6N137 / VO2601 / 11 / VO2630 / 31 / VO4661 Vishay Semiconductors High Speed Optocoupler, 10 Mbd Features • Choice of CMR performance of 10 kV/µs, 5 kV/µs, and 100 V/µs • High speed: 10 Mbd typical e3 • + 5 V CMOS compatibility • Guaranteed AC and DC performance over temperature: - 40 to + 100 °C Temp. Range • Pure tin leads • Meets IEC60068-2-42 (SO2) and IEC60068-2-43 (H2S) requirements • Low input current capability: 5 mA • Lead (Pb)-free component • Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC Agency Approvals • UL1577, File No. E52744 System Code H or J, Double Protection • CUL - File No. E52744, equivalent to CSA bulletin 5A • DIN EN 60747-5-2 (VDE0884) • Reinforced insulation rating per IEC60950 2.10.5.1 • VDE available with Option 1 Dual channel Single channel NC A 1 8 2 7 C 3 6 NC 4 5 VCC VE VO GND 6N137, VO2601, VO2611 A1 1 8 C1 C2 2 7 3 6 A2 4 5 VCC VO1 VO2 GND VO2630, VO2631, VO4661 18921_5 open collector Schottky clamped transistor output. The VO2630, VO2631 and VO4661 are dual channel 10MBd optocouplers. For the single channel type, an enable function on pin 7 allows the detector to be strobed. The internal shield provides a guaranteed common mode transient immunity of 5 kV/µs for the VO2601 and VO2631 and 10 kV/µs for the VO2611 and VO4661. The use of a 0.1 µF bypass capacitor connected between pin 5 and 8 is recommended. Order Information Part Remarks 6N137 100 V/µs, Single channel, DIP-8 6N137-X006 100 V/µs, Single channel, DIP-8 400 mil Applications 6N137-X007 100 V/µs, Single channel, SMD-8 Microprocessor System Interface PLC, ATE input/output isolation Computer peripheral interface Digital Fieldbus Isolation: CC-Link, DeviceNet, Profibus, SDS High speed A/D and D/A conversion AC Plasma Display Panel Level Shifting Multiplexed Data Transmission Digital control power supply Ground loop elimination VO2601 5 kV/µs, Single channel, DIP-8 VO2601-X006 5 kV/µs, Single channel, DIP-8 400 mil VO2601-X007 5 kV/µs, Single channel, SMD-8 VO2611 10 kV/µs, Single channel, DIP-8 VO2611-X006 10 kV/µs, Single channel, DIP-8 400 mil VO2611-X007 10 kV/µs, Single channel, SMD-8 VO2630 100 V/µs, Dual channel, DIP-8 VO2630-X006 100 V/µs, Dual channel, DIP-8 400 mil VO2630-X007 100 V/µs, Dual channel, SMD-8 VO2631 5 kV/µs, Dual channel, DIP-8 VO2631-X006 5 kV/µs, Dual channel, DIP-8 400 mil Description VO2631-X007 5 kV/µs, Dual channel, SMD-8 The 6N137, VO2601 and VO2611 are single channel 10 Mbd optocouplers utilizing a high efficient input LED coupled with an integrated optical photodiode IC detector. The detector has an open drain NMOS-transistor output, providing less leakage compared to an VO4661 10 kV/µs, Dual channel, DIP-8 VO4661-X006 10 kV/µs, Dual channel, DIP-8 400 mil VO4661-X007 10 kV/µs, Dual channel, SMD-8 Document Number 84732 Rev. 1.0, 07-Jun-05 www.vishay.com 1 6N137 / VO2601 / 11 / VO2630 / 31 / VO4661 Vishay Semiconductors Truth Table (Positive Logic) LED ENABLE ON H OUTPUT L OFF H H ON L H OFF L H ON NC L OFF NC H Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability. Input