VISHAY VO2601-X006

6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
High Speed Optocoupler, 10 Mbd
Features
• Choice of CMR performance of 10 kV/µs,
5 kV/µs, and 100 V/µs
• High speed: 10 Mbd typical
e3
• + 5 V CMOS compatibility
• Guaranteed AC and DC performance over temperature: - 40 to + 100 °C Temp. Range
• Pure tin leads
• Meets IEC60068-2-42 (SO2) and
IEC60068-2-43 (H2S) requirements
• Low input current capability: 5 mA
• Lead (Pb)-free component
• Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
Agency Approvals
• UL1577, File No. E52744 System Code H or J,
Double Protection
• CUL - File No. E52744, equivalent to CSA bulletin
5A
• DIN EN 60747-5-2 (VDE0884)
• Reinforced insulation rating per IEC60950
2.10.5.1
• VDE available with Option 1
Dual channel
Single channel
NC
A
1
8
2
7
C
3
6
NC
4
5
VCC
VE
VO
GND
6N137, VO2601, VO2611
A1 1
8
C1
C2
2
7
3
6
A2
4
5
VCC
VO1
VO2
GND
VO2630, VO2631, VO4661
18921_5
open collector Schottky clamped transistor output.
The VO2630, VO2631 and VO4661 are dual channel
10MBd optocouplers. For the single channel type, an
enable function on pin 7 allows the detector to be
strobed. The internal shield provides a guaranteed
common mode transient immunity of 5 kV/µs for the
VO2601 and VO2631 and 10 kV/µs for the VO2611
and VO4661. The use of a 0.1 µF bypass capacitor
connected between pin 5 and 8 is recommended.
Order Information
Part
Remarks
6N137
100 V/µs, Single channel, DIP-8
6N137-X006
100 V/µs, Single channel, DIP-8 400 mil
Applications
6N137-X007
100 V/µs, Single channel, SMD-8
Microprocessor System Interface
PLC, ATE input/output isolation
Computer peripheral interface
Digital Fieldbus Isolation: CC-Link, DeviceNet,
Profibus, SDS
High speed A/D and D/A conversion
AC Plasma Display Panel Level Shifting
Multiplexed Data Transmission
Digital control power supply
Ground loop elimination
VO2601
5 kV/µs, Single channel, DIP-8
VO2601-X006
5 kV/µs, Single channel, DIP-8 400 mil
VO2601-X007
5 kV/µs, Single channel, SMD-8
VO2611
10 kV/µs, Single channel, DIP-8
VO2611-X006
10 kV/µs, Single channel, DIP-8 400 mil
VO2611-X007
10 kV/µs, Single channel, SMD-8
VO2630
100 V/µs, Dual channel, DIP-8
VO2630-X006
100 V/µs, Dual channel, DIP-8 400 mil
VO2630-X007
100 V/µs, Dual channel, SMD-8
VO2631
5 kV/µs, Dual channel, DIP-8
VO2631-X006
5 kV/µs, Dual channel, DIP-8 400 mil
Description
VO2631-X007
5 kV/µs, Dual channel, SMD-8
The 6N137, VO2601 and VO2611 are single channel
10 Mbd optocouplers utilizing a high efficient input
LED coupled with an integrated optical photodiode IC
detector. The detector has an open drain NMOS-transistor output, providing less leakage compared to an
VO4661
10 kV/µs, Dual channel, DIP-8
VO4661-X006
10 kV/µs, Dual channel, DIP-8 400 mil
VO4661-X007
10 kV/µs, Dual channel, SMD-8
Document Number 84732
Rev. 1.0, 07-Jun-05
www.vishay.com
1
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
Truth Table (Positive Logic)
LED
ENABLE
ON
H
OUTPUT
L
OFF
H
H
ON
L
H
OFF
L
H
ON
NC
L
OFF
NC
H
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
Symbol
Value
Unit
Average forward current1)
Parameter
IF
20
mA
2)
IF
15
mA
Average forward current
Test condition
Reverse input voltage
VR
5
V
1)
VE
VCC + 0.5 V
V
Enable input voltage
IE
5
mA
IFSM
200
mA
Symbol
Value
Unit
VCC
7
V
Output current
IO
50
mA
Output voltage
VO
7
V
1)
PO
85
mW
Output power dissipation2)
PO
60
mW
Enable input current
1)
t = 100 µs
Surge current
1)
Package: Single DIP-8
2)
Package: Dual DIP-8
Output
Parameter
Supply voltage
Test condition
1 minute max.
