ADPOW APT60GF120JRDQ3

APT60GF120JRDQ3
1200V
TYPICAL PERFORMANCE CURVES
APT60GF120JRDQ3
®
E
E
FAST IGBT & FRED
The Fast IGBT is a new generation of high voltage power IGBTs. Using Non-Punch through
technology, the Fast IGBT combined with an APT free wheeling Ultra Fast Recovery Epitaxial Diode (FRED) offers superior ruggedness and fast switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 20KHz
• RBSOA and SCSOA Rated
• Ultra Low Leakage Current
C
G
ISOTOP ®
S
OT
22
7
"UL Recognized"
file # E145592
C
• Ultrafast Soft Recovery Anti-parallel Diode
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT60GF120JRDQ3
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
149
I C2
Continuous Collector Current @ TC = 100°C
79
I CM
SSOA
PD
TJ,TSTG
Pulsed Collector Current
1
UNIT
Volts
Amps
300
Switching Safe Operating Area @ TJ = 150°C
300A @ 1200V
Total Power Dissipation
Watts
625
Operating and Storage Junction Temperature Range
-55 to 150
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 350µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
5.5
6.5
Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 25°C)
2.5
3.0
Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 125°C)
3.1
1200
(VCE = VGE, I C = 500µA, Tj = 25°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
Units
4.5
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
0.35
2
Gate-Emitter Leakage Current (VGE = ±20V)
mA
3.0
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
nA
4-2006
V(BR)CES
MIN
Rev A
Characteristic / Test Conditions
052-6287
Symbol
APT60GF120JRDQ3
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
435
Gate Charge
10.0
VGE = 15V
685
100
nC
ns
460
I C = 100A
38
RG = 1.0Ω
14.6
TJ = +25°C
5
V
A
44
4
pF
300
VCC = 800V
Current Fall Time
UNIT
420
Inductive Switching (25°C)
Turn-off Delay Time
MAX
80
VGE = 15V
Turn-off Switching Energy
td(off)
f = 1 MHz
I C = 100A
Current Rise Time
Eoff
tr
785
TJ = 150°C, R G = 1.0Ω, VGE =
Turn-on Switching Energy (With Diode)
td(on)
7080
VGE = 0V, VCE = 25V
15V, L = 100µH,VCE = 1200V
Eon2
TYP
Capacitance
VCE = 600V
Turn-on Delay Time
Turn-on Switching Energy
MIN
mJ
16.4
6
6.5
Turn-on Delay Time
Inductive Switching (125°C)
44
VCC = 800V
100
Current Rise Time
Turn-off Delay Time
VGE = 15V
540
RG = 1.0Ω
125
14.6
I C = 100A
Current Fall Time
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (With Diode)
Eoff
Turn-off Switching Energy
44
55
TJ = +125°C
ns
mJ
21.4
6
9.2
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
0.20
RθJC
Junction to Case (DIODE)
N/A
VIsolation
WT
Torque
RMS Voltage (50-60Hz Sinusoidal
Waveform from Terminals to Mounting Base for 1 Min.)
Package Weight
Maximum Terminal & Mounting Torque
2500
UNIT
°C/W
Volts
1.03
oz
29.2
gm
10
Ib•in
1.1
N•m
052-6287
Rev A
4-2006
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and diode leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
15V
TJ = -55°C
140
120
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
= 15V
TJ = 25°C
100
80
TJ = 125°C
60
40
20
0
IC, COLLECTOR CURRENT (A)
140
120
100
TJ = -55°C
80
60
TJ = 25°C
40
20
0
TJ = 125°C
0
200
11V
150
10V
100
9V
50
8V
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
12V
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
160
13V
250
0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
180
300
J
10
VCE = 960V
8
6
4
2
0
100 200 300 400 500 600 700 800
GATE CHARGE (nC)
IC = 200A
4
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC = 100A
3
IC = 50A
2
1
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
5
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
(NORMALIZED)
VGS(TH), THRESHOLD VOLTAGE
1.05
5
IC = 200A
4
IC = 100A
3
IC = 50A
2
1
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
250
1.15
1.10
VCE = 240V
VCE = 600V
12
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 100A
C
T = 25°C
14
200
150
100
50
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
4-2006
GE
Rev A
V
160
APT60GF120JRDQ3
350
052-6287
180
VGE = 15V
40
30
20
VCE = 800V
10 T = 25°C or 125°C
J
RG = 1.0Ω
L = 100µH
100
VCE = 800V
RG = 1.0Ω
L = 100µH
140
RG = 1.0Ω, L = 100µH, VCE = 800V
TJ = 25 or 125°C,VGE = 15V
tf, FALL TIME (ns)
140
120
100
80
60
100
TJ = 125°C, VGE = 15V
80
60
40
TJ = 25°C, VGE = 15V
20
0
100 120 140 160
80
60
40
20
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
100 120 140 160
80
60
40
20
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
50
16
EOFF, TURN OFF ENERGY LOSS (mJ)
= 800V
V
CE
= +15V
V
GE
R = 1.0Ω
G
40
TJ = 125°C
30
20
10
TJ = 25°C
60
Eon2,200A
J
50
40
30
Eoff,200A
Eon2,100A
20
Eoff,100A
10
Eon2,50A
Eoff,50A
20
15
10
5
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
G