Symbol Value Unit Average forward current1) Parameter IF 20 mA 2) IF 15 mA Average forward current Test condition Reverse input voltage VR 5 V 1) VE VCC + 0.5 V V Enable input voltage IE 5 mA IFSM 200 mA Symbol Value Unit VCC 7 V Output current IO 50 mA Output voltage VO 7 V 1) PO 85 mW Output power dissipation2) PO 60 mW Enable input current 1) t = 100 µs Surge current 1) Package: Single DIP-8 2) Package: Dual DIP-8 Output Parameter Supply voltage Test condition 1 minute max. Output power dissipation 1) Package: Single DIP-8 2) Package: Dual DIP-8 Coupler Symbol Value Unit Storage temperature Parameter Tstg - 55 to + 150 °C Operating temperature Tamb - 40 to + 100 °C for 10 sec. 260 °C for 1 minute 260 °C 5300 VRMS Lead solder temperature1) Solder reflow temperature 2) Isolation test voltage 1) Package: DIP-8 through hole 2) Package: DIP-8 SMD www.vishay.com 2 Test condition t = 1.0 sec. VISO Document Number 84732 Rev. 1.0, 07-Jun-05 6N137 / VO2601 / 11 / VO2630 / 31 / VO4661 Vishay Semiconductors Recommended Operating Conditions Symbol Min Max Unit Operating temperature Parameter Test condition Tamb - 40 Typ. 100 °C Supply voltage VCC 4.5 5.5 V Input current low level IFL 0 250 µA Input current high level IFH 5 15 mA Logic high enable voltage VEH 2.0 VCC V Logic low enable voltage VEL 0.0 0.8 V Output pull up resistor RL 330 4K Ω 5 - Fanout RL = 1 kΩ N Electrical Characteristics Tamb = 25 °C, unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements. Input Symbol Min Typ. Max Input forward voltage Parameter IF = 10 mA Test condition VF 1.1 1.4 1.7 Unit V Reverse current VR = 5.0 V IR 0.01 10 µA Input capacitance f = 1 MHz, VF = 0 V CI 55 Test condition Symbol pF Output Parameter Typ. Max Unit ICCH 4.1 7.0 mA VE = VCC, IF = 0 mA ICCH 3.3 6.0 mA IF = 0 mA ICCH 6.9 12.0 mA VE = 0.5 V, IF = 10 mA, ICCL 4.0 7.0 mA VE = VCC, IF = 10 mA ICCL 3.3 6.0 mA Low level supply current (dual channel) IF = 10 mA ICCL 6.5 12.0 mA High level output current VE = 2.0 V, VO = 5.5 V, IF = 250 µA IOH 0.002 1 µA Low level output voltage VE = 2.0 V, IF = 5 mA, IOL (sinking) = 13 mA VOL 0.2 0.6 V Input treshold current VE = 2.0 V, VO = 5.5 V, IOL (sinking) = 13 mA ITH 2.4 5.0 mA High level enable current VE = 2.0 V IEH - 0.6 - 1.6 mA Low level enable current VE = 0.5 V IEL - 0.8 - 1.6 mA High level supply current (single channel) VE = 0.5 V, IF = 0 mA High level supply current (dual channel) Low level supply current (single channel) High level enable voltage VEH Low level enable voltage VEL Document Number 84732 Rev. 1.0, 07-Jun-05 Min 2.0 V 0.8 V www.vishay.com 3 6N137 / VO2601 / 11 / VO2630 / 31 / VO4661 Vishay Semiconductors Switching Characteristics Over Recommended Temperature (Ta = - 40 to + 100 °C), VCC = 5 V, IF = 7.5 mA unless otherwise specified. All Typicals at Ta = 25 °C, VCC = 5 V. Symbol Min Typ. Propagation delay time to high output level Parameter RL = 350 Ω, CL = 15 pF Test condition tPLH 20 48 Propagation delay time to low output level RL = 350 Ω, CL = 15 pF tPHL 25 50 Max ns 100 ns 75* ns 