Output power dissipation
1)
Package: Single DIP-8
2)
Package: Dual DIP-8
Coupler
Symbol
Value
Unit
Storage temperature
Parameter
Tstg
- 55 to + 150
°C
Operating temperature
Tamb
- 40 to + 100
°C
for 10 sec.
260
°C
for 1 minute
260
°C
5300
VRMS
Lead solder temperature1)
Solder reflow temperature
2)
Isolation test voltage
1)
Package: DIP-8 through hole
2)
Package: DIP-8 SMD
www.vishay.com
2
Test condition
t = 1.0 sec.
VISO
Document Number 84732
Rev. 1.0, 07-Jun-05
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
Recommended Operating Conditions
Symbol
Min
Max
Unit
Operating temperature
Parameter
Test condition
Tamb
- 40
Typ.
100
°C
Supply voltage
VCC
4.5
5.5
V
Input current low level
IFL
0
250
µA
Input current high level
IFH
5
15
mA
Logic high enable voltage
VEH
2.0
VCC
V
Logic low enable voltage
VEL
0.0
0.8
V
Output pull up resistor
RL
330
4K
Ω
5
-
Fanout
RL = 1 kΩ
N
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
Symbol
Min
Typ.
Max
Input forward voltage
Parameter
IF = 10 mA
Test condition
VF
1.1
1.4
1.7
Unit
V
Reverse current
VR = 5.0 V
IR
0.01
10
µA
Input capacitance
f = 1 MHz, VF = 0 V
CI
55
Test condition
Symbol
pF
Output
Parameter
Typ.
Max
Unit
ICCH
4.1
7.0
mA
VE = VCC, IF = 0 mA
ICCH
3.3
6.0
mA
IF = 0 mA
ICCH
6.9
12.0
mA
VE = 0.5 V, IF = 10 mA,
ICCL
4.0
7.0
mA
VE = VCC, IF = 10 mA
ICCL
3.3
6.0
mA
Low level supply
current (dual
channel)
IF = 10 mA
ICCL
6.5
12.0
mA
High level output
current
VE = 2.0 V, VO = 5.5 V, IF = 250 µA
IOH
0.002
1
µA
Low level output
voltage
VE = 2.0 V, IF = 5 mA,
IOL (sinking) = 13 mA
VOL
0.2
0.6
V
Input treshold
current
VE = 2.0 V, VO = 5.5 V,
IOL (sinking) = 13 mA
ITH
2.4
5.0
mA
High level enable
current
VE = 2.0 V
IEH
- 0.6
- 1.6
mA
Low level enable
current
VE = 0.5 V
IEL
- 0.8
- 1.6
mA
High level supply
current (single
channel)
VE = 0.5 V, IF = 0 mA
High level supply
current (dual
channel)
Low level supply
current (single
channel)
High level enable
voltage
VEH
Low level enable
voltage
VEL
Document Number 84732
Rev. 1.0, 07-Jun-05
Min
2.0
V
0.8
V
www.vishay.com
3
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
Switching Characteristics
Over Recommended Temperature (Ta = - 40 to + 100 °C), VCC = 5 V, IF = 7.5 mA unless otherwise specified.
All Typicals at Ta = 25 °C, VCC = 5 V.
Symbol
Min
Typ.
Propagation delay time to high
output level
Parameter
RL = 350 Ω, CL = 15 pF
Test condition
tPLH
20
48
Propagation delay time to low
output level
RL = 350 Ω, CL = 15 pF
tPHL
25
50
Max
ns
100
ns
75*
ns
100
ns
75
tPLH
tPHL
Unit
*
Pulse width distortion
RL = 350 Ω, CL = 15 pF
| tPHL - tPLH |
2.9
35
ns
Propagation delay skew
RL = 350 Ω, CL = 15 pF
tPSK
8
40
ns
Output rise time (10 - 90 %)
RL = 350 Ω, CL = 15 pF
tr
23
ns
Output fall time (90 - 10 %)
RL = 350 Ω, CL = 15 pF
tf
7
ns
Propagation delay time of
enable from VEH to VEL
RL = 350 Ω, CL = 15 pF,
VEL = 0 V, VEH = 3 V
tELH
12
ns
Propagation delay time of
enable from VEL to VEH
RL = 350 Ω, CL = 15 pF,
VEL = 0 V, VEH = 3 V
tEHL
11
ns
*
75 ns applies to the 6N137 only, a JEDEC registered specification
VCC
Single Channel
Pulse Gen.
