MICROSEMI VRF151G

VRF151G
50V, 300W, 175MHz
RF POWER VERTICAL MOSFET
The VRF151G is designed for broadband commercial and military applications
at frequencies to 175MHz. The high power, high gain, and broadband performance of this device make possible solid state transmitters for FM broadcast
or TV channel frequency bands.
FEATURES
• Improved Ruggedness V(BR)DSS = 170V
• 5:1 Load VSWR Capability at Specified Operating Conditions
• 300W with 16dB Typical Gain @ 175MHz, 50V
• Nitride Passivated
• Excellent Stability & Low IMD
• Refractory Gold Metallization
• Common Source Configuration
• High Voltage Replacement for MRF151G
• RoHS Compliant
Maximum Ratings
Symbol
VDSS
ID
All Ratings: TC =25°C unless otherwise specified
Parameter
Drain-Source Voltage
VRF151G
Unit
170
V
Continuous Drain Current @ TC = 25°C
36
A
VGS
Gate-Source Voltage
±40
V
PD
Total Device dissipation @ TC = 25°C
500
W
TSTG
TJ
Storage Temperature Range
-65 to 150
Operating Junction Temperature
°C
200
Static Electrical Characteristics
Symbol
Parameter
Min
Typ
V(BR)DSS
Drain-Source Breakdown Voltage (VGS = 0V, ID = 100mA)
170
180
VDS(ON)
On State Drain Voltage (ID(ON) = 10A, VGS = 10V)
2.0
Max
3.0
Unit
V
IDSS
Zero Gate Voltage Drain Current (VDS = 100V, VGS = 0V)
IGSS
Gate-Source Leakage Current (VDS = ±20V, VDS = 0V)
gfs
Forward Transconductance (VDS = 10V, ID = 10A)
5.0
VGS(TH)
Gate Threshold Voltage (VDS = 10V, ID = 100mA)
2.9
3.6
4.4
V
Min
Typ
Max
Unit
0.35
°C/W
1.0
1.0
mA
μA
mhos
Symbol
RθJC
Characteristic
Junction to Case Thermal Resistance
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
050-4938 Rev G 11-2009
Thermal Characteristics
Dynamic Characteristics
Symbol
VRF151G
Parameter
Test Conditions
Min
Typ
CISS
Input Capacitance
VGS = 0V
375
Coss
Output Capacitance
VDS = 50V
200
Crss
Reverse Transfer Capacitance
f = 1MHz
12
Max
Unit
pF
Functional Characteristics
Symbol
Min
Typ
GPS
f = 175MHz,- VDD = 50V, IDQ = 500mA, Pout = 300W
Parameter
14
16
Max
dB
ηD
f = 175MHz, VDD = 50V, IDQ = 500mA, Pout = 300W
50
55
%
ψ
f = 175MHz, VDD = 50V, IDQ = 500mA, Pout = 300W 5:1VSWR - All Phase Angles
No Degradation in Output Power
1. To MIL-STD-1311 Version A, test method 2204B, Two Tone, Reference Each Tone
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
30
25
ID, DRAIN CURRENT (A)
20
TJ= -55°C
7V
15
6V
10
5V
5
250μs PULSE
TEST<0.5 % DUTY
CYCLE
25
10V
9V
8V
ID, DRAIN CURRENT (A)
14V
20
TJ= 25°C
15
TJ= 125°C
10
5
VGS = 4V
0
0
V
5
10
15
20
0
25
0
, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 1, Output Characteristics
2
4
6
8
10
12
VGS, GATE-TO-SOURCE VOLTAGE (V)
FIGURE 2, Transfer Characteristics
DS(ON)
1.0E−9
100
ID, DRAIN CURRENT (A)
C, CAPACITANCE (F)
Ciss
Coss
1.0E−10
IDMax
10
Rds(on)
PD Max
TJ = 125°C
TC = 75°C
Crss
050-4938 Rev G 11-2009
1.0E−11
0
10
20
30
40
50
60
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 3, Capacitance vs Drain-to-Source Voltage
1
1
10
100
250
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 4, Forward Safe Operating Area
Unit
Typical Performance Curves
VRF151G
0.35
D = 0.9
0.30
0.7
0.25
0.20
0.5
Note:
PDM
0.15
0.3
0.10
t1
t2
t1 = Pulse Duration
t
0.1
0.05
0
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10 -1
RECTANGULAR PULSE DURATION (seconds)
Figure 5. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration
400
Vdd=50V, Idq = 250mA,
Freq=150MHz
350
1.0
175MHz
150MHz
300
200MHz
250
200
150
100
50
0
0
2
4
6
8
INPUT POWER (WATTS PEP)
Figure 6. POUT versus PIN
10
050-4938 Rev G 11-2009
0.05
OUTPUT POWER (WPEP)
ZθJC, THERMAL IMPEDANCE (°C/W)
0.40
VRF151G
R1
+
L2
C4
BIAS 0–6 V
C5
C9
+
C10
C11
–
50 V
–
C1
INPUT
T2
D.U.T.
R2
L1
OUTPUT
C12
T1
C6
C2
C3
C7
C8
Figure 7, 175 MHz Test Circuit
R1 - 100 Ohms, 1/2 W
R2 - 1.0 k Ohm, 1/2W
C1 - Arco 424
C3,C4,C7,C8,C9 - 1000 pF Chip
C5, C10 - 0.1 μF Chip
C11 - 0.47 μF Ceramic Chip, Kemet 1215 or Equivalent (100V)
C12 - Arco 422
L1 - 10 Turns AWG #18 Enameled Wire. Close Wound, 1/4” I.D.
L2 - Ferrite Beads of Suitable Material for 1.5 - 2.0 μH Inductance
Unless Otherwise Noted, All Chip Capacitors are ATC Type 100
or Equivalent.
T1 - 9:1 RF Transformer, Can be made of 15 - 18 Ohms
Semirigid Co - Ax, 62 - 90 Mils O.D.
T2 - 1:4 RF Transformer, Can be made of 16 - 18 Ohms Semirigid
Co - Ax, 70 - 90 Mils O.D.
Board Material - 0.062” Fiberglass (G10), 1 oz. Copper Clad, 2
sides, εr = 5.0
NOTE: For stability, the input transformer T1 must be loaded with
ferrite toroids or beads to increase the common mode inductance.
For operation below 100 MHz. The same is required for the output
transformer.
1.100
.435
1
2
0.400
Pin 1. Drain
2. Drain
3. Gate
4. Gate
5. Source
0.390
5
0.200
3
4
.065 rad 2 PL
.225
.107
.060
.860
1.340
.005
.210
HAZARDOUS MATERIAL
WARNING
The ceramic portion of the device
between leads and mounting
flange is beryllium oxide.
Beryllium oxide dust is highly
toxic when inhaled. Care must
be taken during handling and
mounting to avoid damage to this
area. These devices must never
be thrown away with general
industrial or domestic waste.
Package Dimensions (inches)
050-4938 Rev G 11-2009
All Dimensions are ± .005
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 7,342,262 7,352,045 and foreign patents. US and Foreign patents pending. All Rights
Reserved.