _ ___ mode or the microprocessor mode, P40, P41, and P42 become HOLD and RDY input pins, and clock φ1 output pin, respectively. Functions of the other pins are the same as in the single-chip mode. However, in the memory expansion mode, P42 also functions as an I/O port. In addition to having the same functions as port P0 in the single-chip mode, these pins also _ _ _ _ _ _ _ _ _ function as I/O pins for timers A0 to A3 and input pins for key input interrupt input (KI0 – KI3). In addition to having the same functions as port P0 in the single-chip mode, these pins also _ _ _ _ _ _ _ _ _ _ _ _ _ function as I/O pins for timer A4, input pins for external interrupt input (INT0 – INT2) and input pins for timers B0 to B2. P67 also functions as sub-clock φSUB output pin. In addition to having the same functions as port P0 in the single-chip mode, these pins function as input pins for A-D converter. P72 to P75 also function as I/O pins for UART2. Additionally, P76 and P77 have the function as the output pin (XCOUT) and the input pin (XCIN) of the sub-clock (32 kHz) oscillation circuit, respectively. When P76 and P77 are used as the XCOUT and XCIN pins, connect a resonator or an oscillator between the both. In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for UART 0 and UART 1. Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER BASIC FUNCTION BLOCKS The M37735M4LXXXHP has the same fuanctions as the M37735MHBXXXFP except for the memory allocation, the reset circuit, the ROM area modification function, and the package. Refer to the section on the M37735MHBXXXFP. MEMORY The memory map is shown in Figure 1. The address space has a capacity of 16 Mbytes and is allocated to addresses from 016 to FFFFFF16. The address space is divided by 64-Kbyte unit called bank. The banks are numbered from 016 to FF16. However, banks 1016 – FF16 of the 7735 group cannot be accessed. Built-in ROM, RAM and control registers for internal peripheral devices are assigned to bank 016. The 32-Kbyte area from addresses 800016 to FFFF16 is the built-in ROM. Addresses FFD616 to FFFF16 are the RESET and interrupt vector addresses and contain the interrupt vectors. Refer to the section on interrupts for details. The 2048-byte area allocated to addresses from 8016 to 87F16 is the built-in RAM. In addition to storing data, the RAM is used as stack 00000016 00000016 00007F 16 00008016 Bank 0 16 00087F 16 during a subroutine call or interrupts. Peripheral devices such as I/O ports, A-D converter, serial I/O, timer, and interrupt control registers are allocated to addresses from 016 to 7F16. Additionally, the internal ROM area can be modified by software. Refer to the section on ROM area modification function for details. A 256-byte direct page area can be allocated anywhere in bank 016 by using the direct page register (DPR). In the direct page addressing mode, the memory in the direct page area can be accessed with two words. Hence program steps can be reduced. 00000016 Internal peripheral devices control registers Internal RAM 2048 bytes 00FFFF16 01000016 refer to Fig. 2 for detail information 00007F 16 Bank 1 16 Interrupt vector table 00FFD6 16 A-D/UART2 trans./rece. UART1 transmission 01FFFF16 UART1 receive ••••••••••••••••••• UART0 transmission UART0 receive Timer B2 Timer B1 00800016 Timer B0 Timer A4 Timer A3 Timer A2 FE000016 Timer A1 Internal ROM 32 Kbytes Bank FE 16 Timer A0 INT2/Key input INT1 INT0 FEFFFF 16 FF0000 16 Watchdog timer DBC Bank FF 16 BRK instruction 00FFD6 16 FFFFFF 16 00FFFF 16 Zero divide 00FFFE16 RESET Notes 1. Internal ROM area can be modified. (Refer to the section on ROM area modification function.) 2. Banks 10 16 – FF16 cannot be accessed in the 7735 group. Fig. 1 Memory map 5 I Y NAR MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P Address (Hexadecimal notation) 000000 000001 000002 Port P0 register 000003 Port P1 register 000004 Port P0 direction register 000005 Port P1 direction register 000006 Port P2 register 000007 Port P3 register 000008 Port P2 direction register 000009 Port P3 direction register 00000A Port P4 register 00000B Port P5 register 00000C Port P4 direction register 00000D Port P5 direction register 00000E Port P6 register 00000F Port P7 register 000010 Port P6 direction register 000011 Port P7 direction register 000012 Port P8 register 000013 000014 Port P8 direction register 000015 000016 000017 000018 000019 00001A 00001B 00001C Reserved area (Note) 00001D Reserved area (Note) 00001E A-D control register 0 00001F A-D control register 1 000020 A-D register 0 000021 000022 A-D register 1 000023 000024 A-D register 2 