Zo = 50 Ω
t f = t r = 5 ns
Input IF
Monitoring
Node
RM
1
IF
2
3
4
VCC 8
VE
7
VOUT
6
GND
RL
0.1 µF
Bypass
5
IF = 7.5 mA
IF = 3.75 mA
0 mA
Input IF
Output VO
Monitoring
Node
VOH
1.5 V
VOL
Output VO
C L = 15 pF
tPHL
tPL H
The Probe and Jig Capacitances are included in CL
18964-2
Figure 1. Single Channel Test Circuit for tPLH, tPHL, tr and tf
Pulse Gen.
Zo = 50 Ω
t f = t r = 5 ns
VCC
Dual Channel
IF
Input
Monitoring
Node
RM
1
VCC 8
2
7
3
6
4
5
GND
RL
0.1 µF
Bypass
Output VO
Monitoring
Node
CL= 15 pF
18963-2
Figure 2. Dual Channel Test Circuit for tPLH, tPHL, tr and tf
www.vishay.com
4
Document Number 84732
Rev. 1.0, 07-Jun-05
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
Input VE
Monitoring Node
Pulse Gen.
Zo = 50 Ω
t f = t r = 5 ns
VCC 8
VE
7
VOUT
6
1
7.5 mA
IF
VCC
Single Channel
2
3
4
GND
RL
0.1 µF
Bypass
Output VO
Monitoring
Node
Input VE
C L = 15 pF
Output VO
3V
1.5 V
tEHL
tELH
1.5 V
5
The Probe and Jig Capacitances are included in CL
18975-2
Figure 3. Single Channel Test Circuit for tEHL and tELH
Common Mode Transient Immunity
Parameter
Common mode
transient immunity
(high)
Test condition
|VCM| = 10 V, VCC = 5 V, IF = 0 mA,
Symbol
Min
| CMH |
100
Typ.
Max
Unit
| CMH |
5000
10000
V/µs
| CMH |
10000
15000
V/µs
| CML |
100
| CML |
5000
10000
V/µs
| CML |
10000
15000
V/µs
V/µs
VO(min) = 2 V, RL = 350 Ω, Tamb = 25 °C 1)
|VCM| = 50 V, VCC = 5 V, IF = 0 mA,
VO(min) = 2 V, RL = 350 Ω, Tamb = 25 °C 2)
|VCM| = 1 kV, VCC = 5 V, IF = 0 mA,
VO(min) = 2 V, RL = 350 Ω, Tamb = 25 °C
3)
|VCM| = 10 V, VCC = 5 V, IF = 7.5 mA,
V/µs
VO(max) = 0.8 V, RL = 350 Ω, Tamb = 25 °C 1)
|VCM| = 50 V, VCC = 5 V, IF = 7.5 mA,
VO(max) = 0.8 V, RL = 350 Ω, Tamb = 25 °C 2)
|VCM| = 1 kV, VCC = 5 V, IF = 7.5 mA,
VO(max) = 0.8 V, RL = 350 Ω, Tamb = 25 °C 3)
1)
For 6N137 and VO2630
2)
For VO2601 and VO2631
3)
For VO2611 and VO4661
VCC
IF
Single Channel
1
B
A
VFF
2
3
4
VCC 8
VE
7
VOUT
6
GND
RL
0.1 µF
Bypass
Output VO
Monitoring
Node
VCM 0 V
VCM (PEAK)
Switch AT A: IF = 0 mA
VO 5 V
5
VO 0.5 V
VO(min.)
Switch AT A: IF = 7.5 mA
VO(max.)
VCM
+
Pulse Generator
ZO = 50 Ω
CMH
CML
18976-2
Figure 4. Single Channel Test Circuit for Common Mode Transient Immunity
Document Number 84732
Rev. 1.0, 07-Jun-05
www.vishay.com
5
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
IF
Dual Channel
B
1
VCC 8
2
7
3
6
A
VFF
4
GND
+5V
RL
Output VO
Monitoring
Node
0.1 µF
Bypass
5
VCM
+
Pulse Generator
ZO = 50 Ω
18977-1
Figure 5. Dual Channel Test Circuit for Common Mode Transient Immunity
Safety and Insulation Ratings
As per IEC60747-5-2, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with
the safety ratings shall be ensured by means of protective circuits.
Parameter
Test condition
Symbol
Min
Climatic Classification (according to
IEC 68 part 1)
Typ.