100 ns 75 tPLH tPHL Unit * Pulse width distortion RL = 350 Ω, CL = 15 pF | tPHL - tPLH | 2.9 35 ns Propagation delay skew RL = 350 Ω, CL = 15 pF tPSK 8 40 ns Output rise time (10 - 90 %) RL = 350 Ω, CL = 15 pF tr 23 ns Output fall time (90 - 10 %) RL = 350 Ω, CL = 15 pF tf 7 ns Propagation delay time of enable from VEH to VEL RL = 350 Ω, CL = 15 pF, VEL = 0 V, VEH = 3 V tELH 12 ns Propagation delay time of enable from VEL to VEH RL = 350 Ω, CL = 15 pF, VEL = 0 V, VEH = 3 V tEHL 11 ns * 75 ns applies to the 6N137 only, a JEDEC registered specification VCC Single Channel Pulse Gen. Zo = 50 Ω t f = t r = 5 ns Input IF Monitoring Node RM 1 IF 2 3 4 VCC 8 VE 7 VOUT 6 GND RL 0.1 µF Bypass 5 IF = 7.5 mA IF = 3.75 mA 0 mA Input IF Output VO Monitoring Node VOH 1.5 V VOL Output VO C L = 15 pF tPHL tPL H The Probe and Jig Capacitances are included in CL 18964-2 Figure 1. Single Channel Test Circuit for tPLH, tPHL, tr and tf Pulse Gen. Zo = 50 Ω t f = t r = 5 ns VCC Dual Channel IF Input Monitoring Node RM 1 VCC 8 2 7 3 6 4 5 GND RL 0.1 µF Bypass Output VO Monitoring Node CL= 15 pF 18963-2 Figure 2. Dual Channel Test Circuit for tPLH, tPHL, tr and tf www.vishay.com 4 Document Number 84732 Rev. 1.0, 07-Jun-05 6N137 / VO2601 / 11 / VO2630 / 31 / VO4661 Vishay Semiconductors Input VE Monitoring Node Pulse Gen. Zo = 50 Ω t f = t r = 5 ns VCC 8 VE 7 VOUT 6 1 7.5 mA IF VCC Single Channel 2 3 4 GND RL 0.1 µF Bypass Output VO Monitoring Node Input VE C L = 15 pF Output VO 3V 1.5 V tEHL tELH 1.5 V 5 The Probe and Jig Capacitances are included in CL 18975-2 Figure 3. Single Channel Test Circuit for tEHL and tELH Common Mode Transient Immunity Parameter Common mode transient immunity (high) Test condition |VCM| = 10 V, VCC = 5 V, IF = 0 mA, Symbol Min | CMH | 100 Typ. Max Unit | CMH | 5000 10000 V/µs | CMH | 10000 15000 V/µs | CML | 100 | CML | 5000 10000 V/µs | CML | 10000 15000 V/µs V/µs VO(min) = 2 V, RL = 350 Ω, Tamb = 25 °C 1) |VCM| = 50 V, VCC = 5 V, IF = 0 mA, VO(min) = 2 V, RL = 350 Ω, Tamb = 25 °C 2) |VCM| = 1 kV, VCC = 5 V, IF = 0 mA, VO(min) = 2 V, RL = 350 Ω, Tamb = 25 °C 3) |VCM| = 10 V, VCC = 5 V, IF = 7.5 mA, V/µs VO(max) = 0.8 V, RL = 350 Ω, Tamb = 25 °C 1) |VCM| = 50 V, VCC = 5 V, IF = 7.5 mA, VO(max) = 0.8 V, RL = 350 Ω, Tamb = 25 °C 2) |VCM| = 1 kV, VCC = 5 V, IF = 7.5 mA, VO(max) = 0.8 V, RL = 350 Ω, Tamb = 25 °C 3) 1) For 6N137 and VO2630 2) For VO2601 and VO2631 3) For VO2611 and VO4661 VCC IF Single Channel 1 B A VFF 2 3 4 VCC 8 VE 7 VOUT 6 GND RL 0.1 µF Bypass Output VO Monitoring Node VCM 0 V VCM (PEAK) Switch AT A: IF = 0 mA VO 5 V 5 VO 0.5 V VO(min.) Switch AT A: IF = 7.5 mA VO(max.) VCM + Pulse Generator ZO = 50 Ω CMH CML 18976-2 Figure 4. Single Channel Test Circuit for Common Mode Transient Immunity Document Number 84732 Rev. 1.0, 07-Jun-05 www.vishay.com 5 6N137 / VO2601 / 11 / VO2630 / 31 / VO4661 Vishay Semiconductors IF Dual Channel B 1 VCC 8 2 7 3 6 A VFF 4 GND +5V RL Output VO Monitoring Node 0.1 µF Bypass 5 VCM + Pulse Generator ZO = 50 Ω 18977-1 Figure 5. Dual Channel Test