TJ = 125°C
12
10
8
6
4
TJ = 25°C
2
45
SWITCHING ENERGY LOSSES (mJ)
= 800V
V
CE
= +15V
V
GE
T = 125°C
14
100 120 140 160
80
60
40
20
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
100 120 140 160
80
60
40
20
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
70
= 800V
V
CE
= +15V
V
GE
R = 1.0Ω
0
0
0
RG = 1.0Ω, L = 100µH, VCE = 800V
120
0
EON2, TURN ON ENERGY LOSS (mJ)
200
200
20
SWITCHING ENERGY LOSSES (mJ)
VGE =15V,TJ=25°C
300
0
40
4-2006
VGE =15V,TJ=125°C
400
100 120 140 160
80
60
40
20
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
160
Rev A
500
100 120 140 160
80
60
40
20
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
180
tr, RISE TIME (ns)
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
50
0
052-6287
APT60GF120JRDQ3
600
60
= 800V
V
CE
= +15V
V
GE
R = 1.0Ω
40
Eon2,200A
G
35
30
25
20
15
Eon2,100A
10
Eoff,100A
5
0
Eoff,200A
Eon2,50A
Eoff,50A
125
100
75
50
25
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
Cies
5,000
P
C, CAPACITANCE ( F)
10,000
APT60GF120JRDQ3
350
20,000
1,000
Coes
500
Cres
300
250
200
150
100
50
0
100
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.20
D = 0.9
0.16
0.7
0.12
0.5
0.08
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.24
0.3
t1
t2
0.04
0
t
0.1
0.05
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
0.0358
0.0374
0.680
19.17
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
5
T = 125°C
J
D = 50 %
V
= 800V
CE
R = 1.0Ω
G
1
20
T = 100°C
C
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
30
40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
4-2006
0.123
C
Rev A
0.0410
Dissipated Power
(Watts)
T = 75°C
10
052-6287
TC (°C)
ZEXT
TJ (°C)
FMAX, OPERATING FREQUENCY (kHz)
50
APT60GF120JRDQ3
APT60DQ120
Gate Voltage
10%
TJ = 125°C
td(on)
tr
V CE
IC
V CC
Collector Current
90%
10%
5%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
90%
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
052-6287
Rev A
4-2006
Figure 23, Turn-off Switching Waveforms and Definitions
TYPICAL PERFORMANCE CURVES
APT60GF120JRDQ3
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT60GF120JRDQ3
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 85°C, Duty Cycle = 0.5)
60
RMS Forward Current (Square wave, 50% duty)
73
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
UNIT
Amps
540
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
Forward Voltage
MIN
TYP
IF = 60A
2.5
IF = 120A
3.07
IF = 60A, TJ = 125°C
1.82
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
60
trr
Reverse Recovery Time
-
265
Qrr
Reverse Recovery Charge
-
560
-
5
-
350
ns
-
2890
nC
-
13
-
150
ns
-
4720
nC
-
40
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 800V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 60A, diF/dt = -200A/µs
Maximum Reverse Recovery Current
IF = 60A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
IF = 60A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
ns
nC
-
-
-
Amps
Amps
Amps
D = 0.9
0.40
0.7
0.30
0.5
0.20
0.3
Note:
PDM
0.50
t1
t2
0.10
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
TC (°C)
0.148
0.238
0.174
Dissipated Power
(Watts)
0.006
0.091
0.524
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
4-2006
TJ (°C)
Rev A
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
052-6287
0
t
0.1
ZEXT
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
200
140
TJ = 175°C
120
100
TJ = 125°C
80
60
TJ = 25°C
40
TJ = -55°C
20
0
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
Qrr, REVERSE RECOVERY CHARGE
(nC)
7000
T = 125°C
J
V = 800V
R
6000
120A
5000
4000
60A
3000
30A
2000
1000
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
IRRM
0
CJ, JUNCTION CAPACITANCE
(pF)
350
4-2006
50
T = 125°C
J
V = 800V
45
120A
R
40
35
30
25
60A
20
15
30A
10
5
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
90
Duty cycle = 0.5
T = 175°C
80
J
50
40
20
10
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
Rev A
100
30
0.2
052-6287
150
60
Qrr
300
250
200
150
100
50
0
30A
200
70
0.4
0.0
60A
250
0
trr
0.6
300
R
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
trr
0.8
350
0
Qrr
1.0
T = 125°C
J
V = 800V
120A
50
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
trr, REVERSE RECOVERY TIME
(ns)
160
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
180
0
APT60GF120JRDQ3
400
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT60GF120JRDQ3
Vr
diF /dt Adjust
+18V
APT10035LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
ISOTOP® is a Registered Trademark of SGS Thomson.
Collector/Cathode
Gate
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
4-2006
3.3 (.129)
3.6 (.143)
Rev A
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
052-6287
7.8 (.307)
8.2 (.322)