APT60GF120JRDQ3 1200V TYPICAL PERFORMANCE CURVES APT60GF120JRDQ3 ® E E FAST IGBT & FRED The Fast IGBT is a new generation of high voltage power IGBTs. Using Non-Punch through technology, the Fast IGBT combined with an APT free wheeling Ultra Fast Recovery Epitaxial Diode (FRED) offers superior ruggedness and fast switching speed. • Low Forward Voltage Drop • High Freq. Switching to 20KHz • RBSOA and SCSOA Rated • Ultra Low Leakage Current C G ISOTOP ® S OT 22 7 "UL Recognized" file # E145592 C • Ultrafast Soft Recovery Anti-parallel Diode G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT60GF120JRDQ3 VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 149 I C2 Continuous Collector Current @ TC = 100°C 79 I CM SSOA PD TJ,TSTG Pulsed Collector Current 1 UNIT Volts Amps 300 Switching Safe Operating Area @ TJ = 150°C 300A @ 1200V Total Power Dissipation Watts 625 Operating and Storage Junction Temperature Range -55 to 150 STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 350µA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 5.5 6.5 Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 25°C) 2.5 3.0 Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 125°C) 3.1 1200 (VCE = VGE, I C = 500µA, Tj = 25°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) Units 4.5 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 0.35 2 Gate-Emitter Leakage Current (VGE = ±20V) mA 3.0 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Volts nA 4-2006 V(BR)CES MIN Rev A Characteristic / Test Conditions 052-6287 Symbol APT60GF120JRDQ3 DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 tf 435 Gate Charge 10.0 VGE = 15V 685 100 nC ns 460 I C = 100A 38 RG = 1.0Ω 14.6 TJ = +25°C 5 V A 44 4 pF 300 VCC = 800V Current Fall Time UNIT 420 Inductive Switching (25°C) Turn-off Delay Time MAX 80 VGE = 15V Turn-off Switching Energy td(off) f = 1 MHz I C = 100A Current Rise Time Eoff tr 785 TJ = 150°C, R G = 1.0Ω, VGE = Turn-on Switching Energy (With Diode) td(on) 7080 VGE = 0V, VCE = 25V 15V, L = 100µH,VCE = 1200V Eon2 TYP Capacitance VCE = 600V Turn-on Delay Time Turn-on Switching Energy MIN mJ 16.4 6 6.5 Turn-on Delay Time Inductive Switching (125°C) 44 VCC = 800V 100 Current Rise Time Turn-off Delay Time VGE = 15V 540 RG = 1.0Ω 125 14.6 I C = 100A Current Fall Time Eon1 Turn-on Switching Energy Eon2 Turn-on Switching Energy (With Diode) Eoff Turn-off Switching Energy 44 55 TJ = +125°C ns mJ 21.4 6 9.2 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) 0.20 RθJC Junction to Case (DIODE) N/A VIsolation WT Torque RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) Package Weight Maximum Terminal & Mounting Torque 2500 UNIT °C/W Volts 1.03 oz 29.2 gm 10 Ib•in 1.1 N•m 052-6287 Rev A 4-2006 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and diode leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 15V TJ = -55°C 140 120 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) = 15V TJ = 25°C 100 80 TJ = 125°C 60 40 20 0 IC, COLLECTOR CURRENT (A) 140 120 100 TJ = -55°C 80 60 TJ = 25°C 40 20 0 TJ = 125°C 0 200 11V 150 10V 100 9V 50 8V FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 12V 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 160 13V 250 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 180 300 J 10 VCE = 960V 8 6 4 2 0 100 200 300 400 500 600 700 800 GATE CHARGE (nC) IC = 200A 4 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE IC = 100A 3 IC = 50A 2 1 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 5 1.00 0.95 0.90 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) (NORMALIZED) VGS(TH), THRESHOLD VOLTAGE 1.05 5 IC = 200A 4 IC = 100A 3 IC = 50A 2 1 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 250 1.15 1.10 VCE = 240V VCE = 600V 12 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 100A C T = 25°C 14 200 150 100 50 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 4-2006 GE Rev A V 160 APT60GF120JRDQ3 350 052-6287 180 VGE = 15V 40 30 20 VCE = 800V 10 T = 25°C or 125°C J RG = 1.0Ω L = 100µH 100 VCE = 800V RG = 1.0Ω L = 100µH 140 RG = 1.0Ω, L = 100µH, VCE = 800V TJ = 25 or 125°C,VGE = 15V tf, FALL TIME (ns) 140 120 100 80 60 100 TJ = 125°C, VGE = 15V 80 60 40 TJ = 25°C, VGE = 15V 20 0 100 120 140 160 80 60 40 20 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 100 120 140 160 80 60 40 20 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 50 16 EOFF, TURN OFF ENERGY LOSS (mJ) = 800V V CE = +15V V GE R = 1.0Ω G 40 TJ = 125°C 30 20 10 TJ = 25°C 60 Eon2,200A J 50 40 30 Eoff,200A Eon2,100A 20 Eoff,100A 10 Eon2,50A Eoff,50A 20 15 10 5 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 G TJ = 125°C 12 10 