APT75GP120JDQ3 1200V TYPICAL PERFORMANCE CURVES APT75GP120JDQ3 ® E E POWER MOS 7 IGBT ® The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 50 kHz operation @ 800V, 20A • Low Gate Charge • 20 kHz operation @ 800V, 44A • Ultrafast Tail Current shutoff • RBSOA Rated C G ISOTOP ® S OT 22 7 "UL Recognized" file # E145592 C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT75GP120JDQ3 VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 I C1 Continuous Collector Current @ TC = 25°C 128 I C2 Continuous Collector Current @ TC = 110°C 57 I CM RBSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 300 @ TC = 150°C Reverse Bias Safe Operating Area @ TJ = 150°C 300A @ 960V Total Power Dissipation Watts 543 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1250µA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES 3 Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 125°C) 4.5 6 3.3 3.9 Units Volts 3.0 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) MAX 1200 (VCE = VGE, I C = 2.5mA, Tj = 25°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) TYP 1250 2 Gate-Emitter Leakage Current (VGE = ±20V) 5500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com µA nA 10-2005 V(BR)CES MIN Rev A Characteristic / Test Conditions 050-7458 Symbol DYNAMIC CHARACTERISTICS Symbol APT75GP120JDQ3 Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge RBSOA td(on) tr td(off) tf Eon1 80 Gate Charge 7.5 VGE = 15V 320 1620 2500 Inductive Switching (125°C) 20 VCC = 600V 40 VGE = 15V 245 RG = 5Ω 115 1620 I C = 75A Eon1 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy 44 55 µJ 4100 6 Current Fall Time ns 55 TJ = +25°C Turn-off Delay Time nC 165 RG = 5Ω Current Rise Time V A 40 I C = 75A Turn-on Delay Time pF 300 20 5 UNIT 140 VCC = 600V 4 MAX 50 Inductive Switching (25°C) Current Fall Time Turn-off Switching Energy tf f = 1 MHz TJ = 150°C, R G = 5Ω, VGE = Turn-off Delay Time Eoff td(off) 460 VGE = 15V Turn-on Switching Energy (Diode) tr VGE = 0V, VCE = 25V 15V, L = 100µH,VCE = 960V Current Rise Time Eon2 td(on) 7035 I C = 75A Turn-on Delay Time TYP Capacitance VCE = 600V Reverse Bias Safe Operating Area Turn-on Switching Energy MIN TJ = +125°C ns µJ 5850 6 4820 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .23 RθJC Junction to Case (DIODE) .56 WT VIsolation Package Weight 29.2 RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500 UNIT °C/W gm Volts 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 050-7458 Rev A 10-2005 4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 80 TJ = 25°C TJ = 125°C 40 20 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) TJ = 25°C TJ = 125°C 50 0 5 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics IC = 150A TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 IC = 75A 3 IC = 37.5A 2 1 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 6 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature J VCE = 240V 12 VCE = 600V 10 8 VCE = 960V 6 4 2 0 50 100 150 200 250 GATE CHARGE (nC) 300 350 FIGURE 4, Gate Charge 5.0 IC = 150A 4.0 IC = 75A 3.0 IC = 37.5A 2.0 1.0 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 180 1.10 1.05 I = 75A C T = 25°C 14 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = -55°C 100 20 FIGURE 2, Output Characteristics (TJ = 125°C) VGE, GATE-TO-EMITTER VOLTAGE (V) 150 40 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 200 TJ = 125°C 60 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 250µs PULSE TEST<0.5 % DUTY CYCLE TJ = 25°C 80 0 0 250 100 160 140 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 10-2005 100 120 Rev A 120 60 V = 10V GE 250µs PULSE TEST <0.5 % DUTY CYCLE 140 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 140 APT75GP120JDQ3 160 V = 15V GE 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7458 160 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) VGE = 15V 20 10 0 APT75GP120JDQ3 350 30 VCE = 600V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 300 250 150 VGE =15V,TJ=25°C 100 50 VCE = 600V RG = 5Ω 0 0 VGE =15V,TJ=125°C 200 L = 100 µH 20 40 60 80 100 120 140 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 20 40 60 80 100 120 140 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 100 160 RG = 5Ω, L = 100µH, VCE = 600V 0 RG = 5Ω, L = 100µH, VCE = 600V 140 60 40 TJ = 25 or 125°C,VGE = 15V 12000 V = 600V CE V = +15V GE R = 5Ω G TJ = 125°C,VGE =15V 10000 5000 TJ = 25°C,VGE =15V 0 20 40 60 80 100 120 140 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current J 15000 Eoff,150A Eon2,75A Eon2,37.5A Eoff,75A Eoff,37.5A 0 TJ = 125°C, VGE = 15V 8000 6000 4000 2000 TJ = 25°C, VGE = 15V 15000 Eon2,150A 10000 5000 G 10000 0 20 40 60 80 100 120 140 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) V = 600V CE V = +15V GE T = 125°C V = 600V CE V = +15V GE R = 5Ω 0 0 20000 TJ = 25°C, VGE = 15V 0 20 40 60 80 100 120 140 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 15000 10-2005 60 0 0 20 40 60 80 100 120 140 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current Rev A 80 20 0 050-7458 100 40 20 0 TJ = 125°C, VGE = 15V 120 tf, FALL TIME (ns) tr, RISE TIME (ns) 80 V = 600V CE V = +15V GE R = 5Ω Eon2,150A G 12500 10000 Eoff,150A 7500 Eon2,75A 5000 0 Eon2,37.5A Eoff,75A 2500 Eoff,37.