VISHAY SFH6732-X007

SFH6731/ SFH6732
Vishay Semiconductors
High Speed Optocoupler, Dual, 5 MBd
Features
• Data Rate 5 MBits/s
(2.5 MBit/s over Temperature)
• Buffer
• Isolation Test Voltage, 5300 VRMS
• TTL, LSTTL and CMOS Compatible
• Internal Shield for Very High Common Mode
Transient Immunity
• Wide Supply Voltage Range (4.5 to 15 V)
• Low Input Current (1.6 mA to 5.0 mA)
• Specified from 0 °C to 85 °C
• Lead-free component
• Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
Agency Approvals
• UL1577, File No. E52744 System Code H or J,
Double Protection
Applications
Industrial Control
Replace Pulse Transformers
Routine Logic Interfacing
Motion/Power Control
High Speed Line Receiver
Microprocessor System Interfaces
Computer Peripheral Interfaces
1
8 VCC
C1 2
7 VO1
C2
3
6 VO2
A2 4
5 GND
A1
i179075
e3
Pb
Pb-free
shield provides a common mode transient immunity
of 1000 V/µs at VCM = 50 V for SFH6731 and
500 V/µs at VCM = 300 V for SFH6732.
The SFH6731 and SFH6732 uses an industry standard DIP-8 package. With standard lead bending,
creepage distance and clearance of ≥ 7.0 mm with
lead bending options 6, 7 and 9 ≥ 8.0 mm are
achieved.
Order Information
Part
Remarks
SFH6731
| CMH | ≥ 1000 @ | VCM | = 50 V, DIP-8
SFH6732
| CMH | ≥ 5000 @ | VCM | = 300 V, DIP-8
SFH6732-X007
| CMH | ≥ 5000 @ | VCM | = 300 V, SMD-8
(option 7)
For additional information on the available options refer to
Option Information.
Description
The dual channel 5 Mb/s SFH6731 and SFH6732
high speed optocoupler consists of a GaAlAs infrared
emitting diode, optically coupled with an integrated
photo detector. The detector incorporates a SchmittTrigger stage for improved noise immunity. A Faraday
Document Number 83685
Rev. 1.5, 26-Oct-04
Truth Table (Positive Logic)
Parts
IR Diode
Output
SFH6731
on
H
SFH6732
off
L
on
H
off
L
www.vishay.com
1
SFH6731/ SFH6732
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
Symbol
Value
Reverse voltage
Parameter
VR
3.0
V
DC Forward current
IF
10
mA
IFSM
1.0
A
Pdiss
20
mW
Surge forward current
Test condition
tp ≤ 1.0 µs, 300 pulses/s
Power dissipation
Unit
Output
Symbol
Value
Unit
Supply voltage
Parameter
Test condition
VCC
- 0.5 to + 15
V
Output voltage
VO
- 0.5 to + 15
V
Average output current
IO
25
mA
Pdiss
100
mW
Symbol
Value
Unit
Tstg
- 55 to + 125
°C
Tamb
- 40 to + 85
°C
Ts
260
°C
VISO
5300
VRMS
Power dissipation
Coupler
Parameter
Test condition
Storage temperature range
Ambient temperature range
Lead soldering temperature
t = 10 sec
Isolation test voltage
t=1s
Pollution degree
Creepage distance and
clearance
2.0
Standard lead bending
Option 6, 7, 9
Comparative tracking index per
DIN IEC112/VDE 0303, part 1
Isolation resistance
7.0
mm
8.0
mm
175
VIO = 500 V, Tamb = 25 °C
RIO
1012
Ω
VIO = 500 V, Tamb = 100 °C
RIO
11
Ω
10
Recommended Operating Conditions
A 0.1 µF bypass capacitor connected between pins 5 and 8 must be used.
Symbol
Min
Supply voltage
Parameter
Test condition
VCC
4.5
15
V
Forward input current
IFon
1.61)
5.0
mA
0.1
mA
85
°C
IFoff
Operating temperature
1)
0
Max
Unit
We recommend using a 2.2 mA to permit at least 20 % CTR degradation guard band.
www.vishay.com
2
TA
Typ.
Document Number 83685
Rev. 1.5, 26-Oct-04
SFH6731/ SFH6732
Vishay Semiconductors
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
0 ° C ≤ Tamb ≤ 85 °C; 4.5 V ≤ VCC ≤ 15 V; 1.6 mA ≤ IFon ≤ 5.0 mA; 2.0 ≤ VEH ≤ 15 V; 0 ≤ VEL ≤ 0.8 V; 0 mA ≤ IFoff ≤ 0.1 mA
Typical values: Tamb = 25 °C; VCC = 5.0 V; IFon=3.0 mA unless otherwise specified.
