ADPOW APT40GP60JDQ2

APT40GP60JDQ2
600V
TYPICAL PERFORMANCE CURVES
APT40GP60JDQ2
®
E
E
POWER MOS 7 IGBT
®
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 400V, 25A
• Low Gate Charge
• 200 kHz operation @ 400V, 16A
• Ultrafast Tail Current shutoff
• SSOA Rated
C
G
S
ISOTOP ®
OT
22
7
"UL Recongnized"
file # 145592
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT40GP60JDQ2
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
86
I C2
Continuous Collector Current @ TC = 110°C
40
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
@ TC = 150°C
UNIT
Volts
Amps
160
160A @ 600V
Switching Safe Operating Area @ TJ = 150°C
Total Power Dissipation
Watts
284
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 125°C)
2.1
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
3
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
500
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
3000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Units
nA
6-2005
MIN
Rev A
Characteristic / Test Conditions
050-7494
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT40GP60JDQ2
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
f = 1 MHz
25
Gate Charge
7.5
VGE = 15V
135
TJ = 150°C, R G = 5Ω, VGE =
385
350
Inductive Switching (125°C)
29
VGE = 15V
90
RG = 5Ω
70
385
I C = 40A
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
44
55
450
20
VCC = 400V
Eon1
µJ
645
6
Current Fall Time
ns
45
TJ = +25°C
Turn-off Delay Time
nC
64
RG = 5Ω
Current Rise Time
V
A
29
I C = 40A
Turn-on Delay Time
pF
160
20
5
UNIT
40
VCC = 400V
4
MAX
30
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
td(off)
395
15V, L = 100µH,VCE = 600V
Turn-off Delay Time
Eoff
tr
VGE = 0V, VCE = 25V
VGE = 15V
Turn-on Switching Energy (Diode)
td(on)
4610
I C = 40A
Current Rise Time
Eon2
TYP
Capacitance
VCE = 300V
Turn-on Delay Time
Turn-on Switching Energy
MIN
TJ = +125°C
ns
µJ
970
6
615
950
TYP
MAX
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
RθJC
Junction to Case (IGBT)
RθJC
Junction to Case (DIODE)
WT
Package Weight
MIN
.44
1.21
29.2
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7494
Rev A
6-2005
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
Repetitive Rating: Pulse width limited by maximum junction temperature.
APT Reserves the right to change, without notice, the specifications and information contained herein.
80
80
70
70
IC, COLLECTOR CURRENT (A)
40
TJ = -55°C
30
TJ = 25°C
20
TJ = 125°C
10
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
TJ = 25°C
TJ = 125°C
50
0
2 3 4
5 6
7 8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.0
IC = 80A
2.5
IC = 40A
2.0
IC = 20A
1.5
1.0
0.5
0
6
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.10
1.05
1.00
0.95
0.90
0.85
0.80
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
20
40
60
80
100
GATE CHARGE (nC)
120
140
FIGURE 4, Gate Charge
3.5
IC = 80A
3
2.5
IC = 40A
2
IC = 20A
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-55
-25
0
25
50
75 100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
120
1.20
1.15
I = 40A
C
T = 25°C
14
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = -55°C
100
TJ = 125°C
10
FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
150
TJ = 25°C
20
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
200
TJ = -55°C
30
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
40
0
0
250
50
100
80
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
6-2005
50
60
Rev A
60
APT40GP60JDQ2
050-7494
IC, COLLECTOR CURRENT (A)
TYPICAL PERFORMANCE CURVES
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
APT40GP60JDQ2
100
25
VGE = 15V
20
15
10
5 VCE = 400V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
0
VGE =15V,TJ=125°C
60
VGE =15V,TJ=25°C
40
20
VCE = 400V
RG = 5Ω
L = 100 µH
0
0
20
40
60
80
100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
80
80
0
20
40
60
80
100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
100
RG = 5Ω, L = 100µH, VCE = 400V
RG = 5Ω, L = 100µH, VCE = 400V
70
80
tf, FALL TIME (ns)
tr, RISE TIME (ns)
60
50
40
30
20
0
20
40
60
80
100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
0
20
40
60
80
100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
TJ = 125°C,VGE =15V
1500
1000
500
TJ = 25°C,VGE =15V
V
= 400V
CE
V
= +15V
GE
R = 5Ω
G
1500
TJ = 125°C, VGE = 15V
1000
500
TJ = 25°C, VGE = 15V
0
0
20
40
60
80
90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
20
40
60
80
100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
4000
3000
= 400V
V
CE
= +15V
V
GE
T = 125°C
3500
Eon2,80A
J
3000
2500
Eoff,80A
2000
1500
Eon2,40A
1000
Eoff,40A
Eon2,20A
500
0
0
Eoff,20A
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
SWITCHING ENERGY LOSSES (µJ)
6-2005
Rev A
