MICROSEMI APT100GT120JRDL

1200V
APT100GT120JRDL
Resonant Mode IGBT®
E
E
The Thunderbolt IGBT® used in this Resonant Mode Combi is a new generation of high
voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed.
C
G
S
Typical Applications
Features
• SSOA Rated
• Low Conduction Loss
• Induction Heating
• RoHS Compliant
22
7
"UL Recognized"
file # E145592
ISOTOP ®
• Low Gate Charge
OT
• Welding
C
• Ultrafast Tail Current shutoff
• Medical
• Low forward Diode Voltage (VF)
• High Power Telecom
• Ultrasoft Recovery Diode
• Resonant Mode Phase Shifted
Bridge
G
E
All Ratings: TC = 25°C unless otherwise specified.
Maximum Ratings
APT100GT120JRDL
Symbol Parameter
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
IC1
Continuous Collector Current @ TC = 25°C
123
IC2
Continuous Collector Current @ TC = 100°C
67
ICM
SSOA
PD
TJ, TSTG
TL
Pulsed Collector Current
Unit
Volts
Amps
200
1
Switching Safe Operating Area @ TJ = 150°C
200A @ 1200V
Total Power Dissipation
570
Operating and Storage Junction Temperature Range
Watts
-55 to 150
Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec.
°C
300
Static Electrical Characteristics
Min
Typ
Max
1200
-
-
Unit
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 5mA)
VGE(TH)
Gate Threshold Voltage (VCE = VGE, IC = 4mA, Tj = 25°C)
4.5
5.5
6.5
Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 25°C)
2.7
3.2
3.7
Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 125°C)
-
4.0
-
-
-
300
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2
-
-
1500
Gate-Emitter Leakage Current (VGE = ±20V)
-
-
600
nA
Integrated Gate Resistor
-
5
-
Ω
VCE(ON)
ICES
IGES
RG(int)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
2
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Volts
μA
052-6351 Rev B 6-2009
Symbol Characteristic / Test Conditions
Dynamic Characteristic
Symbol
APT100GT120JRDL
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
VGE = 0V, VCE = 25V
f = 1MHz
Gate Charge
Min
Typ
Max
-
6700
-
-
6530
-
-
4380
-
-
10.0
-
Qg
Total Gate Charge
VGE = 15V
-
685
-
Qge
Gate-Emitter Charge
VCE= 600V
-
75
-
Gate-Collector Charge
IC = 100A
-
400
-
Qgc
SSOA
td(on)
tr
td(off)
tf
Eon1
Switching Safe Operating Area
TJ = 150°C, RG = 1.0Ω , VGE = 15V,
L = 100μH, VCE= 1200V
Turn-On Delay Time
-
50
-
Inductive Switching (25°C)
-
100
-
Turn-Off Delay Time
VCC = 800V
630
-
Current Fall Time
VGE = 15V
-
36
-
RG = 4.7Ω
-
TBD
-
TJ = +25°C
-
17600
-
Current Rise Time
IC = 100A
Eon2
Turn-On Switching Energy
Eoff
Turn-Off Switching Energy 6
-
7240
-
td(on)
Turn-On Delay Time
-
50
-
Inductive Switching (125°C)
-
100
-
Turn-Off Delay Time
VCC = 800V
-
710
-
Current Fall Time
VGE = 15V
-
37
-
Turn-On Switching Energy
4
IC = 100A
TBD
-
Turn-On Switching Energy
RG = 4.7Ω
-
5
-
22380
-
Turn-Off Switching Energy
6
-
10950
-
Eon1
Eon2
Eoff
nC
A
5
tf
V
200
Turn-On Switching Energy
td(off)
pF
7
4
tr
Unit
Current Rise Time
TJ = 125°C
ns
μJ
ns
μJ
Thermal and Mechanical Characteristics
Symbol Characteristic / Test Conditions
Min
Typ
Max
Junction to Case (IGBT)
-
-
0.22
Junction to Case (DIODE)
-
-
0.80
Package Weight
-
29.2
-
g
2500
-
-
Volts
R
R
θJC
θJC
WT
VIsolation
Unit
°C/W
RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
052-6351 Rev B 6-2009
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages.