000025 000026 A-D register 3 000027 000028 A-D register 4 000029 00002A A-D register 5 00002B 00002C A-D register 6 00002D 00002E A-D register 7 00002F 000030 UART 0 transmit/receive mode register 000031 UART 0 baud rate register 000032 UART 0 transmission buffer register 000033 000034 UART 0 transmit/receive control register 0 000035 UART 0 transmit/receive control register 1 000036 UART 0 receive buffer register 000037 000038 UART 1 transmit/receive mode register 000039 UART 1 baud rate register 00003A UART 1 transmission buffer register 00003B 00003C UART 1 transmit/receive control register 0 00003D UART 1 transmit/receive control register 1 00003E UART 1 receive buffer register 00003F SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Address (Hexadecimal notation) 000040 000041 000042 000043 000044 000045 000046 000047 000048 000049 00004A 00004B 00004C 00004D 00004E 00004F 000050 000051 000052 000053 000054 000055 000056 000057 000058 000059 00005A 00005B 00005C 00005D 00005E 00005F 000060 000061 000062 000063 000064 000065 000066 000067 000068 000069 00006A 00006B 00006C 00006D 00006E 00006F 000070 000071 000072 000073 000074 000075 000076 000077 000078 000079 00007A 00007B 00007C 00007D 00007E 00007F Count start flag One-shot start flag Up-down flag Timer A0 register Timer A1 register Timer A2 register Timer A3 register Timer A4 register Timer B0 register Timer B1 register Timer B2 register Timer A0 mode register Timer A1 mode register Timer A2 mode register Timer A3 mode register Timer A4 mode register Timer B0 mode register Timer B1 mode register Timer B2 mode register Processor mode register 0 Processor mode register 1 Watchdog timer register Watchdog timer frequency selection flag Reserved area (Note) Memory allocation control register UART 2 transmit/receive mode register UART 2 baud rate register UART 2 transmission buffer register UART 2 transmit/receive control register 0 UART 2 transmit/receive control register 1 UART 2 receive buffer register Oscillation circuit control register 0 Port function control register Serial transmit control register Oscillation circuit control register 1 A-D/UART 2 trans./rece. interrupt control register UART 0 transmission interrupt control register UART 0 receive interrupt control register UART 1 transmission interrupt control register UART 1 receive interrupt control register Timer A0 interrupt control register Timer A1 interrupt control register Timer A2 interrupt control register Timer A3 interrupt control register Timer A4 interrupt control register Timer B0 interrupt control register Timer B1 interrupt control register Timer B2 interrupt control register INT0 interrupt control register INT1 interrupt control register INT2/Key input interrupt control register Note. Do not write to this address. Fig. 2 Location of internal peripheral devices and interrupt control registers 6 Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER RESET CIRCUIT _______ The microcomputer is released from the reset state when the RESET pin is returned to “H” level after holding it at “L” level with the power source voltage at 2.7 – 5.5 V. Program execution starts at the address formed by setting address A23 – A16 to 0016, A15 – A8 to the contents of address FFFF16, and A7 – A0 to the contents of address FFFE16. Figure 3 shows an example of a reset circuit. When the stabilized clock is input from the external to the main-clock oscillation circuit, the reset input voltage must be 0.55 V or less when the power source voltage reaches 2.7 V. When a resonator/oscillator is connected to the main-clock oscillation circuit, change the reset input voltage from “L” to “H” after the main-clock oscillation is fully stabilized. The status of the internal registers during reset is the same as the M37735MHBXXXFP’s. Power on 2.7V VCC RESET VCC 0V RESET 0V 0.55V Note. In this case, stabilized clock is input from the external to the main-clock oscillation circuit. Perform careful evalvation at the system design level before using. Fig. 3 Example of a reset circuit 7 Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER _ _ _ _ _ _ ROM AREA MODIFICATION FUNCTION The internal ROM size and its address area of the M37735M4LXXXHP can be modified by the memory allocation control register’s bit 0 shown in Figure 4. Figure 6 shows the memory allocation in which the internal ROM size and its address area are modified. Make sure to write data in the memory allocation control register as the flow shown in Figure 5. This ROM area modification function is valid in memory expansion mode and single-chip mode. Table 1 shows the relationship