050-7494
G
2000
0
TJ = 25°C, VGE = 15V
2000
V
= 400V
CE
V
= +15V
GE
R = 5Ω
2500
40
0
0
3000
TJ = 125°C, VGE = 15V
20
TJ = 25 or 125°C,VGE = 15V
10
60
= 400V
V
CE
= +15V
V
GE
R = 5Ω
Eon2,80A
G
2500
2000
Eoff,80A
1500
Eon2,40A
1000
Eoff,40A
500
0
Eon2,20A
Eoff,20A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
Cies
1,000
500
APT40GP60JDQ2
180
10,000
Coes
100
50
160
140
120
100
80
60
40
20
Cres
0
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.45
0.9
0.35
0.7
0.30
0.25
0.5
0.20
Note:
0.15
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.40
0.3
t2
0.10
0.1
0.05
0
t1
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
10-5
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
0.180
0.151
0.149
1.22
Case temperature
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
50
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 5Ω
10
10
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
20
30
40
50
60
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
6-2005
Power
(Watts)
0.0107
Rev A
0.0109
100
050-7494
RC MODEL
Junction
temp. ( ºC)
FMAX, OPERATING FREQUENCY (kHz)
210
APT40GP60JDQ2
Gate Voltage
10%
APT30DQ60
TJ = 125°C
td(on)
IC
V CC
V CE
Collector Current
tr
90%
5%
5%
10%
A
CollectorVoltage
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
TJ = 125°C
A
V CE
td(off)
CollectorVoltage
100uH
90%
V CLAMP
10%
tf
Collector
Current
Gate
Voltage
AT
10%
Figure 24, EON1 Test Circuit
90%
5%
5%
10%
Switching Energy
6-2005
= 125 °C
tr
Figure 23, Turn-off Switching Waveforms and Definitions
Collector Current
J
DRIVER*
td(on)
Collector Voltage
Rev A
B
0
Switching Energy
050-7494
IC
D.U.T.
TYPICAL PERFORMANCE CURVES
APT40GP60JDQ2
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT40GP60JDQ2
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 99°C, Duty Cycle = 0.5)
30
RMS Forward Current (Square wave, 50% duty)
42
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
UNIT
Amps
320
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
Forward Voltage
MIN
TYP
IF = 40A
2.0
IF = 80A
2.5
IF = 40A, TJ = 125°C
1.7
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
21
trr
Reverse Recovery Time
-
105
Qrr
Reverse Recovery Charge
-
115
-
3
-
125
ns
-
465
nC
-
7
-
60
ns
-
830
nC
-
23
Amps
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 30A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 400V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 30A, diF/dt = -200A/µs
IF = 30A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
1.20
0.9
1.00
0.7
0.80
0.5
0.60
0.40
0.3
0.20
0.1
t2
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
10
-4
RC MODEL
Junction
temp (°C)
Power
(watts)
0.320
0.00278
0.515
0.0421
0.375
0.242
Case temperature (°C)
FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL
6-2005
-5
Rev A
10
t1
050-7494
0
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
1.40
TJ = 175°C
60
40
TJ = 125°C
20
TJ = 25°C
TJ = -55°C
0.5
1.0
1.5
2.0
2.5
3.0
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 26. Forward Current vs. Forward Voltage
0
Qrr, REVERSE RECOVERY CHARGE
(nC)
1400
T = 125°C
J
V = 400V
R
1200
60A
1000
800
30A
600
400
15A
200
0
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Charge vs. Current Rate of Change
1.2
R
150
30A
100
15A
50
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 27. Reverse Recovery Time vs. Current Rate of Change
35
T = 125°C
J
V = 400V
60A
R
30
25
20
15
30A
10
15A
5
0
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 29. Reverse Recovery Current vs. Current Rate of Change
50
Qrr
Duty cycle = 0.5
T = 175°C
45
trr
1.0
T = 125°C
J
V = 400V
60A
0
J
40
IRRM
0.8
trr
35
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
trr, REVERSE RECOVERY TIME
(ns)
80
0
APT40GP60JDQ2
200
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
100
0.6
30
25
20
0.4
Qrr
0.2
15
10
5
0.0
0
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 30. Dynamic Parameters vs. Junction Temperature
050-7494
Rev A
CJ, JUNCTION CAPACITANCE
(pF)
6-2005
200
150
100
50
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 32. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 31. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT40GP60JDQ2
Vr
diF /dt Adjust
+18V
APT6017LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 33. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 34, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
Dimensions in Millimeters and (Inches)
ISOTOP® is a Registered Trademark of SGS Thomson.
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
6-2005
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
Rev A
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
050-7494
7.8 (.307)
8.2 (.322)