APT40GP60JDQ2 600V TYPICAL PERFORMANCE CURVES APT40GP60JDQ2 ® E E POWER MOS 7 IGBT ® The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 400V, 25A • Low Gate Charge • 200 kHz operation @ 400V, 16A • Ultrafast Tail Current shutoff • SSOA Rated C G S ISOTOP ® OT 22 7 "UL Recongnized" file # 145592 C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT40GP60JDQ2 VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 86 I C2 Continuous Collector Current @ TC = 110°C 40 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 @ TC = 150°C UNIT Volts Amps 160 160A @ 600V Switching Safe Operating Area @ TJ = 150°C Total Power Dissipation Watts 284 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 125°C) 2.1 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 3 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 500 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 3000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Units nA 6-2005 MIN Rev A Characteristic / Test Conditions 050-7494 Symbol DYNAMIC CHARACTERISTICS Symbol APT40GP60JDQ2 Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 tf f = 1 MHz 25 Gate Charge 7.5 VGE = 15V 135 TJ = 150°C, R G = 5Ω, VGE = 385 350 Inductive Switching (125°C) 29 VGE = 15V 90 RG = 5Ω 70 385 I C = 40A Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy 44 55 450 20 VCC = 400V Eon1 µJ 645 6 Current Fall Time ns 45 TJ = +25°C Turn-off Delay Time nC 64 RG = 5Ω Current Rise Time V A 29 I C = 40A Turn-on Delay Time pF 160 20 5 UNIT 40 VCC = 400V 4 MAX 30 Inductive Switching (25°C) Current Fall Time Turn-off Switching Energy td(off) 395 15V, L = 100µH,VCE = 600V Turn-off Delay Time Eoff tr VGE = 0V, VCE = 25V VGE = 15V Turn-on Switching Energy (Diode) td(on) 4610 I C = 40A Current Rise Time Eon2 TYP Capacitance VCE = 300V Turn-on Delay Time Turn-on Switching Energy MIN TJ = +125°C ns µJ 970 6 615 950 TYP MAX THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic RθJC Junction to Case (IGBT) RθJC Junction to Case (DIODE) WT Package Weight MIN .44 1.21 29.2 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 050-7494 Rev A 6-2005 4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) Repetitive Rating: Pulse width limited by maximum junction temperature. APT Reserves the right to change, without notice, the specifications and information contained herein. 80 80 70 70 IC, COLLECTOR CURRENT (A) 40 TJ = -55°C 30 TJ = 25°C 20 TJ = 125°C 10 0 0.5 1.0 1.5 2.0 2.5 3.0 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) TJ = 25°C TJ = 125°C 50 0 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 3.5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.0 IC = 80A 2.5 IC = 40A 2.0 IC = 20A 1.5 1.0 0.5 0 6 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.10 1.05 1.00 0.95 0.90 0.85 0.80 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature J VCE = 120V 12 VCE = 300V 10 8 VCE = 480V 6 4 2 0 20 40 60 80 100 GATE CHARGE (nC) 120 140 FIGURE 4, Gate Charge 3.5 IC = 80A 3 2.5 IC = 40A 2 IC = 20A 1.5 1 0.5 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -55 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 120 1.20 1.15 I = 40A C T = 25°C 14 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = -55°C 100 TJ = 125°C 10 FIGURE 2, Output Characteristics (TJ = 125°C) VGE, GATE-TO-EMITTER VOLTAGE (V) 150 TJ = 25°C 20 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 200 TJ = -55°C 30 0 0.5 1.0 1.5 2.0 2.5 3.0 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 250µs PULSE TEST<0.5 % DUTY CYCLE 40 0 0 250 50 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 6-2005 50 60 Rev A 60 APT40GP60JDQ2 050-7494 IC, COLLECTOR CURRENT (A) TYPICAL PERFORMANCE CURVES td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) APT40GP60JDQ2 100 25 VGE = 15V 20 15 10 5 VCE = 400V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 0 VGE =15V,TJ=125°C 60 VGE =15V,TJ=25°C 40 20 VCE = 400V RG = 5Ω L = 100 µH 0 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 80 80 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 100 RG = 5Ω, L = 100µH, VCE = 400V RG = 5Ω, L = 100µH, VCE = 400V 70 80 tf, FALL TIME (ns) tr, RISE TIME (ns) 60 50 40 30 20 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) TJ = 125°C,VGE =15V 1500 1000 500 TJ = 25°C,VGE =15V V = 400V CE V = +15V GE R = 5Ω G 1500 TJ = 125°C, VGE = 15V 1000 500 TJ = 25°C, VGE = 15V 0 0 20 40 60 80 90 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 4000 3000 = 400V V CE = +15V V GE T = 125°C 3500 Eon2,80A J 3000 2500 Eoff,80A 2000 1500 Eon2,40A 1000 Eoff,40A Eon2,20A 500 0 0 Eoff,20A 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) EON2, TURN ON ENERGY LOSS (µJ) SWITCHING ENERGY LOSSES (µJ) 6-2005 Rev A 050-7494 G 2000 0 TJ = 25°C, VGE = 15V 2000 V = 400V CE V = +15V GE R = 5Ω 