Parameter
Forward voltage
Test condition
IF = 5.0 mA,
Symbol
Min
VF
Typ.
Max
1.6
1.75
V
1.8
V
VF
Unit
Input current hysteresis
VCC = 5 V, IHYS = IFon - IFoff
Reverse current
VR = 3.0 V
IR
0.5
Capacitance
VR = 0 V, f = 1MHz
CO
60
pF
Rthja
700
K/W
Thermal resistance
01
mA
10
µA
Output
Parameter
Test condition
Symbol
Min
Typ.
Max
IOL = 6.4 mA
VOL
Logic high output voltage
IOH = - 2.6 mA,
*VOH = VCC - 1.8 V
VOH
Output leakage current
(VOUT> VCC)
VO = 5.5 V, VCC = 4.5 V,
IF = 5.0 mA
IOHH
0.5
100
µA
VO = 15 V, VCC = 4.5 V,
IF = 5.0 mA
IOHH
1.0
500
µA
Logic low supply current
Logic high supply current
Logic low short circuit output
current
Logic high short circuit output
current
0.5
Unit
Logic low output voltage
2.4
*
V
V
VCC = 5.5 V, IF = 0
ICCL
3.7
6.0
mA
VCC = 15 V, IF = 0
ICCL
4.1
6.5
mA
VCC = 5.5 V, IF = 5.0 mA
ICCH
3.4
4.0
mA
VCC = 15 V, IF = 5.0 mA
ICCH
3.7
5.0
mA
VO = VCC = 5.5 V, IF = 0
IOSL
(2)
25
mA
VO = VCC = 15 V, IF = 0
IOSL (2)
40
mA
VCC = 5.5 V, VO = 0 V,
IF = 5.0 mA
IOSH
(2)
- 10
mA
VCC = 15 V, VO = 0 V, IF = 5.0 mA
IOSH (2)
-25
mA
Thermal resistance
300
K/W
* Output short circuit time ≤ 10 ms.
Coupler
Parameter
Capacitance (input-output)
Document Number 83685
Rev. 1.5, 26-Oct-04
Test condition
f = 1.0 MHz, pins 1-4 and 5-8
shorted together
Symbol
CIO
Min
Typ.
0.6
Max
Unit
pF
www.vishay.com
3
SFH6731/ SFH6732
Vishay Semiconductors
Switching Characteristics
0 °C ≤ Tamb ≤ 85 °C; 4.5 V ≤ VCC ≤ 15 V; 1.6 mA ≤ IFon ≤ 5.0 mA; 0 mA ≤ IFoff ≤ 0.1 mA
Typical values: Tamb = 25 ° C; VCC = 5.0 V; IFon = 3.0 mA unless otherwise specified.
Parameter
Test condition
Propagation delay time to logic
low output level
Symbol
Min
Typ.
tPHL
120
With peaking capacitor
tPHL
115
Without peaking capacitor
tPLH
125
With peaking capacitor
tPLH
90
Without peaking capacitor
Max
Unit
ns
300
ns
ns
300
ns
Output rise time
10 % to 90 %
tr
40
ns
Output fall time
90 % to 10 %
tf
10
ns
Common Mode Transient Immunity
Tamb = 25 °C, VCC = 5 V(4)
Parameter
Test condition
Logic high common mode
Part
Symbol
Min
| VCM | = 50 V, IF = 1.6 mA
SFH6731
| CMH |
1000
Typ.
Max
V/µs
Unit
| VCM | = 300 V, IF = 1.6 mA
SFH6732
| CMH |
5000
V/µs
| VCM | = 50 V, IF = 0 mA
SFH6731
| CML |
1000
V/µs
| VCM | = 1000 V, IF = 0 mA
SFH6732
| CML |
10000
V/µs
transient immunity4)
Logic low common mode
transient immunity4)
(4)
CMH is the maximum slew rate of a common mode voltage VCM at which the output voltage remains at logic high level (VO > 2.0 V).
CML is the maximum slew rate of a common mode voltage VCM at which the output voltage remains at logic low level (VO < 0.8 V).
