APT50GT60BRDQ1(G) 600V TYPICAL PERFORMANCE CURVES APT50GT60BRDQ1 APT50GT60BRDQ1G* ® *G Denotes RoHS Compliant, Pb Free Terminal Finish. Thunderbolt IGBT® TO -2 47 The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed. • Low Forward Voltage Drop • High Freq. Switching to 100KHz • Low Tail Current • Ultra Low Leakage Current G C E C • RBSOA and SCSOA Rated G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT50GT60BRDQ1(G) VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current I C2 Continuous Collector Current @ TC = 110°C I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 7 @ TC = 25°C UNIT Volts 110 52 1 Amps 150 150A @ 600V Switching Safe Operating Area @ TJ = 150°C Watts 446 Total Power Dissipation Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES (VCE = VGE, I C = 1mA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) TYP MAX 3 4 5 1.7 2.0 2.5 Gate-Emitter Leakage Current (VGE = ±20V) µA TBD 120 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Volts 2.2 25 2 Units nA 11-2005 MIN Rev A Characteristic / Test Conditions 052-6281 Symbol DYNAMIC CHARACTERISTICS Symbol APT50GT60BRDQ1(G) Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 tf f = 1 MHz 155 Gate Charge 7.5 VGE = 15V 240 15V, L = 100µH,VCE = 600V 995 TJ = +25°C 1070 14 VCC = 400V 32 Turn-off Delay Time VGE = 15V 270 RG = 4.3Ω 95 1035 I C = 50A Current Fall Time Eoff Turn-off Switching Energy µJ 1110 Inductive Switching (125°C) Current Rise Time Turn-on Switching Energy (Diode) ns 36 RG = 4.3Ω Turn-on Delay Time Turn-on Switching Energy nC 240 6 Eon2 V A 32 I C = 50A Eon1 pF 150 14 5 UNIT 110 VCC = 400V 4 MAX 20 Inductive Switching (25°C) Current Fall Time Turn-off Switching Energy td(off) 250 TJ = 150°C, R G = 4.3Ω, VGE = Turn-off Delay Time Eoff tr VGE = 0V, VCE = 25V VGE = 15V Turn-on Switching Energy (Diode) td(on) 2500 I C = 50A Current Rise Time Eon2 TYP Capacitance VCE = 300V Turn-on Delay Time Turn-on Switching Energy MIN 44 55 TJ = +125°C ns µJ 1655 6 1505 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic RθJC Junction to Case (IGBT) RθJC Junction to Case (DIODE) WT Package Weight MIN TYP MAX .28 1.35 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 052-6281 Rev A 11-2005 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 Continuous current limited by package lead temperature. APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES = 15V IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 120 TJ = 25°C 100 TJ = -55°C 80 TJ = 125°C 60 40 10 10V 140 120 9V 100 80 8V 60 40 7V 0 5 10 15 20 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 250µs PULSE TEST<0.5 % DUTY CYCLE 140 TJ = -55°C 120 100 80 60 TJ = 25°C 40 TJ = 125°C 20 0 FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 160 6V 0 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 11V 160 20 0 0 15V 13V 180 J VCE = 120V 12 VCE = 300V 10 VCE = 480V 8 6 4 2 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 50A C T = 25°C 14 0 50 IC = 100A 3 IC = 50A 2 IC = 25A 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 3.5 2.5 1.5 0.5 0 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 0.85 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 140 0.90 IC = 25A 1.0 1.10 0.95 IC = 50A 2.0 160 1.00 IC = 100A 3.0 1.15 1.05 250 FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 5 100 150 200 GATE CHARGE (nC) 0 120 100 80 60 Lead Temperature Limited 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 11-2005 GE 140 Rev A V APT50GT60BRDQ1(G) 200 052-6281 160 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 20 VGE = 15V 15 10 5 VCE = 400V TJ = 25°C, or 125°C 0 RG = 4.3Ω L = 100µH 0 90 tf, FALL TIME (ns) tr, RISE TIME (ns) 50 40 30 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 2000 TJ = 25°C 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 3000 G TJ = 125°C 2500 2000 1500 1000 TJ = 25°C 500 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 5,000 = 400V V CE = +15V V GE T = 125°C Eon2,100A J 8,000 6,000 4,000 Eoff,100A Eoff,50A Eon2,50A 2,000 Eoff,25A Eon2,25A 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) = 400V V CE = +15V V GE R = 4.3Ω 0 0 11-2005 TJ = 25°C, VGE = 15V 0 EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) TJ = 125°C 3000 0 60 3500 V = 400V CE V = +15V GE R = 4.3Ω 10,000 80 20 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 1000 TJ = 125°C, VGE = 15V 100 40 TJ = 25 or 125°C,VGE = 15V G RG = 4.3Ω, L = 100µH, VCE = 400V 160 120 4000 L = 100µH 0 180 0 Rev A 50 VCE = 400V RG = 4.3Ω 60 5000 VGE =15V,TJ=25°C 150 