between memory allocation selection 7 6 5 4 3 2 1 0 ML0 Memory allocation control register Address 6316 Memory allocation selection bit ROM size (ROM area) 0 : 32 Kbytes (addresses 00800016 – 00FFFF16) 1 : 16 Kbytes (addresses 00C00016 – 00FFFF16) Note. Write to the memory allocation control register as the flow shown in Figure 5. Fig. 4 Bit configuration of memory allocation control register Writing data “5516” (LDM instruction) Next instruction Writing data “0016” or “0116” (LDM instruction) ML0 selection bit • How to write in memory allocation control register Fig. 5 How to write data in memory allocation control register 8 _ _ _ _ _ _ bits and address corresponding to chip-select signals CS0 and CS1. When ordering a mask ROM, Mitsubishi Electric corp. produces the mask ROM using the data within 32 Kbytes (addresses 00800016 – 00FFFF16). It is regardless of the selected ROM size (refer to MASK ROM ORDER CONFIRMATION FORM.) Therefore, program “FF16” to the addresses out of the selected ROM area in the EPROM which you tender when ordering a mask ROM. Address 00FFFF16 of this microcomputer corresponds to the lowest address of the EPROM which you tender. Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P 00000016 00007F16 00008016 00087F16 SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER (ML0) = (0) (ML0) = (1) ROM size : 32 kbytes ROM size : 16 Kbytes 00000016 00007F16 00008016 SFR Internal RAM 2048 bytes SFR Internal RAM 2048 bytes 00087F16 00800016 Internal ROM 32 Kbytes 00C00016 00FFFF16 01000016 00FFFF16 01000016 FFFFFF16 FFFFFF16 Internal ROM 16 Kbytes : External memory area Note. Banks 1016 to FF16 cannot be accessed in the 7735 Group. Fig. 6 Memory allocation (modification of internal ROM area by memory allocation selection bit) _ _ _ _ _ _ _ _ _ _ _ _ _ Table 1. Relationship between memory allocation selection bits and addresses corresponding to chip-select signals CS0 and CS1 Memory allocation select bit ML0 Internal ROM area _ _ _ _ _ _ _ _ _ _ _ _ CS0 CS1 0 00800016 – 00FFFF16 00088016 – 007FFF16 01000016 – 03FFFF16 1 00C00016 – 00FFFF16 00088016 – 007FFF16 00800016 – 00BFFF16 01000016 – 03FFFF16 ADDRESSING MODES The M37735M4LXXXHP has 28 powerful addressing modes. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for the details of each addressing mode. MACHINE INSTRUCTION LIST The M37735M4LXXXHP has 103 machine instructions. Refer to the Access address MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLE-CHIP 16BIT MICROCOMPUTERS for details. DATA REQUIRED FOR MASK ROM ORDERING Please send the following data for mask orders. (1) M37735M4LXXXHP mask ROM order confirmation form (2) 80P6D mark specification form (3) ROM data (EPROM 3 sets) 9 I Y NAR MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ABSOLUTE MAXIMUM RATINGS Symbol Vcc AVcc VI VI VO Pd Topr Tstg Parameter Power source voltage Analog power__ source voltage _____ Input voltage RESET, CNVss, BYTE Input voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, VREF, XIN Output voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, 7, P60 – P67, P70 – P77, P40 – P47, P50 – P5 _ P80 – P87, XOUT, E Power dissipation Operating temperature Storage temperature Conditions Ratings –0.3 to +7 –0.3 to +7 –0.3 to +12 Unit V V V –0.3 to Vcc + 0.3 V –0.3 to Vcc + 0.3 V 200 –40 to +85 –65 to +150 mW °C °C Ta = 25 °C RECOMMENDED OPERATING CONDITIONS (Vcc = 2.7 – 5.5 V, Ta = –40 to +85 °C, unless otherwise noted) Symbol Vcc AVcc Vss AVss VIH VIH VIH VIL VIL VIL IOH(peak) IOH(avg) IOL(peak) IOL(peak) IOL(avg) IOL(avg) f(XIN) f(XCIN) Parameter f(XIN) : Operating Power source voltage f(XIN) : Stopped, f(XCIN) = 32.768 kHz Analog power source voltage Power source voltage Analog power source voltage 3, P40 – P47, P50 – P57, P60 – P67, P70 – P77, High-level input voltage P00 – P07, P30 –___P3 _____ P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3) High-level input voltage P10 – P17, P20 – P27 (in single-chip mode) High-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) 3, P40 – P47, P50 – P57, P60 – P67, P70 – P77, Low-level input voltage P00 – P07, P30 –___P3 ______ P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3) Low-level input voltage P10 – P17, P20 – P27 (in single-chip mode) Low-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) High-level peak output current P00 – P07, P10– P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87 High-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level peak output current P44 – P47, P50 – P53 Low-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level average output current P44 – P47, P50 – P53 Main-clock oscillation frequency (Note 4) Sub-clock oscillation frequency Min. 2.7 2.7 Max. 5.5 5.5 Vcc 0 0 Unit V V V V 0.8 Vcc Vcc V 0.8 Vcc Vcc V 0.5 Vcc Vcc V 0 0.2Vcc V 0 0.2Vcc V 0 0.16Vcc V –10 mA –5 mA 10 mA 16 mA 5 mA 12 12 50 mA MHz kHz Notes 1. Average output current is the average value of a 100 ms interval. 