APT40GF120JRDQ2 1200V TYPICAL PERFORMANCE CURVES APT40GF120JRDQ2 E E FAST IGBT & FRED The Fast IGBT is a new generation of high voltage power IGBTs. Using Non-Punch through technology, the Fast IGBT combined with an Microsemi free wheeling Ultra Fast Recovery Epitaxial Diode (FRED) offers superior ruggedness and fast switching speed. • Low Forward Voltage Drop • High Freq. Switching to 20KHz • RBSOA and SCSOA Rated • Ultra Low Leakage Current C G ISOTOP ® S OT 22 7 "UL Recognized" file # E145592 C • Ultrafast Soft Recovery Anti-parallel Diode • Intergrated Gate Resistor: Low EMI, High Reliability G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT40GF120JRDQ2 VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 80 I C2 Continuous Collector Current @ TC = 100°C 42 I CM SSOA PD TJ,TSTG Pulsed Collector Current 1 UNIT Volts Amps 150 Switching Safe Operating Area @ TJ = 150°C 150A @ 1200V Total Power Dissipation Operating and Storage Junction Temperature Range 347 Watts -55 to 150 °C STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES RG(int) MAX 5.5 6.5 2.5 3.0 Units 1200 (VCE = VGE, I C = 700µA, Tj = 25°C) 4.5 Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) TYP 3.1 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) Volts 200 2 Gate-Emitter Leakage Current (VGE = ±20V) ±100 5 Intergrated Gate Resistor CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com µA 1500 nA Ω 5-2006 V(BR)CES MIN Rev B Characteristic / Test Conditions 052-6285 Symbol DYNAMIC CHARACTERISTICS Symbol APT40GF120JRDQ2 Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge MIN TYP Capacitance 3460 VGE = 0V, VCE = 25V 385 f = 1 MHz 225 Gate Charge 9.5 VGE = 15V 340 VCE = 600V MAX UNIT pF V nC 30 I C = 50A 205 7 SSOA td(on) tr td(off) tf Eon1 TJ = 150°C, R G = 1.0Ω, VGE = Switching Safe Operating Area 15V, L = 100µH,VCE = 1200V Turn-on Delay Time Turn-off Switching Energy td(off) tf 70 RG = 1.0Ω 7 4 3600 TJ = +25°C 5 ns 260 I C = 50A Current Fall Time Eoff tr 43 Turn-off Delay Time Turn-on Switching Energy (WithDiode) td(on) 25 VCC = 800V VGE = 15V Eon2 A Inductive Switching (25°C) Current Rise Time Turn-on Switching Energy 150 µJ 4675 6 2640 Turn-on Delay Time Inductive Switching (125°C) 25 VCC = 800V 43 Current Rise Time Turn-off Delay Time VGE = 15V 300 RG = 1.0Ω 7 95 3750 I C = 50A Current Fall Time Eon1 Turn-on Switching Energy Eon2 Turn-on Switching Energy (WithDiode) Eoff Turn-off Switching Energy 44 55 TJ = +125°C ns µJ 6400 6 3400 THERMAL AND MECHANICAL CHARACTERISTICS Symbol RθJC Junction to Case (IGBT) RθJC Junction to Case (DIODE) VIsolation WT Torque 1 Characteristic RMS Voltage (50-60Hz Sinusoidal MIN TYP MAX 0.36 1.1 Waveform from Terminals to Mounting Base for 1 Min.) Package Weight Maximum Terminal & Mounting Torque 2500 UNIT °C/W Volts 1.03 oz 29.2 gm 10 Ib•in 1.1 N•m Repetitive Rating: Pulse width limited by maximum junction temperature. 052-6285 Rev B 5-2006 2 For Combi devices, Ices includes both IGBT and diode leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452) Mircosemi Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES = 15V IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 120 TJ = 25°C 100 TJ = -55°C 80 TJ = 125°C 60 40 20 12V 120 11V 100 80 10V 60 9V 40 8V 0 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 0 5 10 15 20 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 160 120 100 80 60 TJ = -55°C 40 TJ = 25°C 20 TJ = 125°C 0 FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 140 IC, COLLECTOR CURRENT (A) 13V 140 20 0 0 15V 160 J 10 VCE = 960V 8 6 4 2 0 50 IC = 100A 4 3 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE IC = 50A IC = 25A 2 1 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.00 0.95 0.90 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature 5 IC = 100A 4 IC = 50A 3 IC = 25A 2 1 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 120 IC, DC COLLECTOR CURRENT(A) 1.05 (NORMALIZED) VGS(TH), THRESHOLD VOLTAGE 1.15 1.10 100 150 200 250 300 350 400 GATE CHARGE (nC) FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 5 VCE = 240V VCE = 600V 12 0 2 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 50A C T = 25°C 14 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 5-2006 GE 140 Rev B V APT40GF120JRDQ2 180 052-6285 160 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 30 VGE = 15V 25 20 15 10 VCE = 800V TJ = 25°C or 125°C RG = 1.0Ω L = 100µH 5 0 150 100 VCE = 800V RG = 1.0Ω L = 100µH 50 100 80 60 40 TJ = 125°C, VGE = 15V 80 60 TJ = 25°C, VGE = 15V 40 20 0 110 90 70 50 30 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 7 EOFF, TURN OFF ENERGY LOSS (mJ) = 800V V CE = +15V V GE R = 1.0Ω G 20 TJ = 125°C 15 10 5 TJ = 25°C = 800V V CE = +15V V GE T = 125°C J 25 20 15 10 Eoff,100A Eon2,50A Eoff,50A 5 Eoff,25A Eon2,25A 20 15 10 5 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 