140 10 VGE =15V,TJ=125°C 200 70 20 052-6281 250 20 40 60 80 100 125 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current RG = 4.3Ω, L = 100µH, VCE = 400V 80 300 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 APT50GT60BRDQ1(G) 350 25 V = 400V CE V = +15V GE R = 4.3Ω G 4,000 Eon2,100A Eoff,100A 3,000 2,000 Eon2,50A Eoff,50A 1,000 0 Eon2,25A Eoff,25A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) Cies P C, CAPACITANCE ( F) APT50GT60BRDQ1(G) 160 4,000 1,000 500 Coes 140 120 100 80 60 40 20 Cres 100 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area D = 0.9 0.25 0.20 0.7 0.15 0.5 0.10 0.3 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 SINGLE PULSE 0.05 0 t2 t 0.1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.05 10-5 t1 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.113 0.0276 Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 10 2 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 4.3Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 10 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 11-2005 0.0057 F Rev A 0.114 Power (watts) 50 052-6281 RC MODEL Junction temp. (°C) FMAX, OPERATING FREQUENCY (kHz) 120 APT50GT60BRDQ1(G) Gate Voltage APT15DQ60 10% TJ = 125°C td(on) tr IC V CC 5% D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions 90% Gate Voltage TJ = 125°C td(off) 90% Collector Voltage tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions 11-2005 5% Switching Energy Figure 21, Inductive Switching Test Circuit Rev A 10% Collector Voltage A 052-6281 Collector Current 90% V CE TYPICAL PERFORMANCE CURVES APT50GT60BRDQ1(G) ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) All Ratings: TC = 25°C unless otherwise specified. APT50GT60BRDQ1(G) Characteristic / Test Conditions Maximum Average Forward Current (TC = 129°C, Duty Cycle = 0.5) 15 RMS Forward Current (Square wave, 50% duty) 30 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) IFSM UNIT Amps 110 STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions MIN Forward Voltage VF TYP IF = 15A 2.0 IF = 30A 2.5 IF = 15A, TJ = 125°C MAX UNIT Volts 1.56 DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 15 trr Reverse Recovery Time - 19 Qrr Reverse Recovery Charge - 21 - 2 - 105 ns - 250 nC - 5 - 55 ns - 420 nC - 15 Amps IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IF = 15A, diF/dt = -200A/µs VR = 400V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 400V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 15A, diF/dt = -200A/µs IF = 15A, diF/dt = -1000A/µs Maximum Reverse Recovery Current VR = 400V, TC = 125°C ns nC - - Amps Amps D = 0.9 1.20 1.00 0.7 0.80 0.5 Note: 0.60 0.3 0.40 t1 t2 0.20 t 0.1 SINGLE PULSE 0.05 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION 0.676 0.00147 0.504 0.0440 11-2005 RC MODEL Junction temp. (°C) Rev A 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC Power (watts) Case temperature. (°C) FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL 052-6281 0 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 1.40 100 TJ = 175°C 70 60 TJ = 125°C 50 40 30 20 TJ = -55°C 10 TJ = 25°C 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage 0 Qrr, REVERSE RECOVERY CHARGE (nC) 700 R 600 30A 500 400 15A 300 7.5A 200 100 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change 40 20 T =125°C J V =400V R 20 30A 15 10 15A 7.5A 5 35 Duty cycle = 0.5 T =175°C J 30 25 IRRM 0.6 trr 0.4 Qrr 20 15 10 5 0 90 CJ, JUNCTION CAPACITANCE (pF) 7.5A 60 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change 0.8 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature 11-2005 15A 80 0 trr 0.2 Rev A 30A 100 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change Qrr 1.0 80 70 60 50 40 30 20 10 0 R 0 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 0.0 T =125°C J V =400V 120 25 T =125°C J V =400V 0 052-6281 trr, REVERSE RECOVERY TIME (ns) 80 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 90 0 APT50GT60BRDQ1(G) 140 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT50GT60BRDQ1(G) Vr diF /dt Adjust +18V APT6017LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions TO-247 Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector (Cathode) 20.80 (.819) 21.46 (.845) 3.55 (.138) 3.81 (.150) 4.50 (.177) Max. 1.01 (.040) 1.40 (.055) Gate Collector (Cathode) Emitter (Anode) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 11-2005 1.65 (.065) 2.13 (.084) Rev A 2.21 (.087) 2.59 (.102) 19.81 (.780) 20.32 (.800) 052-6281 0.40 (.016) 0.79 (.031) 2.87 (.113) 3.12 (.123)