Max
Unit
55/110/21
Comparative Tracking Index
CTI
175
399
VIOTM
8000
V
VIORM
630
V
PSO
500
mW
ISI
300
mA
TSI
175
°C
Creepage
standard DIP-8
7
mm
Clearance
standard DIP-8
7
mm
Creepage
400mil DIP-8
8
mm
Clearance
400mil DIP-8
8
mm
0.2
mm
Insulation thickness, reinforced rated per IEC60950 2.10.5.1
www.vishay.com
6
Document Number 84732
Rev. 1.0, 07-Jun-05
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
– Low Level Supply Current ( mA )
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
IF = 50 mA
1.6
IF = 20 mA
1.5
1.4
1.3
IF = 10 mA
1.2
CCl
IF = 1 mA
1.1
I
V F – Forward Voltage ( V )
1.7
1.0
–40 –20
0
20
40
60
80
100
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
–40
1.60
1.50
1.45
1.40
1.35
1.30
1.25
1.20
CCh–
V F – Forward Voltage ( V )
1.55
1.15
I
1.10
0
5
10 15 20 25 30 35 40 45 50
IF – Forward Current ( mA )
17611
Figure 7. Forward Voltage vs. Forward Current
40
60
80
100
VCC = 7 V
IF = 0.25 mA
3.4
3.3
3.2
VCC = 5 V
IF = 0.25 mA
3.1
3.0
2.9
2.8
–40
–20
0
20
40
60
80 100
Tamb – Ambient Temperature ( C )
Figure 10. High Level Supply Current vs. Ambient Temperature
2.8
I th – Input Threshold ON Current ( A )
I R – Reverse Current ( nA )
17613-1
20
3.5
17615
7
6
5
4
3
2
1
0
–40
0
Figure 9. Low Level Supply Current vs. Ambient Temperature
High Level Supply Current ( mA )
Figure 6. Forward Voltage vs. Ambient Temperature
–20
Tamb – Ambient Temperature ( C )
17614
Tamb – Ambient Temperature ( °C )
17610
VCC = 7 V
IF = 10 mA
VCC = 5 V
IF = 10 mA
–20
0
20
40
60
80 100
Tamb – Ambient Temperature ( C )
Figure 8. Reverse Current vs. Ambient Temperature
Document Number 84732
Rev. 1.0, 07-Jun-05
17616
2.7
2.6
RL = 350
2.5
2.4
2.3
2.2
2.1
–40
RL = 4 k
RL = 1 k
–20
0
20
40
60
80 100
Tamb – Ambient Temperature ( C )
Figure 11. Input Threshold ON Current vs. Ambient Temperature
www.vishay.com
7
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
2.6
2.4
RL = 350
2.3
2.2
RL = 4 k
2.1
RL = 1 k
I
th
2.0
–40
–20
0
20
40
60
80
100
I oh – High Level Output Current ( nA )
– Input Threshold OFF Current ( A )
50
2.5
45
40
35
30
25
20
15
10
5
0
–40
Tamb – Ambient Temperature ( C )
17617
17620
Figure 12. Input Threshold OFF Current vs. Ambient Temperature
–20
0
20
40
60
80 100
Tamb – Ambient Temperature ( C )
Figure 15. High Level Output Current vs. Ambient Temperature
VCC = 5.5 V
IF = 5 mA
0.25
5.5
IL = 16 mA
IL = 13 mA
5.0
0.20
0.15
IL = 10 mA
0.10
IL = 6 mA
0.05
0.00
–40
4.5
Vo – Output Voltage ( V )
Vol – Low Level Output Voltage ( V )
0.30
4.0
3.5
3.0
2.5
2.0
–20
0
20
40
60
80
100
0.0
0
Figure 13. Low Level Output Voltage vs. Ambient Temperature
2
3
4
5
120
t P – Propagation Delay time ( ns )
I ol – Low Level Output Current ( mA )
1
IF – Forward Input Current ( mA )
Figure 16. Output Voltage vs. Forward Input Current
60
IF = 5 mA
IF = 10 mA
50
40
30
20
10
0
–40 –20
0
20
40
60
80
Tamb – Ambient Temperature ( _C )
www.vishay.com
tPLH, 4 kΩ
100
80
60
40
tPLH, 1 kΩ
tPLH, 350 Ω
tPHL, 350 Ω
20
17622
tPHL, 1 kΩ
tPHL, 4 kΩ
0
–40 –20
100
Figure 14. Low Level Output Current vs. Ambient Temperature
8
RL = 4 kW
0.5
17621
17619
RL = 1 kW
1.0
Tamb – Ambient Temperature ( C )
17618
RL = 350 W
1.5
0
20
40
60
80
100