8 6 4 TJ = 25°C 2 45 SWITCHING ENERGY LOSSES (mJ) = 800V V CE = +15V V GE T = 125°C 14 100 120 140 160 80 60 40 20 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 100 120 140 160 80 60 40 20 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 70 = 800V V CE = +15V V GE R = 1.0Ω 0 0 0 RG = 1.0Ω, L = 100µH, VCE = 800V 120 0 EON2, TURN ON ENERGY LOSS (mJ) 200 200 20 SWITCHING ENERGY LOSSES (mJ) VGE =15V,TJ=25°C 300 0 40 4-2006 VGE =15V,TJ=125°C 400 100 120 140 160 80 60 40 20 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 160 Rev A 500 100 120 140 160 80 60 40 20 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 180 tr, RISE TIME (ns) td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 50 0 052-6287 APT60GF120JRDQ3 600 60 = 800V V CE = +15V V GE R = 1.0Ω 40 Eon2,200A G 35 30 25 20 15 Eon2,100A 10 Eoff,100A 5 0 Eoff,200A Eon2,50A Eoff,50A 125 100 75 50 25 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature 0 TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) Cies 5,000 P C, CAPACITANCE ( F) 10,000 APT60GF120JRDQ3 350 20,000 1,000 Coes 500 Cres 300 250 200 150 100 50 0 100 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.20 D = 0.9 0.16 0.7 0.12 0.5 0.08 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.24 0.3 t1 t2 0.04 0 t 0.1 0.05 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 0.0358 0.0374 0.680 19.17 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 5 T = 125°C J D = 50 % V = 800V CE R = 1.0Ω G 1 20 T = 100°C C F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 4-2006 0.123 C Rev A 0.0410 Dissipated Power (Watts) T = 75°C 10 052-6287 TC (°C) ZEXT TJ (°C) FMAX, OPERATING FREQUENCY (kHz) 50 APT60GF120JRDQ3 APT60DQ120 Gate Voltage 10% TJ = 125°C td(on) tr V CE IC V CC Collector Current 90% 10% 5% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) 90% Collector Voltage tf 10% 0 Collector Current Switching Energy 052-6287 Rev A 4-2006 Figure 23, Turn-off Switching Waveforms and Definitions TYPICAL PERFORMANCE CURVES APT60GF120JRDQ3 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. APT60GF120JRDQ3 Characteristic / Test Conditions Maximum Average Forward Current (TC = 85°C, Duty Cycle = 0.5) 60 RMS Forward Current (Square wave, 50% duty) 73 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) UNIT Amps 540 STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions Forward Voltage MIN TYP IF = 60A 2.5 IF = 120A 3.07 IF = 60A, TJ = 125°C 1.82 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 60 trr Reverse Recovery Time - 265 Qrr Reverse Recovery Charge - 560 - 5 - 350 ns - 2890 nC - 13 - 150 ns - 4720 nC - 40 IRRM Reverse Recovery Time Qrr Reverse Recovery Charge Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 800V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 60A, diF/dt = -200A/µs Maximum Reverse Recovery Current IF = 60A, diF/dt = -200A/µs VR = 800V, TC = 125°C IF = 60A, diF/dt = -1000A/µs VR = 800V, TC = 125°C ns nC - - - Amps Amps Amps D = 0.9 0.40 0.7 0.30 0.5 0.20 0.3 Note: PDM 0.50 t1 t2 0.10 0.05 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION TC (°C) 0.148 0.238 0.174 Dissipated Power (Watts) 0.006 0.091 0.524 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL 4-2006 TJ (°C) Rev A 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 052-6287 0 t 0.1 ZEXT ZθJC, THERMAL IMPEDANCE (°C/W) 0.60 200 140 TJ = 175°C 120 100 TJ = 125°C 80 60 TJ = 25°C 40 TJ = -55°C 20 0 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) 7000 T = 125°C J V = 800V R 6000 120A 5000 4000 60A 3000 30A 2000 1000 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change IRRM 0 CJ, JUNCTION CAPACITANCE (pF) 350 4-2006 50 T = 125°C J V = 800V 45 120A R 40 35 30 25 60A 20 15 30A 10 5 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change 90 Duty cycle = 0.5 T = 175°C 80 J 50 40 20 10 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature Rev A 100 30 0.2 052-6287 150 60 Qrr 300 250 200 150 100 50 0 30A 200 70 0.4 0.0 60A 250 0 trr 0.6 300 R 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change trr 0.8 350 0 Qrr 1.0 T = 125°C J V = 800V 120A 50 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 trr, REVERSE RECOVERY TIME (ns) 160 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 180 0 APT60GF120JRDQ3 400 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT60GF120JRDQ3 Vr diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode ISOTOP® is a Registered Trademark of SGS Thomson. Collector/Cathode Gate Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 4-2006 3.3 (.129) 3.6 (.143) Rev A r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 052-6287 7.8 (.307) 8.2 (.322)