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
10.000
IF - Forward Current - mA
Ptot - Power dissipation - mW
150
120
Detector
100
75
50
Emitter
25
0
–60
–40
–20
0
20
40
60
80
100
TA = 25 °C
1.000
0.100
0.010
1.3
Figure 1. Permissible Total Power Dissipation vs. Temperature
www.vishay.com
4
1.5
1.6
1.7
VF - Forward Voltage
TA - Temperature - °C
isfh6731_01
1.4
isfh6731_02
Figure 2. Typical Input Diode Forward Current vs. Forward Voltage
Document Number 83685
Rev. 1.5, 26-Oct-04
SFH6731/ SFH6732
Vishay Semiconductors
1100
IF = 5 mA
1.70
1000
Current - nA
VF - Forward Voltage - V
1.75
1.65
1.60
800
700
1.55
600
1.50
500
1.45
-60
VCC = VO = 15 V
900
VCC = VO = 5.5 V
400
-40
-20
0
20
40
60
80
-60 -40
100
-20
TA - Temperature - °C
40
60
80 100
731_06
Figure 3. Typical Forward Input Voltage vs. Temperature
Figure 6. Typical Output Leakage Current vs. Temperature
40
5
VCC = 4.5 V
TA = 25 °C
4
IOL - Low Level Output
Current - mA
VO - Output Voltage - V
20
TA - Temperature - °C
isfh6731_03
3
IOH = –2.6 mA
2
1
IOL = 6.4 mA
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6
VCC = 5 V
IF = 0 mA
38
35
33
VOL = 0.8 V
30
28
VOL = 0.6 V
25
23
VOL = 0.4 V
20
-60
0.7 0.8 0.9 1.0
-40
-20
IF -Input Current - mA
0
20
40
60
80
100
TA - Temperature - °C
isfh6731_04
isfh6731_07
Figure 4. Typical Output Voltage vs. Forward Input Current
Figure 7. Typical Low Level Output Current vs. Temperature
0.30
4.2
VOL - Low Level Output
Voltage - V
ICC - Supply Curent - mA
0
ICCL @ VCC = 15 V
4.0
ICCH @ VCC = 15 V &
ICCL @ VCC = 5.5 V
3.8
3.6
ICCH @ VCC = 5.5 V
3.4
3.2
-60
-40
-20
0
20
40
60
80
100
0.25
VCC = 5 V
IF = 0 mA
0.20
IO = 16 mA
0.15
IO = 12.8 mA
IO = 9.6 mA
0.10
0.05
-60
TA - Temperature - °C
isfh6731_05
IO = 6.4 mA
-40
-20
0
20
40
60
80
100
TA - Temperature - °C
isfh6731_08
Figure 5. Typical Supply Current vs. Temperature
Document Number 83685
Rev. 1.5, 26-Oct-04
Figure 8. Typical Low Level Output Voltage vs. Temperature
www.vishay.com
5
SFH6731/ SFH6732
Vishay Semiconductors
IOH - High Level Output
Current - mA
VCC = 4.5 V
IF = 5 mA
VOH = 2.7 V
-2
tPHL - Propagation Delay - ns
0
-1
-3
-4
-5
VOH = 2.4 V
-6
-7
-8
-60
-40
-20
0
20
40
60
80
100
TA - Temperature - °C
180
140
IF = 5 mA
120
IF = 3 mA
100
IF = 1.6 mA
80
60
-60
-40
-20
tPLH - Propagation Delay - ns
60
54
VCC = 5 V
48
CL = 15 pF
42
36
30
tR
24
18
12
tF
6
0
-60 -40
-20
0
20
40
60
80
100
60
80
100
100
VCC = 5 V
C1 = 120 pF (without peaking capacitor)
90
80
IF = 1.6, 3 and 5 mA
70
60
50
-60
-40
-20
0
20
40
60
80
100
TA - Temperature - °C
isfh6731_10
isfh6731_13
Figure 10. Rise and Fall Time vs. Ambient Temperature
150
VCC = 5 V
C = 15 pF (without peaking capacitor)
IF = 1.6 mA
130
IF = 3 mA
110
IF = 5 mA
90
-40
-20
0
20
40
60
80
Figure 13. Typical Propagation Delays to Logic High vs.
Temperature
tPHL - Propagation Delay - ns
tPLH - Propagation Delay - ns
40
Figure 12. Typical Propagation Delays to Logic Low
vs.Temperature
TA - Temperature - °C
170
150
Figure 11. Typical Propagation Delays to Logic High vs.