2500 40 0 0 3000 TJ = 125°C, VGE = 15V 20 TJ = 25 or 125°C,VGE = 15V 10 60 = 400V V CE = +15V V GE R = 5Ω Eon2,80A G 2500 2000 Eoff,80A 1500 Eon2,40A 1000 Eoff,40A 500 0 Eon2,20A Eoff,20A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) Cies 1,000 500 APT40GP60JDQ2 180 10,000 Coes 100 50 160 140 120 100 80 60 40 20 Cres 0 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.45 0.9 0.35 0.7 0.30 0.25 0.5 0.20 Note: 0.15 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.40 0.3 t2 0.10 0.1 0.05 0 t1 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 10-5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 0.180 0.151 0.149 1.22 Case temperature FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 50 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 5Ω 10 10 max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 20 30 40 50 60 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 6-2005 Power (Watts) 0.0107 Rev A 0.0109 100 050-7494 RC MODEL Junction temp. ( ºC) FMAX, OPERATING FREQUENCY (kHz) 210 APT40GP60JDQ2 Gate Voltage 10% APT30DQ60 TJ = 125°C td(on) IC V CC V CE Collector Current tr 90% 5% 5% 10% A CollectorVoltage Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage TJ = 125°C A V CE td(off) CollectorVoltage 100uH 90% V CLAMP 10% tf Collector Current Gate Voltage AT 10% Figure 24, EON1 Test Circuit 90% 5% 5% 10% Switching Energy 6-2005 = 125 °C tr Figure 23, Turn-off Switching Waveforms and Definitions Collector Current J DRIVER* td(on) Collector Voltage Rev A B 0 Switching Energy 050-7494 IC D.U.T. TYPICAL PERFORMANCE CURVES APT40GP60JDQ2 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. APT40GP60JDQ2 Characteristic / Test Conditions Maximum Average Forward Current (TC = 99°C, Duty Cycle = 0.5) 30 RMS Forward Current (Square wave, 50% duty) 42 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) UNIT Amps 320 STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions Forward Voltage MIN TYP IF = 40A 2.0 IF = 80A 2.5 IF = 40A, TJ = 125°C 1.7 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 21 trr Reverse Recovery Time - 105 Qrr Reverse Recovery Charge - 115 - 3 - 125 ns - 465 nC - 7 - 60 ns - 830 nC - 23 Amps IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IF = 30A, diF/dt = -200A/µs VR = 400V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 400V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 30A, diF/dt = -200A/µs IF = 30A, diF/dt = -1000A/µs VR = 400V, TC = 125°C Maximum Reverse Recovery Current ns nC - - Amps Amps 1.20 0.9 1.00 0.7 0.80 0.5 0.60 0.40 0.3 0.20 0.1 t2 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION 10 -4 RC MODEL Junction temp (°C) Power (watts) 0.320 0.00278 0.515 0.0421 0.375 0.242 Case temperature (°C) FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL 6-2005 -5 Rev A 10 t1 050-7494 0 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 1.40 TJ = 175°C 60 40 TJ = 125°C 20 TJ = 25°C TJ = -55°C 0.5 1.0 1.5 2.0 2.5 3.0 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 26. Forward Current vs. Forward Voltage 0 Qrr, REVERSE RECOVERY CHARGE (nC) 1400 T = 125°C J V = 400V R 1200 60A 1000 800 30A 600 400 15A 200 0 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Charge vs. Current Rate of Change 1.2 R 150 30A 100 15A 50 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 27. Reverse Recovery Time vs. Current Rate of Change 35 T = 125°C J V = 400V 60A R 30 25 20 15 30A 10 15A 5 0 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 29. Reverse Recovery Current vs. Current Rate of Change 50 Qrr Duty cycle = 0.5 T = 175°C 45 trr 1.0 T = 125°C J V = 400V 60A 0 J 40 IRRM 0.8 trr 35 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) trr, REVERSE RECOVERY TIME (ns) 80 0 APT40GP60JDQ2 200 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 100 0.6 30 25 20 0.4 Qrr 0.2 15 10 5 0.0 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 30. Dynamic Parameters vs. Junction Temperature 050-7494 Rev A CJ, JUNCTION CAPACITANCE (pF) 6-2005 200 150 100 50 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 32. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 31. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT40GP60JDQ2 Vr diF /dt Adjust +18V APT6017LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 33. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 34, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) Collector/Cathode * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode Gate Dimensions in Millimeters and (Inches) ISOTOP® is a Registered Trademark of SGS Thomson. APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 6-2005 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) Rev A r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 050-7494 7.8 (.307) 8.2 (.322)