Tamb – Ambient Temperature ( °C )
Figure 17. Propagation Delay vs. Ambient Temperature
Document Number 84732
Rev. 1.0, 07-Jun-05
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
120
300
tr, RL = 4 kΩ
t r,f – Rise and Fall Time ( ns )
t P – Propagation Delay time ( ns )
tPLH, 4 kΩ
100
80
tPLH, 350 Ω
tPLH, 1 kΩ
60
40
tPHL, 350 Ω
20
tPHL, 1 kΩ
tPHL, 4 kΩ
250
200
150
100
tr, RL = 1 kΩ
50
0
5
7
9
11
13
IF – Forward Current ( mA )
17623
15
17626
Figure 18. Propagation Delay vs. Forward Current
tf, RL = 350 Ω
tf, RL = 1 kΩ
tf, RL = 4 kΩ
tr, RL = 350 Ω
0
–40 –20
0
20
40
60
80 100
Tamb – Ambient Temperature ( °C )
Figure 21. Rise and Fall Time vs. Ambient Temperature
50
40
tr, RL = 4 kΩ
t r,f – Rise and Fall Time ( ns )
PWD – Pulse Width Distortion ( ns )
300
RL = 4 kΩ
30
20
RL = 1 kΩ
10
RL = 350 Ω
0
–40
250
200
150
tr, RL = 1 kΩ
50
tr, RL = 350 Ω
0
–20
0
20
40
60
80 100
Tamb – Ambient Temperature ( °C )
17624
5
7
Figure 19. Pulse Width Distortion vs. Ambient Temperature
9
11
13
15
IF – Forward Current ( mA )
17627
Figure 22. Rise and Fall Time vs. Forward Current
60
60
50
t e – Enable Propagation Delay ( ns )
PWD – Pulse Width Distortion ( ns )
tf, RL = 350 Ω
tf, RL = 1 kΩ
tf, RL = 4 kΩ
100
RL = 4 kΩ
40
30
RL = 1 kΩ
20
10
RL = 350 Ω
0
5
17625
7
9
11
13
IF – Forward Current ( mA )
15
Figure 20. Pulse Width Distortion vs. Forward Current
Document Number 84732
Rev. 1.0, 07-Jun-05
17628
50
teLH = 4 kΩ
40
30
20
teLH = 1 kΩ
teLH = 350 Ω
teHL = 350 Ω
10
teHL = 1 kΩ
0
–40
teHL = 4 kΩ
–20
0
20
40
60
80 100
Tamb – Ambient Temperature ( °C )
Figure 23. Enable Propagation Delay vs. Ambient Temperature
www.vishay.com
9
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
Package Dimensions in Inches (mm)
pin one ID
4
3
2
1
5
6
7
8
.255 (6.48)
.268 (6.81)
ISO Method A
.379 (9.63)
.390 (9.91)
.030 (0.76)
.045 (1.14)
4° typ.
.300 (7.62)
typ.
.031 (0.79)
.130 (3.30)
.150 (3.81)
.050 (1.27)
.018 (.46)
.022 (.56)
10°
.020 (.51 )
.035 (.89 )
.100 (2.54) typ.
3°–9°
.008 (.20)
.012 (.30)
i178006
Option 6
Option 7
.407 (10.36)
.391 (9.96)
.307 (7.8)
.291 (7.4)
.300 (7.62)
TYP.
.028 (0.7)
MIN.
.230(5.84)
.110 (2.79) .250(6.35)
.130 (3.30)
.180 (4.6)
.160 (4.1)
.315 (8.0)
MIN.
.014 (0.35)
.010 (0.25)
.400 (10.16)
.430 (10.92)
www.vishay.com
10
.331 (8.4)
MIN.
.406 (10.3)
MAX.
18450-1
Document Number 84732
Rev. 1.0, 07-Jun-05
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Document Number 84732
Rev. 1.0, 07-Jun-05
www.vishay.com
11
Legal Disclaimer Notice
Vishay
Notice
Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc.,
or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.
Information contained herein is intended to provide a product description only. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's
terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express
or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness
for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications.
Customers using or selling these products for use in such applications do so at their own risk and agree to fully
indemnify Vishay for any damages resulting from such improper use or sale.
Document Number: 91000
Revision: 08-Apr-05
www.vishay.com
1