Circuit for Common Mode Transient Immunity Safety and Insulation Ratings As per IEC60747-5-2, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits. Parameter Test condition Symbol Min Climatic Classification (according to IEC 68 part 1) Typ. Max Unit 55/110/21 Comparative Tracking Index CTI 175 399 VIOTM 8000 V VIORM 630 V PSO 500 mW ISI 300 mA TSI 175 °C Creepage standard DIP-8 7 mm Clearance standard DIP-8 7 mm Creepage 400mil DIP-8 8 mm Clearance 400mil DIP-8 8 mm 0.2 mm Insulation thickness, reinforced rated per IEC60950 2.10.5.1 www.vishay.com 6 Document Number 84732 Rev. 1.0, 07-Jun-05 6N137 / VO2601 / 11 / VO2630 / 31 / VO4661 Vishay Semiconductors – Low Level Supply Current ( mA ) Typical Characteristics (Tamb = 25 °C unless otherwise specified) IF = 50 mA 1.6 IF = 20 mA 1.5 1.4 1.3 IF = 10 mA 1.2 CCl IF = 1 mA 1.1 I V F – Forward Voltage ( V ) 1.7 1.0 –40 –20 0 20 40 60 80 100 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 –40 1.60 1.50 1.45 1.40 1.35 1.30 1.25 1.20 CCh– V F – Forward Voltage ( V ) 1.55 1.15 I 1.10 0 5 10 15 20 25 30 35 40 45 50 IF – Forward Current ( mA ) 17611 Figure 7. Forward Voltage vs. Forward Current 40 60 80 100 VCC = 7 V IF = 0.25 mA 3.4 3.3 3.2 VCC = 5 V IF = 0.25 mA 3.1 3.0 2.9 2.8 –40 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( C ) Figure 10. High Level Supply Current vs. Ambient Temperature 2.8 I th – Input Threshold ON Current ( A ) I R – Reverse Current ( nA ) 17613-1 20 3.5 17615 7 6 5 4 3 2 1 0 –40 0 Figure 9. Low Level Supply Current vs. Ambient Temperature High Level Supply Current ( mA ) Figure 6. Forward Voltage vs. Ambient Temperature –20 Tamb – Ambient Temperature ( C ) 17614 Tamb – Ambient Temperature ( °C ) 17610 VCC = 7 V IF = 10 mA VCC = 5 V IF = 10 mA –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( C ) Figure 8. Reverse Current vs. Ambient Temperature Document Number 84732 Rev. 1.0, 07-Jun-05 17616 2.7 2.6 RL = 350 2.5 2.4 2.3 2.2 2.1 –40 RL = 4 k RL = 1 k –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( C ) Figure 11. Input Threshold ON Current vs. Ambient Temperature www.vishay.com 7 6N137 / VO2601 / 11 / VO2630 / 31 / VO4661 Vishay Semiconductors 2.6 2.4 RL = 350 2.3 2.2 RL = 4 k 2.1 RL = 1 k I th 2.0 –40 –20 0 20 40 60 80 100 I oh – High Level Output Current ( nA ) – Input Threshold OFF Current ( A ) 50 2.5 45 40 35 30 25 20 15 10 5 0 –40 Tamb – Ambient Temperature ( C ) 17617 17620 Figure 12. Input Threshold OFF Current vs. Ambient Temperature –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( C ) Figure 15. High Level Output Current vs. Ambient Temperature VCC = 5.5 V IF = 5 mA 0.25 5.5 IL = 16 mA IL = 13 mA 5.0 0.20 0.15 IL = 10 mA 0.10 IL = 6 mA 0.05 0.00 –40 4.5 Vo – Output Voltage ( V ) Vol – Low Level Output Voltage ( V ) 0.30 4.0 3.5 3.0 2.5 2.0 –20 0 20 40 60 80 100 0.0 0 Figure 13. Low Level Output Voltage vs. Ambient Temperature 2 3 4 5 120 t P – Propagation Delay time ( ns ) I ol – Low Level Output Current ( mA ) 1 IF – Forward Input Current ( mA ) Figure 16. Output Voltage vs. Forward Input