1200V APT100GT120JRDL Resonant Mode IGBT® E E The Thunderbolt IGBT® used in this Resonant Mode Combi is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed. C G S Typical Applications Features • SSOA Rated • Low Conduction Loss • Induction Heating • RoHS Compliant 22 7 "UL Recognized" file # E145592 ISOTOP ® • Low Gate Charge OT • Welding C • Ultrafast Tail Current shutoff • Medical • Low forward Diode Voltage (VF) • High Power Telecom • Ultrasoft Recovery Diode • Resonant Mode Phase Shifted Bridge G E All Ratings: TC = 25°C unless otherwise specified. Maximum Ratings APT100GT120JRDL Symbol Parameter VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 IC1 Continuous Collector Current @ TC = 25°C 123 IC2 Continuous Collector Current @ TC = 100°C 67 ICM SSOA PD TJ, TSTG TL Pulsed Collector Current Unit Volts Amps 200 1 Switching Safe Operating Area @ TJ = 150°C 200A @ 1200V Total Power Dissipation 570 Operating and Storage Junction Temperature Range Watts -55 to 150 Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec. °C 300 Static Electrical Characteristics Min Typ Max 1200 - - Unit V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 5mA) VGE(TH) Gate Threshold Voltage (VCE = VGE, IC = 4mA, Tj = 25°C) 4.5 5.5 6.5 Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 25°C) 2.7 3.2 3.7 Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 125°C) - 4.0 - - - 300 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2 - - 1500 Gate-Emitter Leakage Current (VGE = ±20V) - - 600 nA Integrated Gate Resistor - 5 - Ω VCE(ON) ICES IGES RG(int) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Volts μA 052-6351 Rev B 6-2009 Symbol Characteristic / Test Conditions Dynamic Characteristic Symbol APT100GT120JRDL Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage VGE = 0V, VCE = 25V f = 1MHz Gate Charge Min Typ Max - 6700 - - 6530 - - 4380 - - 10.0 - Qg Total Gate Charge VGE = 15V - 685 - Qge Gate-Emitter Charge VCE= 600V - 75 - Gate-Collector Charge IC = 100A - 400 - Qgc SSOA td(on) tr td(off) tf Eon1 Switching Safe Operating Area TJ = 150°C, RG = 1.0Ω , VGE = 15V, L = 100μH, VCE= 1200V Turn-On Delay Time - 50 - Inductive Switching (25°C) - 100 - Turn-Off Delay Time VCC = 800V 630 - Current Fall Time VGE = 15V - 36 - RG = 4.7Ω - TBD - TJ = +25°C - 17600 - Current Rise Time IC = 100A Eon2 Turn-On Switching Energy Eoff Turn-Off Switching Energy 6 - 7240 - td(on) Turn-On Delay Time - 50 - Inductive Switching (125°C) - 100 - Turn-Off Delay Time VCC = 800V - 710 - Current Fall Time VGE = 15V - 37 - Turn-On Switching Energy 4 IC = 100A TBD - Turn-On Switching Energy RG = 4.7Ω - 5 - 22380 - Turn-Off Switching Energy 6 - 10950 - Eon1 Eon2 Eoff nC A 5 tf V 200 Turn-On Switching Energy td(off) pF 7 4 tr Unit Current Rise Time TJ = 125°C ns μJ ns μJ Thermal and Mechanical Characteristics Symbol Characteristic / Test Conditions Min Typ Max Junction to Case (IGBT) - - 0.22 Junction to Case (DIODE) - - 0.80 Package Weight - 29.2 - g 2500 - - Volts R R θJC θJC WT VIsolation Unit °C/W RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) 052-6351 Rev B 6-2009 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages. 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance not including gate driver impedance. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves V GE APT100GT120JRDL 250 = 15V 15V 13V 12V 125 TJ= 25°C 100 TJ= 125°C 75 TJ= 150°C 50 25 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 150 200 11V 150 10V 100 9V 50 8V 7V 0 1 2 3 4 5 6 7 8 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 100 75 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ= -55°C TJ= 25°C 25 TJ= 125°C 0 8 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 7 6 IC = 200A 5 IC = 100A 4 3 IC = 50A 2 1 0 1.05 0.85 0.80 0.75 -.50 -.25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature VCE = 960V 8 6 4 2 0 7 100 200 300 400 500 600 GATE CHARGE (nC) FIGURE 4, Gate charge 700 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 6 IC = 200A 5 IC = 100A 4 IC = 50A 3 2 1 0 25 120 IC, DC COLLECTOR CURRENT (A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 1.10 0.90 10 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 9 10 11 12 13 14 15 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 0.95 VCE = 600V 0 8 1.00 VCE = 240V J 12 0 10 12 14 4 6 8 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 2 I = 100A C T = 25°C 14 100 80 60 40 20 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6351 Rev B 6-2009 125 50 0 5 10 15 20 25 30 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 16 250μs PULSE TEST<0.5 % DUTY CYCLE VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 150 0 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 APT100GT120JRDL 80 900 70 800 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) Typical Performance Curves 60 VGE = 15V 50 40 30 20 VCE = 800V TJ = 25°C, or 125°C RG = 4.7Ω L = 100μH 10 0 700 600 300 200 0 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 120 RG = 4.7Ω, L = 100μH, VCE = 800V 300 tr, FALL TIME (ns) tr, RISE TIME (ns) 200 150 100 50 TJ = 25°C, VGE = 15V 60 40 TJ = 125°C, VGE = 15V 0 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 18000 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 80000 V = 800V CE V = +15V GE R = 4.7Ω 70000 EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) 80 20 TJ = 25 or 125°C,VGE = 15V 0 G 60000 50000 TJ = 125°C 40000 30000 20000 TJ = 25°C 10000 V = 800V CE V = +15V GE R = 4.7Ω 16000 G 14000 12000 10000 8000 TJ = 25°C 6000 4000 2000 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current 0 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 80000 140000 Eon2,200A J 120000 100000 80000 60000 40000 Eoff,200A Eon2,100A 20000 0 Eoff,100A Eon2,50A Eoff,50A 4 8 12 16 20 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance SWITCHING ENERGY LOSSES (μJ) 160000 V = 800V CE V = +15V GE T = 125°C TJ = 125°C 0 0 SWITCHING ENERGY LOSSES (μJ) RG = 4.7Ω, L = 100μH, VCE = 800V 100 250 052-6351 Rev B 6-2009 VCE = 800V RG = 4.7Ω L = 100μH 100 40 80 120 160 200 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 VGE =15V,TJ=25°C 400 0 350 VGE =15V,TJ=125°C 500 V = 800V CE V = +15V GE R = 4.7Ω 70000 Eon2,200A G 60000 50000 40000 30000 Eoff,200A 20000 Eon2,100A 10000 0 Eoff,100A Eon2,50A Eoff,50A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT100GT120JRDL 250 10000 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) Cies 1000 Coes 100 Cres 10 200 150 100 50 0 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0 100 200 300 400 500 600 700 800 900 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage D = 0.9 0. 2 0.7 0.15 0.5 Note: 0. 1 PDM 0.3 t2 0.05 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.1 10-4 10-3 10-2 10-1 0.1 1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 40 FMAX, OPERATING FREQUENCY (kHz) SINGLE PULSE 0.05 0 T = 125°C J T = 75°C C D = 50 % V = 800V CE R = 4.7Ω 30 G 75°C 10 f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC 100°C 0 10 F max = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf 20 0 t1 10 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 052-6351 Rev B 6-2009 ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT100GT120JRDL Gate Voltage 10% a -46.0ns 780.4V b 422ns 34.13V ∆468ns ∆746.3V TJ = 125°C td(on) APT2X31DL120 Collector Current