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 20,000 IC, COLLECTOR CURRENT (A) 1,000 Cies P C, CAPACITANCE ( F) 500 100 50 Coes 10 APT75GP120JDQ3 350 Cres 300 250 200 150 100 50 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 200 400 600 800 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.9 0.20 0.7 0.15 0.5 Note: 0.10 0.3 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 t2 0.05 0.1 10-5 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 0 t1 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.0498 0.158 0.0416 0.543 Case temperature (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 10 F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 5 1 T = 125°C J T = 75°C C D = 50 % V = XXXV CE R = 5Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 20 35 50 60 80 95 110 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 10-2005 Power (watts) 0.0014 Rev A 0.0221 050-7458 RC MODEL Junction temp (°C) FMAX, OPERATING FREQUENCY (kHz) 50 APT75GP120JDQ3 10% APT60DQ120 Gate Voltage TJ = 125°C td(on) V CE IC V CC tr 90% 5% A D.U.T. Collector Current 5% 10% Collector Voltage Switching Energy Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage td(off) tf A TJ = 125°C V CE Collector Voltage 90% 100uH IC V CLAMP 10% Switching Energy A 0 Collector Current Rev A 10-2005 Figure 23, Turn-off Switching Waveforms and Definitions 050-7458 B DRIVER* Figure 24, EON1 Test Circuit D.U.T. TYPICAL PERFORMANCE CURVES APT75GP120JDQ3 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. APT75GP120JDQ3 Characteristic / Test Conditions Maximum Average Forward Current (TC = 105°C, Duty Cycle = 0.5) 60 RMS Forward Current (Square wave, 50% duty) 88 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) UNIT Amps 540 STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions Forward Voltage MIN TYP IF = 75A 2.8 IF = 150A 3.48 IF = 75A, TJ = 125°C 2.17 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX- UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 60 trr Reverse Recovery Time - 265 Qrr Reverse Recovery Charge - 560 - 5 - 350 ns - 2890 nC - 13 - 150 - 4720 - 40 IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IF = 60A, diF/dt = -200A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 800V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 60A, diF/dt = -200A/µs IF = 60A, diF/dt = -1000A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current ns nC - - Amps Amps ns - nC Amps 0.9 0.50 0.40 0.7 0.30 0.5 0.20 0.3 Note: PDM t1 t2 0.10 0.05 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION Junction temp. (°C) Power (watts) RC MODEL 10-2005 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.148 0.006 0.238 0.0910 Rev A 0 t 0.1 0.174 0.524 050-7458 ZθJC, THERMAL IMPEDANCE (°C/W) 0.60 Case temperature. (°C) FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL 200 140 TJ = 175°C 120 100 TJ = 125°C 80 60 TJ = 25°C 40 TJ = -55°C 20 0 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 26. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) 7000 T = 125°C J V = 800V R 6000 120A 5000 4000 60A 3000 30A 2000 1000 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Charge vs. Current Rate of Change 350 300 R 60A 250 30A 200 150 100 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 27. Reverse Recovery Time vs. Current Rate of Change 50 T = 125°C J V = 800V 45 120A R 40 35 30 25 60A 20 15 30A 10 5 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 29. Reverse Recovery Current vs. Current Rate of Change 100 Qrr trr 1.0 T = 125°C J V = 800V 120A 50 Duty cycle = 0.5 T = 175°C 90 J 80 trr 0.8 70 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 trr, REVERSE RECOVERY TIME (ns) 160 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 180 0 APT75GP120JDQ3 400 IRRM 0.6 60 50 40 0.4 Qrr 0.2 30 20 10 0.0 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 30. Dynamic Parameters vs. Junction Temperature 050-7458 Rev A CJ, JUNCTION CAPACITANCE (pF) 10-2005 350 300 250 200 150 100 50 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 32. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 31. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT75GP120JDQ3 Vr diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 33. Diode Test Circui t 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 34, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) Collector/Cathode * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode Gate Dimensions in Millimeters and (Inches) ISOTOP® is a Registered Trademark of SGS Thomson. APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 10-2005 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) Rev A r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 050-7458 7.8 (.307) 8.2 (.322)