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance not including gate driver impedance.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
V
GE
APT100GT120JRDL
250
= 15V
15V
13V
12V
125
TJ= 25°C
100
TJ= 125°C
75
TJ= 150°C
50
25
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
150
200
11V
150
10V
100
9V
50
8V
7V
0
1
2
3
4
5
6
7
8
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
100
75
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ= -55°C
TJ= 25°C
25
TJ= 125°C
0
8
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
7
6
IC = 200A
5
IC = 100A
4
3
IC = 50A
2
1
0
1.05
0.85
0.80
0.75
-.50 -.25
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
VCE = 960V
8
6
4
2
0
7
100
200 300 400 500 600
GATE CHARGE (nC)
FIGURE 4, Gate charge
700
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
6
IC = 200A
5
IC = 100A
4
IC = 50A
3
2
1
0
25
120
IC, DC COLLECTOR CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.10
0.90
10
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
9
10
11 12
13 14 15 16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
0.95
VCE = 600V
0
8
1.00
VCE = 240V
J
12
0
10
12
14
4
6
8
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
2
I = 100A
C
T = 25°C
14
100
80
60
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6351 Rev B 6-2009
125
50
0
5
10
15
20
25
30
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
16
250μs PULSE
TEST<0.5 % DUTY
CYCLE
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
150
0
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
APT100GT120JRDL
80
900
70
800
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
Typical Performance Curves
60
VGE = 15V
50
40
30
20
VCE = 800V
TJ = 25°C, or 125°C
RG = 4.7Ω
L = 100μH
10
0
700
600
300
200
0
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
120
RG = 4.7Ω, L = 100μH, VCE = 800V
300
tr, FALL TIME (ns)
tr, RISE TIME (ns)
200
150
100
50
TJ = 25°C, VGE = 15V
60
40
TJ = 125°C, VGE = 15V
0
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
18000
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
80000
V
= 800V
CE
V
= +15V
GE
R = 4.7Ω
70000
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
80
20
TJ = 25 or 125°C,VGE = 15V
0
G
60000
50000
TJ = 125°C
40000
30000
20000
TJ = 25°C
10000
V
= 800V
CE
V
= +15V
GE
R = 4.7Ω
16000
G
14000
12000
10000
8000
TJ = 25°C
6000
4000
2000
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
0
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
80000
140000
Eon2,200A
J
120000
100000
80000
60000
40000
Eoff,200A
Eon2,100A
20000
0
Eoff,100A
Eon2,50A
Eoff,50A
4
8
12
16
20
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
160000
V
= 800V
CE
V
= +15V
GE
T = 125°C
TJ = 125°C
0
0
SWITCHING ENERGY LOSSES (μJ)
RG = 4.7Ω, L = 100μH, VCE = 800V
100
250
052-6351 Rev B 6-2009
VCE = 800V
RG = 4.7Ω
L = 100μH
100
40
80
120
160
200
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0
VGE =15V,TJ=25°C
400
0
350
VGE =15V,TJ=125°C
500
V
= 800V
CE
V
= +15V
GE
R = 4.7Ω
70000
Eon2,200A
G
60000
50000
40000
30000
Eoff,200A
20000
Eon2,100A
10000
0
Eoff,100A
Eon2,50A
Eoff,50A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT100GT120JRDL
250
10000
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
Cies
1000
Coes
100
Cres
10
200
150
100
50
0
0 200 400 600 800 1000 1200 1400
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0 100 200 300 400 500 600 700 800 900
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
D = 0.9
0. 2
0.7
0.15
0.5
Note:
0. 1
PDM
0.3
t2
0.05
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.1
10-4
10-3
10-2
10-1
0.1
1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
40
FMAX, OPERATING FREQUENCY (kHz)
SINGLE PULSE
0.05
0
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 4.7Ω
30
G
75°C
10
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
100°C
0
10
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
20
0
