ADPOW APT50GT60BRDQ1G

APT50GT60BRDQ1(G)
600V
TYPICAL PERFORMANCE CURVES
APT50GT60BRDQ1
APT50GT60BRDQ1G*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
TO
-2
47
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 100KHz
• Low Tail Current
• Ultra Low Leakage Current
G
C
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT50GT60BRDQ1(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current
I C2
Continuous Collector Current @ TC = 110°C
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
7
@ TC = 25°C
UNIT
Volts
110
52
1
Amps
150
150A @ 600V
Switching Safe Operating Area @ TJ = 150°C
Watts
446
Total Power Dissipation
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
TYP
MAX
3
4
5
1.7
2.0
2.5
Gate-Emitter Leakage Current (VGE = ±20V)
µA
TBD
120
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
2.2
25
2
Units
nA
11-2005
MIN
Rev A
Characteristic / Test Conditions
052-6281
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT50GT60BRDQ1(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
f = 1 MHz
155
Gate Charge
7.5
VGE = 15V
240
15V, L = 100µH,VCE = 600V
995
TJ = +25°C
1070
14
VCC = 400V
32
Turn-off Delay Time
VGE = 15V
270
RG = 4.3Ω
95
1035
I C = 50A
Current Fall Time
Eoff
Turn-off Switching Energy
µJ
1110
Inductive Switching (125°C)
Current Rise Time
Turn-on Switching Energy (Diode)
ns
36
RG = 4.3Ω
Turn-on Delay Time
Turn-on Switching Energy
nC
240
6
Eon2
V
A
32
I C = 50A
Eon1
pF
150
14
5
UNIT
110
VCC = 400V
4
MAX
20
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
td(off)
250
TJ = 150°C, R G = 4.3Ω, VGE =
Turn-off Delay Time
Eoff
tr
VGE = 0V, VCE = 25V
VGE = 15V
Turn-on Switching Energy (Diode)
td(on)
2500
I C = 50A
Current Rise Time
Eon2
TYP
Capacitance
VCE = 300V
Turn-on Delay Time
Turn-on Switching Energy
MIN
44
55
TJ = +125°C
ns
µJ
1655
6
1505
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
RθJC
Junction to Case (IGBT)
RθJC
Junction to Case (DIODE)
WT
Package Weight
MIN
TYP
MAX
.28
1.35
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
052-6281
Rev A
11-2005
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 Continuous current limited by package lead temperature.
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
= 15V
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
120
TJ = 25°C
100
TJ = -55°C
80
TJ = 125°C
60
40
10
10V
140
120
9V
100
80
8V
60
40
7V
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
140
TJ = -55°C
120
100
80
60
TJ = 25°C
40
TJ = 125°C
20
0
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
160
6V
0
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
11V
160
20
0
0
15V 13V
180
J
VCE = 120V
12
VCE = 300V
10
VCE = 480V
8
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 50A
C
T = 25°C
14
0
50
IC = 100A
3
IC = 50A
2
IC = 25A
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
3.5
2.5
1.5
0.5
0
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.85
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
25
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
140
0.90
IC = 25A
1.0
1.10
0.95
IC = 50A
2.0
160
1.00
IC = 100A
3.0
1.15
1.05
250
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
5
100
150
200
GATE CHARGE (nC)
0
120
100
80
60
Lead Temperature
Limited
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
11-2005
GE
140
Rev A
V
APT50GT60BRDQ1(G)
200
052-6281
160
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
20
VGE = 15V
15
10
5 VCE = 400V
TJ = 25°C, or 125°C
0
RG = 4.3Ω
L = 100µH
0
90
tf, FALL TIME (ns)
tr, RISE TIME (ns)
50
40
30
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
2000
TJ = 25°C
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
3000
G
TJ = 125°C
2500
2000
1500
1000
TJ = 25°C
500
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
5,000
= 400V
V
CE
= +15V
V
GE
T = 125°C
Eon2,100A
J
8,000
6,000
4,000 Eoff,100A
Eoff,50A
Eon2,50A
2,000
Eoff,25A
Eon2,25A
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
= 400V
V
CE
= +15V
V
GE
R = 4.3Ω
0
0
11-2005
TJ = 25°C, VGE = 15V
0
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
TJ = 125°C
3000
0
60
3500
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
10,000
80
20
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
1000
TJ = 125°C, VGE = 15V
100
40
TJ = 25 or 125°C,VGE = 15V
G
RG = 4.3Ω, L = 100µH, VCE = 400V
160
120
4000
L = 100µH
0
180
0
Rev A
50 VCE = 400V
RG = 4.3Ω
60
5000
VGE =15V,TJ=25°C