Current 60 IF = 5 mA IF = 10 mA 50 40 30 20 10 0 –40 –20 0 20 40 60 80 Tamb – Ambient Temperature ( _C ) www.vishay.com tPLH, 4 kΩ 100 80 60 40 tPLH, 1 kΩ tPLH, 350 Ω tPHL, 350 Ω 20 17622 tPHL, 1 kΩ tPHL, 4 kΩ 0 –40 –20 100 Figure 14. Low Level Output Current vs. Ambient Temperature 8 RL = 4 kW 0.5 17621 17619 RL = 1 kW 1.0 Tamb – Ambient Temperature ( C ) 17618 RL = 350 W 1.5 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 17. Propagation Delay vs. Ambient Temperature Document Number 84732 Rev. 1.0, 07-Jun-05 6N137 / VO2601 / 11 / VO2630 / 31 / VO4661 Vishay Semiconductors 120 300 tr, RL = 4 kΩ t r,f – Rise and Fall Time ( ns ) t P – Propagation Delay time ( ns ) tPLH, 4 kΩ 100 80 tPLH, 350 Ω tPLH, 1 kΩ 60 40 tPHL, 350 Ω 20 tPHL, 1 kΩ tPHL, 4 kΩ 250 200 150 100 tr, RL = 1 kΩ 50 0 5 7 9 11 13 IF – Forward Current ( mA ) 17623 15 17626 Figure 18. Propagation Delay vs. Forward Current tf, RL = 350 Ω tf, RL = 1 kΩ tf, RL = 4 kΩ tr, RL = 350 Ω 0 –40 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 21. Rise and Fall Time vs. Ambient Temperature 50 40 tr, RL = 4 kΩ t r,f – Rise and Fall Time ( ns ) PWD – Pulse Width Distortion ( ns ) 300 RL = 4 kΩ 30 20 RL = 1 kΩ 10 RL = 350 Ω 0 –40 250 200 150 tr, RL = 1 kΩ 50 tr, RL = 350 Ω 0 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) 17624 5 7 Figure 19. Pulse Width Distortion vs. Ambient Temperature 9 11 13 15 IF – Forward Current ( mA ) 17627 Figure 22. Rise and Fall Time vs. Forward Current 60 60 50 t e – Enable Propagation Delay ( ns ) PWD – Pulse Width Distortion ( ns ) tf, RL = 350 Ω tf, RL = 1 kΩ tf, RL = 4 kΩ 100 RL = 4 kΩ 40 30 RL = 1 kΩ 20 10 RL = 350 Ω 0 5 17625 7 9 11 13 IF – Forward Current ( mA ) 15 Figure 20. Pulse Width Distortion vs. Forward Current Document Number 84732 Rev. 1.0, 07-Jun-05 17628 50 teLH = 4 kΩ 40 30 20 teLH = 1 kΩ teLH = 350 Ω teHL = 350 Ω 10 teHL = 1 kΩ 0 –40 teHL = 4 kΩ –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 23. Enable Propagation Delay vs. Ambient Temperature www.vishay.com 9 6N137 / VO2601 / 11 / VO2630 / 31 / VO4661 Vishay Semiconductors Package Dimensions in Inches (mm) pin one ID 4 3 2 1 5 6 7 8 .255 (6.48) .268 (6.81) ISO Method A .379 (9.63) .390 (9.91) .030 (0.76) .045 (1.14) 4° typ. .300 (7.62) typ. .031 (0.79) .130 (3.30) .150 (3.81) .050 (1.27) .018 (.46) .022 (.56) 10° .020 (.51 ) .035 (.89 ) .100 (2.54) typ. 3°–9° .008 (.20) .012 (.30) i178006 Option 6 Option 7 .407 (10.36) .391 (9.96) .307 (7.8) .291 (7.4) .300 (7.62) TYP. .028 (0.7) MIN. .230(5.84) .110 (2.79) .250(6.35) .130 (3.30) .180 (4.6) .160 (4.1) .315 (8.0) MIN. .014 (0.35) .010 (0.25) .400 (10.16) .430 (10.92) www.vishay.com 10 .331 (8.4) MIN. .406 (10.3) MAX. 18450-1 Document Number 84732 Rev. 1.0, 07-Jun-05 6N137 / VO2601 / 11 / VO2630 / 31 / VO4661 Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Document Number 84732 Rev. 1.0, 07-Jun-05 www.vishay.com 11 Legal Disclaimer Notice Vishay Notice Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale. Document Number: 91000 Revision: 08-Apr-05 www.vishay.com 1