G TJ = 125°C 5 4 3 2 TJ = 25°C 1 25 Eon2,100A SWITCHING ENERGY LOSSES (mJ) 30 6 110 90 70 50 30 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 110 90 70 50 30 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 35 = 800V V CE = +15V V GE R = 1.0Ω 0 0 0 RG = 1.0Ω, L = 100µH, VCE = 800V 100 TJ = 25 or 125°C,VGE = 15V tf, FALL TIME (ns) tr, RISE TIME (ns) VGE =15V,TJ=25°C 120 RG = 1.0Ω, L = 100µH, VCE = 800V 25 EON2, TURN ON ENERGY LOSS (mJ) 200 140 110 90 70 50 30 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current SWITCHING ENERGY LOSSES (mJ) VGE =15V,TJ=125°C 110 90 70 50 30 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 0 5-2006 250 0 20 Rev B 300 110 90 70 50 30 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 120 052-6285 APT40GF120JRDQ2 350 35 = 800V V CE = +15V V GE R = 1.0Ω Eon2,100A G 20 15 10 Eoff,100A 5 Eon2,50A Eon2,25A Eoff,50A 0 Eoff,25A 125 100 75 50 25 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature 0 TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) Cies P C, CAPACITANCE ( F) APT40GF120JRDQ2 160 6,000 1,000 500 Coes 140 120 100 80 60 40 Cres 20 100 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.35 D = 0.9 0.30 0.7 0.25 0.20 0.5 Note: 0.15 0.3 0.10 t1 t2 0.05 0 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.40 t 0.1 0.05 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.0158 0.319 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 5 T = 100°C C 1 T = 125°C J D = 50 % V = 800V CE R = 1.0Ω G F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC 10 20 30 40 50 60 70 80 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 5-2006 0.241 C Rev B 0.120 Dissipated Power (Watts) T = 75°C 10 052-6285 TC (°C) ZEXT TJ (°C) FMAX, OPERATING FREQUENCY (kHz) 80 APT40GF120JRDQ2 APT2X31DQ120 Gate Voltage 10% TJ = 125°C td(on) tr V CE IC V CC 90% 10% Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) Collector Voltage tf 10% 0 Collector Current Switching Energy Rev B 5-2006 Figure 23, Turn-off Switching Waveforms and Definitions 052-6285 5% Collector Voltage A 90% Collector Current TYPICAL PERFORMANCE CURVES APT40GF120JRDQ2 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. APT40GF120JRDQ2 Characteristic / Test Conditions IF(AV) IF(RMS) Maximum Average Forward Current (TC = 89°C, Duty Cycle = 0.5) 30 RMS Forward Current (Square wave, 50% duty) 39 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) IFSM UNIT Amps 210 STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions Forward Voltage VF MIN TYP IF = 50A 3.06 IF = 100A 3.82 IF = 50A, TJ = 125°C 2.25 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 25 trr Reverse Recovery Time - 300 Qrr Reverse Recovery Charge - 360 - 4 - 380 ns - 1700 nC - 8 - 160 ns - 2550 nC - 28 Amps IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IF = 30A, diF/dt = -200A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 800V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 30A, diF/dt = -200A/µs IF = 30A, diF/dt = -1000A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current ns nC - - Amps Amps D = 0.9 0.80 0.7 0.60 0.5 0.40 Note: PDM 1.00 0.3 t1 t2 0.20 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION TC (°C) 0.291 0.468 0.341 Dissipated Power (Watts) 0.00306 0.0463 5-2006 TJ (°C) 0.267 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL Rev B 10-5 052-6285 0 0.1 ZEXT ZθJC, THERMAL IMPEDANCE (°C/W) 1.20 90 400 80 70 TJ = 175°C 60 50 TJ = 25°C 40 TJ = 125°C 30 20 TJ = -55°C 10 0 1 2 3 4 5 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) T = 125°C J V = 800V R 3500 60A 3000 2500 30A 2000 1500 15A 1000 500 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change Qrr 0 CJ, JUNCTION CAPACITANCE (pF) 5-2006 200 Rev B 150 100 30 T = 125°C J V = 800V 60A R 25 20 30A 15 10 15A 5 45 Duty cycle = 0.5 T = 175°C 40 J 25 20 15 10 5 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature 052-6285 15A 200 30 IRRM 0.2 150 100 50 0 250 35 0.6 0.0 30A 300 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change trr 0.4 350 0 trr 0.8 R 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change Qrr 1.0 T = 125°C J V = 800V 60A 0 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 APT40GF120JRDQ2 50 0 4000 trr, REVERSE RECOVERY TIME (ns) 450 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 100 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT40GF120JRDQ2 Vr diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) Collector/Cathode * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode Gate Dimensions in Millimeters and (Inches) ISOTOP® is a registered trademark of ST Microelectronics NV. Microsemi's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 5-2006 3.3 (.129) 3.6 (.143) Rev B r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 052-6285 7.8 (.307) 8.2 (.322)