t1
10
20 30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
052-6351 Rev B 6-2009
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT100GT120JRDL
Gate Voltage
10%
a -46.0ns 780.4V
b 422ns 34.13V
∆468ns ∆746.3V
TJ = 125°C
td(on)
APT2X31DL120
Collector Current
tr
90%
V CE
IC
V CC
5%
10%
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 21, Inductive Switching Test Circuit
90%
TJ = 125°C
a -226ns 97.34V
b 928ns 0.000V
∆1.15μs ∆97.34V
Gate Voltage
Collector Voltage
td(off)
90%
tf
10%
0
Collector Current
Switching Energy
052-6351 Rev B 6-2009
Figure 23, Turn-off Switching Waveforms and Definitions
Figure 22, Turn-on Switching Waveforms and Definitions
Typical Performance Curves
APT100GT120JRDL
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol Characteristic / Test Conditions
IF(AV)
IF(RMS)
IFSM
APT100GT120JRDL
Maximum Average Forward Current (TC = 50°C, Duty Cycle = 0.5)
60
RMS Forward Current (Square wave, 50% duty)
90
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)
120
Unit
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol Characteristic / Test Conditions
VF
Min
Forward Voltage
Type
Max
IF = 60A
1.6
2.1
IF = 120A
2.0
IF = 60A, TJ = 125°C
1.25
Unit
Volts
DYNAMIC CHARACTERISTICS
Symbol Characteristic
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Typ
Max
IF = 1A, diF/dt = -100A/µs,
VR = 30V, TJ = 25°C
-
61
-
-
592
-
Reverse Recovery Time
Qrr
Reverse Recovery Charge
-
2694
-
nC
-
9
-
Amps
-
793
-
ns
-
5744
-
nC
-
13
-
Amps
-
286
-
ns
-
6182
-
nC
-
42
-
Amps
VR = 800V, TC = 25°C
IF = 60A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
Unit
ns
IF = 60A, diF/dt = -200A/µs
Maximum Reverse Recovery Current
trr
IRRM
Min
IF = 60A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
0.8
D = 0.9
0.7
0.6
0.7
0.5
0.5
0.4
0.3
Note:
PDM
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.9
0.3
t1
t2
0.2
t
0.1
0.1
0.05
SINGLE PULSE
0
10
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-3
10-2
10-1
0.1
1
RECTANGULAR PULSE DURATION (seconds)
FIGURE 1. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
-4
052-6351 Rev B 6-2009
IRRM
Test Conditions
Typical Perfromance Curves
TJ= 125°C
trr, COLLECTOR CURRENT (A)
IF, FORWARD CURRENT (A)
T = 125°C
J
V = 800V
450
TJ= 150°C
80
TJ= 55°C
TJ= 25°C
60
40
20
400
60A
30A
350
15A
R
300
250
200
150
100
50
0
0.5
1
1.5
2
2.5
3
VF, ANODE-TO-CATHODE VOLTAGE (V)
FIGURE 2, Forward Current vs. Forward Voltage
7000
0
0
T = 125°C
J
V = 800V
R
6000
60A
5000
30A
4000
15A
3000
2000
1000
0
0
200
400
600
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change
1.2
0
200
400
600
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 3, Reverse Recovery Time vs. Current Rate of Change
70
IRRM, REVERSE RECOVERY CURRENT
(A)
Qrr, REVERSE RECOVERY CHARGE
(nC)
APT100GT120JRDL
500
100
T = 125°C
J
V = 800V
R
60
60A
50
30A
40
15A
30
20
10
0
0
200
400
60
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 5, Reverse Recovery Current vs. Current Rate of Change
100
80
0.8
70
tRR
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/μs)
90
1.0
IRRM
0.6
QRR
0.4
60
50
40
30
20
0.2
Duty cycle = 0.5
TJ = 45°C
10
0
0
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 6, Dynamic Parameters vs Junction Temperature
CJ, JUNCTION CAPACITANCE (pF)
052-6351 Rev B 6-2009
1400
1200
1000
800
600
400
200
0
1
10
100
800
VR, REVERSE VOLTAGE (V)
FIGURE 8, Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
Case Temperature (°C)
FIGURE 7, Maximum Average Forward Current vs. Case Temperature
APT100GT120JRDL(G)
Vr
diF /dt Adjust
+18V
APT10035LLL
0V
D.U.T.
30μH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32, Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
0.25 IRRM
3
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
)
Dimensions in Millimeters and (Inches
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
052-6351 Rev B 6-2009
7.8 (.307)
8.2 (.322)