2. The sum of IOL(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IOH(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IOL(peak) for ports P4, P5, P6, and P7 must be 100 mA or less, and the sum of IOH(peak) for ports P4, P5, P6, and P7 must be 80 mA or less. 3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”. 4. The maximum value of f(XIN) = 6 MHz when the main clock division selection bit = “1”. 10 Limits Typ. 32.768 Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted) Symbol Parameter VOH High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87 High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33 VOH High-level output voltage P30 – P32 VOH High-level output voltage E VOL Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87 VOH _ VOL Low-level output voltage P44 – P47, P50 – P53 VOL Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33 VOL Low-level output voltage P30 – P32 VOL Low-level output voltage E _ _______ VT+ – VT– _ _ _ _ _ _ Hysteresis HOLD, RDY, TA0IN – TA4IN, TB0IN – TB2IN, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _______ _ _ _ _ _ _ _ ______ _ _ _ _ _ _ _ INT0 – INT2, ADTRG, CTS0, CTS1, CTS2, CLK0, _ _ _ _ _ _ _ _ _ _ _ _ CLK1, CLK2, KI0 – KI3 ________ VT+ – VT– Hysteresis RESET VT+ – VT– Hysteresis XIN VT+ – VT– Hysteresis XCIN (When external clock is input) IIH IIL High-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, _________ P80 – P87, XIN, RESET, CNVss, BYTE Low-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P53, P60, P61, P65 – P67, _______ P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE Low-level input current P54 – P57, P62 – P64 Test conditions VCC = 5 V, IOH = –10 mA Limits Typ. Min. Unit Max. 3 VCC = 3 V, IOH = –1 mA 2.5 VCC = 5 V, IOH = –400 µA VCC = 5 V, IOH = –10 mA VCC = 5 V, IOH = –400 µA VCC = 3 V, IOH = –1 mA VCC = 5 V, IOH = –10 mA VCC = 5 V, IOH = –400 µA VCC = 3 V, IOH = –1 mA 4.7 3.1 4.8 2.6 3.4 4.8 2.6 V V V V 2 VCC = 5 V, IOL = 10 mA V VCC = 3 V, IOL = 1 mA 0.5 VCC = 5 V, IOL = 16 mA VCC = 3 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 5 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 3 V, IOL = 1 mA VCC = 5 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 3 V, IOL = 1 mA 1.8 1.5 0.45 1.9 0.43 0.4 1.6 0.4 0.4 VCC = 5 V 0.4 1 VCC = 3 V 0.1 0.7 VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V 0.2 0.1 0.1 0.06 0.1 0.06 0.5 0.4 0.4 0.26 0.4 0.26 VCC = 5 V, VI = 5 V 5 VCC = 3 V, VI = 3 V 4 VCC = 5 V, VI = 0 V –5 VCC = 3 V, VI = 0 V –4 VI = 0 V, VCC = 5 V –5 transistor VCC = 3 V –4 VI = 0 V, VCC = 5 V –0.25 –0.5 –1.0 VCC = 3 V –0.08 –0.18 –0.35 without a pull-up IIL with a pull-up transistor VRAM RAM hold voltage When clock is stopped. 2 V V V V V V V V µA µA µA mA V 11 Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, unless otherwise noted) Symbol Parameter Power source current ICC Limits Typ. Max. VCC = 5 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 6 MHz), f(XCIN) = 32.768 kHz, in operating (Note 1) 4.5 9 mA VCC = 3 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 6 MHz), f(XCIN) = 32.768 kHz, in operating (Note 1) 3 6 mA VCC = 3 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 0.75 MHz), f(XCIN) : Stopped, in operating 0.4 0.8 mA 6 12 µA 30 60 µA 3 6 µA 1 µA 20 µA Test conditions Min. When single-chip mode, output pins are open, and other pins are VSS. VCC = 3 V, f(XIN) = 12 MHz (square waveform), f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 2) VCC = 3 V, f(XIN) : Stopped, f(XCIN) = 32.768 kHz, in operating (Note 3) VCC = 3 V, f(XIN) : Stopped, f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 4) Ta = 25 °C, when clock is stopped Ta = 85 °C, when clock is stopped Unit Notes 1. This applies when the main clock external input selection bit = “1”, the main clock division selection bit = “0”, and the signal output stop bit = “1”. 2. This applies when the main clock external input selection bit = “1” and the system clock stop bit at wait state = “1”. 3. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock. 4. This applies when the XCOUT drivability selection bit = “0” and the system clock stop bit at wait state = “1”. A–D CONVERTER CHARACTERISTICS (VCC = AVCC = 5 V, VSS = AVSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note)) Symbol — — RLADDER tCONV VREF VIA Parameter Resolution Absolute accuracy Ladder resistance Conversion time Reference voltage Analog input voltage Test conditions VREF = VCC VREF = VCC VREF = VCC Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. 