150
140
10
VGE =15V,TJ=125°C
200
70
20
052-6281
250
20
40
60
80
100
125
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
RG = 4.3Ω, L = 100µH, VCE = 400V
80
300
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0
APT50GT60BRDQ1(G)
350
25
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
G
4,000
Eon2,100A
Eoff,100A
3,000
2,000
Eon2,50A
Eoff,50A
1,000
0
Eon2,25A
Eoff,25A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
Cies
P
C, CAPACITANCE ( F)
APT50GT60BRDQ1(G)
160
4,000
1,000
500
Coes
140
120
100
80
60
40
20
Cres
100
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
D = 0.9
0.25
0.20
0.7
0.15
0.5
0.10
0.3
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
SINGLE PULSE
0.05
0
t2
t
0.1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
10-5
t1
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.113
0.0276
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
2
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 4.3Ω
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
10 20
30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
11-2005
0.0057
F
Rev A
0.114
Power
(watts)
50
052-6281
RC MODEL
Junction
temp. (°C)
FMAX, OPERATING FREQUENCY (kHz)
120
APT50GT60BRDQ1(G)
Gate Voltage
APT15DQ60
10%
TJ = 125°C
td(on)
tr
IC
V CC
5%
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
90%
Gate Voltage
TJ = 125°C
td(off)
90%
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
11-2005
5%
Switching Energy
Figure 21, Inductive Switching Test Circuit
Rev A
10%
Collector Voltage
A
052-6281
Collector Current
90%
V CE
TYPICAL PERFORMANCE CURVES
APT50GT60BRDQ1(G)
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
All Ratings: TC = 25°C unless otherwise specified.
APT50GT60BRDQ1(G)
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 129°C, Duty Cycle = 0.5)
15
RMS Forward Current (Square wave, 50% duty)
30
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
IFSM
UNIT
Amps
110
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
MIN
Forward Voltage
VF
TYP
IF = 15A
2.0
IF = 30A
2.5
IF = 15A, TJ = 125°C
MAX
UNIT
Volts
1.56
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
15
trr
Reverse Recovery Time
-
19
Qrr
Reverse Recovery Charge
-
21
-
2
-
105
ns
-
250
nC
-
5
-
55
ns
-
420
nC
-
15
Amps
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 15A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 400V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 15A, diF/dt = -200A/µs
IF = 15A, diF/dt = -1000A/µs
Maximum Reverse Recovery Current
VR = 400V, TC = 125°C
ns
nC
-
-
Amps
Amps
D = 0.9
1.20
1.00
0.7
0.80
0.5
Note:
0.60
0.3
0.40
t1
t2
0.20
t
0.1
SINGLE PULSE
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
0.676
0.00147
0.504
0.0440
11-2005
RC MODEL
Junction
temp. (°C)
Rev A
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
Power
(watts)
Case temperature. (°C)
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
052-6281
0
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
1.40
100
TJ = 175°C
70
60
TJ = 125°C
50
40
30
20
TJ = -55°C
10
TJ = 25°C
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
0
Qrr, REVERSE RECOVERY CHARGE
(nC)
700
R
600
30A
500
400
15A
300
7.5A
200
100
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
40
20
T =125°C
J
V =400V
R
20
30A
15
10
15A
7.5A
5
35
Duty cycle = 0.5
T =175°C
J
30
25
IRRM
0.6
trr
0.4
Qrr
20
15
10
5
0
90
CJ, JUNCTION CAPACITANCE
(pF)
7.5A
60
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
0.8
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
11-2005
15A
80
0
trr
0.2
Rev A
30A
100
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
Qrr
1.0
80
70
60
50
40
30
20
10
0
R
0
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
0.0
T =125°C
J
V =400V
120
25
T =125°C
J
V =400V
0
052-6281
trr, REVERSE RECOVERY TIME
(ns)
80
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
90
0
APT50GT60BRDQ1(G)
140
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT50GT60BRDQ1(G)
Vr
diF /dt Adjust
+18V
APT6017LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
(Cathode)
20.80 (.819)
21.46 (.845)
3.55 (.138)
3.81 (.150)
4.50 (.177) Max.
1.01 (.040)
1.40 (.055)
Gate
Collector
(Cathode)
Emitter
(Anode)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
11-2005
1.65 (.065)
2.13 (.084)
Rev A
2.21 (.087)
2.59 (.102)
19.81 (.780)
20.32 (.800)
052-6281
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)