tr 90% V CE IC V CC 5% 10% 5% Collector Voltage Switching Energy A D.U.T. Figure 21, Inductive Switching Test Circuit 90% TJ = 125°C a -226ns 97.34V b 928ns 0.000V ∆1.15μs ∆97.34V Gate Voltage Collector Voltage td(off) 90% tf 10% 0 Collector Current Switching Energy 052-6351 Rev B 6-2009 Figure 23, Turn-off Switching Waveforms and Definitions Figure 22, Turn-on Switching Waveforms and Definitions Typical Performance Curves APT100GT120JRDL ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Symbol Characteristic / Test Conditions IF(AV) IF(RMS) IFSM APT100GT120JRDL Maximum Average Forward Current (TC = 50°C, Duty Cycle = 0.5) 60 RMS Forward Current (Square wave, 50% duty) 90 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms) 120 Unit Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions VF Min Forward Voltage Type Max IF = 60A 1.6 2.1 IF = 120A 2.0 IF = 60A, TJ = 125°C 1.25 Unit Volts DYNAMIC CHARACTERISTICS Symbol Characteristic trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge Typ Max IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C - 61 - - 592 - Reverse Recovery Time Qrr Reverse Recovery Charge - 2694 - nC - 9 - Amps - 793 - ns - 5744 - nC - 13 - Amps - 286 - ns - 6182 - nC - 42 - Amps VR = 800V, TC = 25°C IF = 60A, diF/dt = -200A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current Unit ns IF = 60A, diF/dt = -200A/µs Maximum Reverse Recovery Current trr IRRM Min IF = 60A, diF/dt = -1000A/µs VR = 800V, TC = 125°C 0.8 D = 0.9 0.7 0.6 0.7 0.5 0.5 0.4 0.3 Note: PDM Z JC, THERMAL IMPEDANCE (°C/W) θ 0.9 0.3 t1 t2 0.2 t 0.1 0.1 0.05 SINGLE PULSE 0 10 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10-3 10-2 10-1 0.1 1 RECTANGULAR PULSE DURATION (seconds) FIGURE 1. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION -4 052-6351 Rev B 6-2009 IRRM Test Conditions Typical Perfromance Curves TJ= 125°C trr, COLLECTOR CURRENT (A) IF, FORWARD CURRENT (A) T = 125°C J V = 800V 450 TJ= 150°C 80 TJ= 55°C TJ= 25°C 60 40 20 400 60A 30A 350 15A R 300 250 200 150 100 50 0 0.5 1 1.5 2 2.5 3 VF, ANODE-TO-CATHODE VOLTAGE (V) FIGURE 2, Forward Current vs. Forward Voltage 7000 0 0 T = 125°C J V = 800V R 6000 60A 5000 30A 4000 15A 3000 2000 1000 0 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change 1.2 0 200 400 600 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 3, Reverse Recovery Time vs. Current Rate of Change 70 IRRM, REVERSE RECOVERY CURRENT (A) Qrr, REVERSE RECOVERY CHARGE (nC) APT100GT120JRDL 500 100 T = 125°C J V = 800V R 60 60A 50 30A 40 15A 30 20 10 0 0 200 400 60 800 1000 -diF/dt, CURRENT RATE OF CHANGE (A/μs) FIGURE 5, Reverse Recovery Current vs. Current Rate of Change 100 80 0.8 70 tRR IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/μs) 90 1.0 IRRM 0.6 QRR 0.4 60 50 40 30 20 0.2 Duty cycle = 0.5 TJ = 45°C 10 0 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 6, Dynamic Parameters vs Junction Temperature CJ, JUNCTION CAPACITANCE (pF) 052-6351 Rev B 6-2009 1400 1200 1000 800 600 400 200 0 1 10 100 800 VR, REVERSE VOLTAGE (V) FIGURE 8, Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 Case Temperature (°C) FIGURE 7, Maximum Average Forward Current vs. Case Temperature APT100GT120JRDL(G) Vr diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30μH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32, Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 0.25 IRRM 3 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) Collector/Cathode * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode Gate ) Dimensions in Millimeters and (Inches Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved. 052-6351 Rev B 6-2009 7.8 (.307) 8.2 (.322)