12 Min. 10 19.6 2.7 0 Limits Typ. Max. 10 ±3 25 VCC VREF Unit Bits LSB kΩ µs V V Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER TIMING REQUIREMENTS (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1)) Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHZ. 2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted. External clock input Symbol tc tw(H) tw(L) tr tf Parameter External clock input cycle time (Note 1) External clock input high-level pulse width (Note 2) External clock input low-level pulse width (Note 2) External clock rise time External clock fall time Limits Min. 83 33 33 Max. 15 15 Unit ns ns ns ns ns Notes 1. When the main clock division selection bit = “1”, the minimum value of tc = 166 ns. 2. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / tc must be set to values from 0.45 through 0.55. Single-chip mode Symbol tsu(P0D–E) tsu(P1D–E) tsu(P2D–E) tsu(P3D–E) tsu(P4D–E) tsu(P5D–E) tsu(P6D–E) tsu(P7D–E) tsu(P8D–E) th(E–P0D) th(E–P1D) th(E–P2D) th(E–P3D) th(E–P4D) th(E–P5D) th(E–P6D) th(E–P7D) th(E–P8D) Parameter Port P0 input setup time Port P1 input setup time Port P2 input setup time Port P3 input setup time Port P4 input setup time Port P5 input setup time Port P6 input setup time Port P7 input setup time Port P8 input setup time Port P0 input hold time Port P1 input hold time Port P2 input hold time Port P3 input hold time Port P4 input hold time Port P5 input hold time Port P6 input hold time Port P7 input hold time Port P8 input hold time Limits Min. 200 200 200 200 200 200 200 200 200 0 0 0 0 0 0 0 0 0 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Memory expansion mode and microprocessor mode Symbol tsu(D–RDE) tsu(RDY–φ1) tsu(HOLD–φ1) th(RDE–D) th(φ1–RDY) th(φ1–HOLD) Parameter Data input setup time _ _ _ _ _ _ _ RDY input setup time _______ HOLD input setup time Data input hold time _ _ _ _ _ _ _ _ RDY input hold time _______ HOLD input hold time Limits Min. 80 80 80 0 0 0 Max. Unit ns ns ns ns ns ns 13 I Y NAR MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P Timer A input (Count input in event counter mode) Symbol tc(TA) tw(TAH) tw(TAL) SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Parameter TAiIN input cycle time TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 250 125 125 Max. Unit ns ns ns Timer A input (Gating input in timer mode) Symbol tc(TA) tw(TAH) tw(TAL) Parameter TAiIN input cycle time (Note) TAiIN input high-level pulse width (Note) TAiIN input low-level pulse width (Note) Limits Min. 666 333 333 Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”. Timer A input (External trigger input in one-shot pulse mode) Symbol t c(TA) tw(TAH) tw(TAL) Parameter TAiIN input cycle time (Note) TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 666 166 166 Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”. Timer A input (External trigger input in pulse width modulation mode) Symbol tw(TAH) tw(TAL) Parameter TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 166 166 Max. Unit ns ns Timer A input (Up-down input in event counter mode) Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP–TIN) th(TIN–UP) Parameter TAiOUT input cycle time TAiOUT input high-level pulse width TAiOUT input low-level pulse width TAiOUT input setup time TAiOUT input hold time Limits Min. 3333 1666 1666 666 666 Max. Unit ns ns ns ns ns Timer A input (Two-phase pulse input in event counter mode) Symbol tc(TA) tsu(TAjIN–TAjOUT) tsu(TAjOUT–TAjIN) 14 Parameter TAjIN input cycle time TAjIN input setup time TAjOUT input setup time Limits Min. 2000 500 500 Max. Unit ns ns ns Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Timer B input (Count input in event counter mode) Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 250 125 125 500 250 250 TBiIN input cycle time (one edge count) TBiIN input high-level pulse width (one edge count) TBiIN input low-level pulse width (one edge count) TBiIN input cycle time (both edges count) TBiIN input high-level pulse width (both edges count) TBiIN input low-level pulse width (both edges count) Max. Unit ns ns ns ns ns ns Timer B input (Pulse period measurement mode) Symbol tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 666 333 333 TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”. Timer B input (Pulse width measurement mode) Symbol tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 666 333 333 TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”. A-D trigger input Symbol Limits Parameter Min. 1333 166 _______ tc(AD) tw(ADL) ADTRG input cycle time (minimum allowable trigger) ADTRG input low-level pulse width _______ Max. Unit ns ns Serial I/O Symbol tc(CK) tw(CKH) tw(CKL) td(C–Q) th(C–Q) tsu(D–C) th(C–D) Limits Parameter Min. 333 166 166 CLKi input cycle time CLKi input high-level pulse width CLKi input low-level pulse width TXDi output delay time TXDi hold time RXDi input setup time RXDi input hold time Max. 100 0 65 75 ____ Unit ns ns ns ns ns ns ns ___ External interrupt INTi input, key input interrupt KIi input Symbol Parameter _ _ _ _ _ _ tw(INH) tw(INL) tw(KIL) INTi input high-level pulse width _ _ _ _ _ _ INTi input low-level pulse width _ _ _ _ _ _ _ KIi input low-level pulse width Limits Min. 250 250 250 Max. Unit ns ns ns 15 Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER DATA FORMULAS Timer A input (Gating input in timer mode) Symbol Parameter tc(TA) TAiIN input cycle time tw(TAH) TAiIN input high-level pulse width tw(TAL) TAiIN input low-level pulse width Limits Min. 8 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) Max. Unit ns ns ns Timer A input (External trigger input in one-shot pulse mode) Symbol tc(TA) Parameter TAiIN input cycle time Limits Min. 8 ✕ 109 2 · f(f2) Max. Unit ns Timer B input (In pulse period measurement mode or pulse width measurement mode) Symbol Parameter tc(TB) TBiIN input cycle time tw(TBH) TBiIN input high-level pulse width tw(TBL) TBiIN input low-level pulse width Limits Min. 8 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) Note. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37735MHBXXXFP”. 16 Max. Unit ns ns ns Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER SWITCHING CHARACTERISTICS (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz, unless otherwise noted (Note)) Single-chip mode Symbol td(E–P0Q) td(E–P1Q) td(E–P2Q) td(E–P3Q) td(E–P4Q) td(E–P5Q) td(E–P6Q) td(E–P7Q) td(E–P8Q) Parameter Test conditions Port P0 data output delay time Port P1 data output delay time Port P2 data output delay time Port P3 data output delay time Port P4 data output delay time Port P5 data output delay time Port P6 data output delay time Port P7 data output delay time Port P8 data output delay time Fig. 7 Limits Min. Max. 300 300 300 300 300 300 300 300 300 Unit ns ns ns ns ns ns ns ns ns Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. P0 P1 P2 50 pF P3 P4 P5 P6 P7 P8 φ1 E Fig. 7 Measuring circuit for ports P0 – P8 and φ1 17 Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Memory expansion mode and microprocessor mode (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz (Note 1), unless otherwise noted) Symbol td(CS–WE) td(CS–RDE) Parameter Chip-select output delay time th(WE–CS) th(RDE–CS) Chip-select hold time td(An–WE) td(An–RDE) Address output delay time td(A–WE) td(A–RDE) Address output delay time th(WE–An) th(RDE–An) Address hold time tw(ALE) ALE pulse width tsu(A–ALE) th(ALE–A) Address output setup time Address hold time td(ALE–WE) td(ALE–RDE) ALE output delay time td(WE–DQ) th(WE–DQ) Data output delay time Data hold time _ _ _ _ _ _ _ _ _ _ _ _ _ tw(WE) WEL/WEH pulse width tpxz(RDE–DZ) tpzx(RDE–DZ) Floating start delay time Floating release delay time tw(RDE) td(RSMP–WE) td(RSMP–RDE) th(φ1–RSMP) td(WE–φ1) td(RDE–φ1) td(φ1–HLDA) _ _ _ _ _ _ _ RDE pulse width Test (Note 2) Wait mode conditions No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 Fig. 7 Max. No wait Wait 1 Wait 0 ns 182 ns 4 ns 20 ns 182 ns 20 ns 162 ns 40 ns 40 ns 123 ns 10 ns 93 ns 9 ns 40 ns 4 ns 40 40 131 298 _______ ns ns ns ns ns 53 128 ns ns ns 295 ns 10 No wait Wait 1 Wait 0 Unit 20 90 25 ns RSMP hold time 0 ns φ1 output delay time 0 RSMP output delay time _ _ _ _ _ _ _ _ _ 30 ns 120 ns _ _ _ _ _ _ _ _ _ HLDA output delay time Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. 2. No wait : Wait bit = “1”. Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”. Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”. 18 Limits Min. Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Bus timing data formulas (VCC = 2.7 – 5.5V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz (Max. Note1), unless otherwise noted) Symbol Parameter td(CS–WE) td(CS–RDE) Chip-select output delay time th(WE–CS) th(RDE–CS) Chip-select hold time Wait 0 td(An–WE) td(An–RDE) Address output delay time td(A–WE) td(A–RDE) Address output delay time th(WE–An) th(RDE–An) Address hold time tw(ALE) Wait mode No wait Wait 1 No wait Wait 1 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 tsu(A–ALE) Address output setup time No wait Wait 1 Wait 0 th(ALE–A) Address hold time No wait Wait 1 ALE output delay time td(WE–DQ) Data output delay time th(WE–DQ) tpxz(RDE–DZ) tpzx(RDE–DZ) tw(RDE) No wait Wait 1 WEL/WEH pulse width ns – 63 ns – 68 ns – 63 ns – 88 ns – 43 ns – 43 ns – 43 ns – 73 ns – 73 ns 9 1 ✕ 10 2 · f(f2) ns – 43 ns ns 4 Wait 0 1 ✕ 10 2 · f(f2) No wait 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) – 43 ns 90 Wait 1 Wait 0 No wait Wait 1 Wait 0 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 0 ns – 43 ns – 35 ns – 35 ns 10 Floating release delay time RDE pulse width ns 9 Floating start delay time _ _ _ _ _ _ ns 9 Data hold time _ _ _ _ _ _ _ _ _ _ _ _ _ tw(WE) 1 ✕ 10 2 · f(f2) 3 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 3 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) Unit 9 Wait 0 td(ALE–WE) td(ALE–RDE) Max. 4 Wait 0 ALE pulse width Limits Min. 1 ✕ 109 – 63 2 · f(f2) 3 ✕ 109 – 68 2 · f(f2) ns – 30 ns – 38 ns – 38 ns td(RSMP–WE) _______ – 58 RSMP output delay time td(RSMP–RDE) _ _ _ _ _ _ _ _ _ _ th(φ1–RSMP) RSMP hold time td(WE–φ1) φ1 output delay time 0 td(RDE–φ1) Notes 1. This applies when the main clock division selection bit = “0”. 2. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37735MHBXXXFP”. ns ns 30 ns 19 I Y NAR MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER TIMING DIAGRAM tr tf tw(H) tc X IN E td(E–P0Q) Port P0 output tsu(P0D–E) th(E–P0D) Port P0 input td(E–P1Q) Port P1 output tsu(P1D–E) th(E–P1D) Port P1 input td(E–P2Q) Port P2 output tsu(P2D–E) th(E–P2D) Port P2 input td(E–P3Q) Port P3 output tsu(P3D–E) th(E–P3D) Port P3 input td(E–P4Q) Port P4 output tsu(P4D–E) th(E–P4D) Port P4 input td(E–P5Q) Port P5 output tsu(P5D–E) th(E–P5D) Port P5 input td(E–P6Q) Port P6 output tsu(P6D–E) th(E–P6D) Port P6 input td(E–P7Q) Port P7 output tsu(P7D–E) th(E–P7D) Port P7 input td(E–P8Q) Port P8 output tsu(P8D–E) Port P8 input 20 th(E–P8D) tw(L) Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) In event count mode TAiOUT input (Up-down input) TAiIN input (when count by falling) TAiIN input (when count by rising) th(TIN–UP) tsu(UP–TIN) In event counter mode (When two-phase pulse input is selected) tc(TA) TAjIN input tsu(TAjIN–TAjOUT ) t su(TAjIN –TAjOUT ) tsu(TAjOUT –TAjIN ) TAjOUT input tsu(TAjOUT –TAjIN) tc(TB) tw(TBH) TBiIN input tw(TBL) 21 I Y NAR MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER tc(AD) tw(ADL) ADTRG input tc(CK) tw(CKH) CLKi t w(CKL) th(C–Q) TxDi td(C–Q) tsu(D–C) RxDi tw(INL) INTi input Kli input 22 tw(INH) tw(KNL) th(C–D) Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Memory expansion and microprocessor mode (When wait bit = “1”) φ1 WEL WEH RDE RDY input tsu(RDY–φ1) th(φ1–RDY) (When wait bit = “0”) φ1 WEL WEH RDE RDY input tsu(RDY–φ1) th(φ1–RDY) (When wait bit = “1” or “0” in common) φ1 tsu(HOLD–φ1) th(φ1–HOLD) HOLD input td(φ1–HLDA) td(φ1–HLDA) HLDA output Test conditions • VCC = 2.7 – 5.5 V • Input timing voltage : V IL = 0.2VCC, VIH = 0.8V CC • Output timing voltage : V OL = 0.8 V, VOH = 2.0 V 23 Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Memory expansion and m icroprocessor mode (No wait : When wait bit = “1”) tw(L) tw(H) tf tr tc XIN φ1 td(WE– φ1) td(WE– φ1) td(RDE– φ1 ) td(RDE– φ1) CS0 – CS4 t d(CS–WE) td(CS–RDE) th(WE –CS) An th(RDE– CS) Address Address td(An–WE) tw(ALE) Address td(An–RDE ) td(ALE –WE) th(RDE –An) th(WE–An) ALE td(ALE –RDE) th(ALE –A) tsu(A–ALE) th(WE–DQ) Am/Dm Address Data td(WE–DQ) tpxz(RDE –DZ) tpzx(RDE –DZ) Address Address td(A–RDE) t d(A–WE) tw(WE) th(RDE–D) WEL, WEH t su(D–RDE) DmIN Data tw(RDE) RDE th(φ1–RSMP) td(RSMP –WE) RSMP Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC 24 td(RSMP –RDE) Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Memory expansion and m icroprocessor mode (Wait 1 : The external area is accessed when wait bit = “0” and wait selection bit = “1”.) tw(L) tw(H) tf tr tc XIN φ1 td(WE–φ1) td(WE–φ1) td(RDE–φ1) td(RDE-φ1) CS0 – CS4 th(WE–CS) th(RDE–CS) td(CS–RDE) td(CS–WE) An Address td(An–WE) tw(ALE) Address th(RDE–An) td(An–RDE) th(WE-An) td(ALE–WE) ALE th(ALE–A) tsu(A–ALE) Am/Dm td(ALE–RDE) tpxz(RDE–DZ) th(WE–DQ) Address td(A–WE) Data td(WE–DQ) Address tpzx(RDE–DZ) Address td(A–RDE) tw(WE) th(RDE–D) WEL, WEH tsu(D–RDE) DmIN Data tw(RDE) RDE th(φ1–RSMP) RSMP td(RSMP–WE) td(RSMP–RDE) Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC 25 Y NAR I MITSUBISHI MICROCOMPUTERS M37735M4LXXXHP . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Memory expansion and microprocessor mode (Wait 0 : The external memory are is accessed when wait bit = “0” and wait selection bit = “0”.) tw(L) tw(H) tf tr tc XIN φ1 td(WE–φ1) td(WE–φ1) td(RDE–φ1) td(RDE–φ1) CS0 – CS4 td(CS–WE) th(WE–CS) td(CS–RDE) th(RDE–CS) Address An Address td(An–WE) tw(ALE) Address td(An–RDE) td(ALE–WE) th(RDE–An) th(WE–An) ALE td(ALE–RDE) tsu(A–ALE) Am/Dm Address th(ALE–A) Data th(WE–DQ) tpxz(RDE–DZ) tpzx(RDE–DZ) Address Address td(WE–DQ) td(A–WE) td(A–RDE) tw(WE) WEL, WEH tsu(D–RDE) DmIN Data tw(RDE) RDE td(RSMP–WE) th(φ1–RSMP) RSMP Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC 26 td(RSMP–RDE) th(RDE–D) Y NAR I MITSUBISHI MICROCOMPUTERS . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL M37735M4LXXXHP P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER PACKAGE OUTLINE 27 GZZ–SH00–54B<73A0> Mask ROM number 7700 FAMILY MASK ROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37735M4LXXXHP MITSUBISHI ELECTRIC Receipt Date: Section head Supervisor signature signature TEL ( Company name Customer Date issued ) Date: Issuance signatures Note : Please fill in all items marked Responsible officer Supervisor 1. Confirmation Specify the name of the product being ordered. Three sets of EPROMs are required for each pattern (Check @ in the appropriate box). If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted. Checksum code for entire EPROM areas (hexadecimal notation) EPROM Type : (1) Set “FF 16” in the shaded area. 27512 (2) Address 0 16 to 10 16 are the area for storing the data on model designation and options.This area must be written with the data shown below. 0000 0010 Details for option data are given next in the section describing the STP instruction option. Address and data are written in hexadecimal notation. 8000 32K DATA FFFF 4D 33 37 37 33 35 4D 34 Address 0 1 2 3 4 5 6 7 4C FF FF FF FF FF FF FF Address Address Option data 10 8 9 A B C D E F 2. STP instruction option One of the following sets of data should be written to the option data address (1016 ) of the EPROM you have ordered. Check @ in the appropriate box. STP instruction enable STP instruction disable 0116 0016 Address 1016 Address 1016 3. Mark specification Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 80P6D Mark Specification Form (for M37735M4LXXXHP) and attach to the Mask ROM Order Confirmation Form. 4. Comments 80P6S (80-PIN QFP) MARK SPECIFICATION FORM 80P6D, 80P6Q (80-PIN Fine-pitch QFP) Mitsubishi IC catalog name Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed). A. Standard Mitsubishi Mark 60 41 40 61 Mitsubishi IC catalog name Mitsubishi IC catalog name Mitsubishi product number (6-digit, or 7-digit) 80 21 1 20 B. Customer’s Parts Number + Mitsubishi IC Catalog Name 60 41 40 61 80 21 1 20 Customer’s Parts Number Note : The fonts and size of characters are standard Mitsubishi type. Mitsubishi IC catalog name Notes 1 : The mark field should be written right aligned. 2 : The fonts and size of characters are standard Mitsubishi type. 3 : Customer ’s parts number can be up to 10 alphanumeric characters for capital letters, hyphens, commas, periods and so on. C. Special Mark Required 60 41 61 40 80 21 1 20 Notes 1 : If Special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated technically as close as possible. Mitsubishi product number (6-digit, or 7-digit) and Mask ROM number (3-digit) are always marked for sorting the products. 2 : If special character fonts (e.g., customer’s trade mark logo) must be used in Special Mark, check the box below. For the new special character fonts, a clean font original (ideally logo drawing) must be submitted. Special character fonts required Y NAR I MITSUBISHI MICROCOMPUTERS . e n. atio chang cific o spe bject t l a fin re su a ot a is n limits his e: T rametric ic t No e pa Som IM REL M37735M4LXXXHP P SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Keep safety first in your circuit designs! ¡ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials ¡ These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. ¡ Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials. ¡ All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. ¡ Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. ¡ The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. ¡ If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. ¡ Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. © 1996 MITSUBISHI ELECTRIC CORP. H-LF462-A KI-9612 Printed in Japan (ROD) 2 New publication, effective Dec. 1996. Specifications subject to change without notice. REVISION DESCRIPTION LIST Rev. No. M37735M4LXXXHP DATA SHEET Revision Description Rev. date 1.0 First Edition 970604 1.01 The following are added: 980526 •MASK ROM ORDER CONFIRMATION FORM •MARK SPECIFICATION FORM (1/1)