Temperature
www.vishay.com
IF = 3 mA
110
100
isfh6731_11
VCC = 5 V
C1 = 120 pF (without peaking capacitor)
130
90
70
50
-60
IF = 5 mA
IF = 1.6 mA
-40
-20
0
20
40
60
80
100
TA - Temperature - °C
TA - Temperature - °C
6
20
isfh6731_12
Figure 9. Typical High Level Output Current vs. Temperature
70
-60
0
TA - Temperature - °C
isfh6731_09
tR, tF -Rise, Fall Time - ns
VCC = 5 V
C1 = 15 pF (without peaking capacitor)
160
isfh6731_14
Figure 14. Typical Propagation Delays to Logic Low
vs.Temperature
Document Number 83685
Rev. 1.5, 26-Oct-04
SFH6731/ SFH6732
VCC = 15 V
C1 = 15 pF (without
peaking capacitor)
180
IF = 1.6 mA
tPHL -Propagation Delay - ns
tPLH - Propagation Delay - ns
Vishay Semiconductors
IF = 3 mA
90
80
IF = 5 mA
70
60
50
-60
-40
-20
0
20
40
60
80
100
C1 = 120 pF (Peaking Capacitor is used)
140
120
IF = 5 mA
IF = 3 mA
100
80
IF = 1.6 mA
60
-60
TA - Temperature - °C
-40
-20
0
20
40
60
80
100
TA - Temperature - °C
isfh6731_15
isfh6731_18
Figure 15. Typical Propagation Delays to Logic High vs.
Temperature
tPHL - Propagation Delay - ns
VCC = 15 V
160
Figure 18. Typical Propagation Delays to Logic Low
vs.Temperature
170
VCC = 15 V
C1 = 15 pF (without
peaking capacitor)
150
130
IF = 5 mA
110
IF = 3 mA
90
IF = 1.6 mA
70
50
-60
-40
-20
0
20
40
60
80
100
TA - Temperature - °C
isfh6731_16
tPLH - Propagation Delay - ns
Figure 16. Typical Propagation Delays to Logic Low
vs.Temperature
80
70
VCC = 15 V
C1 = 120 pF (without peaking capacitor)
60
50
IF = 1.6, 3 and 5 mA
40
30
-60
-40
-20
0
20
40
60
80
100
TA - Temperature - °C
isfh6731_17
Figure 17. Typical Propagation Delays to Logic High vs.
Temperature
Document Number 83685
Rev. 1.5, 26-Oct-04
www.vishay.com
7
SFH6731/ SFH6732
Vishay Semiconductors
5V
VCC
R3 = 619 Ohm
Pulse generator
tr, tf = 5 ns
f = 100 kHz
10% Duty cycle
IF
Input IF
Monitoring
Node
1
VCC 8
2
7
3
6
4
Gnd
Output Vo
Monitoring
Node
D1
0.1 µF
Bypass
D2
D3
5
D4
C2 = 15 pF R2 = 5 kOhm
R1 C1 = 120 pF
The Probe and Jig Capacitances are included in C1 and C2
All diodes are 1N916 or 1N3064
R1
2.15 kOhm 1.1 kOhm 681 Ohm
IF (ON) 1.6 mA
3 mA
5 mA
IFon
50% IFon
0 mA
Input IF
VOH
Output VO
1.3 V
isfh6731_19
VOL
tPHL
tPLH
Figure 19. Test Circuit for tPLH, tPHL, tr and tf
VCC
A
B
R
1
VCC 8
2
7
3
6
4
Gnd
+
Pulse Generator
Output VO
Monitoring
Node
0.1µF
Bypass
5
–
VCM
400 V / 50 V
VCM
0V
VOH
Switch at A: IF = 1.6 mA
VO (min)
Output VO
VOL
isfh6731_20
VO (max)
Switch at B: IF = 0 mA
Figure 20. Test Circuit for Common Mode Transient Immunity and Typical Waveforms
www.vishay.com
8
Document Number 83685
Rev. 1.5, 26-Oct-04
SFH6731/ SFH6732
Vishay Semiconductors
Package Dimensions in Inches (mm)
pin one ID
4
3
2
1
5
6
7
8
.255 (6.48)
.268 (6.81)
ISO Method A
.379 (9.63)
.390 (9.91)
.030 (0.76)
.045 (1.14)
4° typ.
.031 (0.79)
.300 (7.62)
typ.
.130 (3.30)
.150 (3.81)
.050 (1.27)
.018 (.46)
.022 (.56)
10°
.020 (.51 )
.035 (.89 )
.100 (2.54) typ.
i178006
3°–9°
.008 (.20)
.012 (.30)
.230(5.84)
.110 (2.79) .250(6.35)
.130 (3.30)
Option 7
.300 (7.62)
TYP.
.255 (6.5)
.248 (6.3)
.028 (0.7)
MIN.
.180 (4.6)
.160 (4.1)
.315 (8.0)
MIN.
.331 (8.4)
MIN.
.406 (10.3)
MAX.
Document Number 83685
Rev. 1.5, 26-Oct-04
18447
www.vishay.com
9
SFH6731/ SFH6732
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.com
10
Document Number 83685
Rev. 1.5, 26-Oct-04
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1