FAIRCHILD SSH9N80A

SSH9N80A
Advanced Power MOSFET
FEATURES
BVDSS = 800 V
Avalanche Rugged Technology
RDS(on) = 1.3 Ω
Rugged Gate Oxide Technology
Lower Input Capacitance
ID = 9 A
Improved Gate Charge
Extended Safe Operating Area
TO-3P
Lower Leakage Current : 25 µA (Max.) @ VDS = 800V
Low RDS(ON) : 1.000 Ω (Typ.)
1
2
3
1.Gate 2. Drain 3. Source
Absolute Maximum Ratings
Symbol
VDSS
Characteristic
Value
800
Drain-to-Source Voltage
Ο
ID
Ο
1
O
VGS
Gate-to-Source Voltage
EAS
Single Pulsed Avalanche Energy
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
dv/dt
Peak Diode Recovery dv/dt
O
1
O
1
O
O3
2
TJ , TSTG
TL
36
A
± 30
V
432
mJ
9
A
24
mJ
2.0
V/ns
Total Power Dissipation (TC=25 C)
240
W
Linear Derating Factor
1.92
W/ C
Ο
PD
A
5.7
Continuous Drain Current (TC=100 C)
Drain Current-Pulsed
V
9
Continuous Drain Current (TC=25 C)
IDM
Units
Operating Junction and
Ο
- 55 to +150
Storage Temperature Range
Ο
Maximum Lead Temp. for Soldering
C
300
Purposes, 1/8“ from case for 5-seconds
Thermal Resistance
Symbol
Characteristic
Typ.
Max.
R θJC
Junction-to-Case
--
0.52
R
θCS
Case-to-Sink
0.24
--
R
θJA
Junction-to-Ambient
--
40
Units
Ο
C/W
Rev. B
©1999 Fairchild Semiconductor Corporation
N-CHANNEL
POWER MOSFET
SSF9N80A
Electrical Characteristics (TC=25 C unless otherwise specified)
Ο
Symbol
Characteristic
BVDSS
Drain-Source Breakdown Voltage
∆BV/∆TJ
Breakdown Voltage Temp. Coeff.
VGS(th)
IGSS
IDSS
RDS(on)
Min. Typ. Max. Units
800
--
--
V
See Fig 7
0.96
--
2.0
--
3.5
V
Gate-Source Leakage , Forward
--
--
100
Gate-Source Leakage , Reverse
--
--
-100
--
--
25
--
--
250
--
--
1.3
Ω
VGS=10V,ID=0.85A
4*
O
--
Ω
VDS=50V,ID=0.85A
4
O
Gate Threshold Voltage
Drain-to-Source Leakage Current
Static Drain-Source
On-State Resistance
--
5.54
Ciss
Input Capacitance
--
2020 2600
Coss
Output Capacitance
--
195
230
Crss
Reverse Transfer Capacitance
--
82
95
td(on)
Turn-On Delay Time
--
25
60
Rise Time
--
37
85
Turn-Off Delay Time
--
113
235
Fall Time
--
42
95
Qg
Total Gate Charge
--
93
120
Qgs
Gate-Source Charge
--
14.3
--
Qgd
Gate-Drain(“Miller”) Charge
--
42.1
--
tf
ID=250µA
--
Forward Transconductance
td(off)
VGS=0V,ID=250µA
V/ C
gfs
tr
Ο
Test Condition
nA
µA
pF
VDS=5V,ID=250µA
VGS=30V
VGS=-30V
VDS=800V
Ο
VDS=640V,TC=125 C
VGS=0V,VDS=25V,f =1MHz
See Fig 5
VDD=400V,ID=2A,
ns
RG=16 Ω
See Fig 13
4 O
5
O
VDS=640V,VGS=10V,
nC
ID=2A
See Fig 6 & Fig 12
4 O
5
O
Source-Drain Diode Ratings and Characteristics
Symbol
Characteristic
IS
Continuous Source Current
ISM
Pulsed-Source Current
VSD
Diode Forward Voltage
trr
Qrr
Min. Typ. Max. Units
Test Condition
--
--
--
--
36
--
--
1.4
V
TJ=25 C,IS=6A,VGS=0V
Reverse Recovery Time
--
560
--
ns
TJ=25 C,IF=9A
Reverse Recovery Charge
--
8.4
--
µC
diF/dt=100A/µs
1
O
4
O
6
A
Notes ;
1 Repetitive Rating : Pulse Width Limited by Maximum Junction Temperature
O
2 L=23mH, I AS=6A, V DD=50V, R G=27Ω, Starting T J =25 C
O
O3 ISD <_ 9A, di/dt_<180A/ µs, VDD <_ BVDSS , Starting T J =25 C
_ 2%
4 Pulse Test : Pulse Width = 250 µs, Duty Cycle <
O
5 Essentially Independent of Operating Temperature
O
Ο
Ο
Integral reverse pn-diode
in the MOSFET
Ο
Ο
4
O
N-CHANNEL
POWER MOSFET
SSH9N80A
Fig 1. Output Characteristics
Fig 2. Transfer Characteristics
[A]
15V
10V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom : 4.5 V
101
ID , Drain Current
ID , Drain Current
[A]
V GS
Top :
100
@ Notes :
1. 250 µs Pulse Test
2. TC = 25 oC
10-1
101
150 oC
100
25 oC
@ Notes :
1. VGS = 0 V
2. VDS = 50 V
- 55 oC
3. 250 µs Pulse Test
-1
10-1
100
10
101
2
4
[A]
Fig 3. On-Resistance vs. Drain Current
8
10
Fig 4. Source-Drain Diode Forward Voltage
5
IDR , Reverse Drain Current
RDS(on) , [Ω]
Drain-Source On-Resistance
6
VGS , Gate-Source Voltage [V]
VDS , Drain-Source Voltage [V]
4
VGS = 10 V
3
2
VGS = 20 V
1
@ Note : TJ = 25 oC
5
10
15
20
25
30
35
100
40
@ Notes :
1. VGS = 0 V
150 oC
25 oC
10-1
0.2
0
0
101
ID , Drain Current [A]
0.4
0.6
2. 250 µs Pulse Test
0.8
1.0
1.2
VSD , Source-Drain Voltage [V]
Fig 5. Capacitance vs. Drain-Source Voltage
Fig 6. Gate Charge vs. Gate-Source Voltage
Ciss= Cgs+ Cgd ( Cds= shorted )
2000
1000
0
100
VDS = 160 V
10
Crss= Cgd
C oss
@ Notes :
1. VGS = 0 V
C rss
2. f = 1 MHz
101
VDS , Drain-Source Voltage [V]
VGS , Gate-Source Voltage
Capacitance
[pF]
Coss= Cds+ Cgd
C iss
[V]
3000
VDS = 400 V
VDS = 640 V
5
@ Notes : ID = 9.0 A
0
0
20
40
60
QG , Total Gate Charge [nC]
80
100
N-CHANNEL
POWER MOSFET
Fig 7. Breakdown Voltage vs. Temperature
1.2
1.1
1.0
0.9
Fig 8. On-Resistance vs. Temperature
RDS(on) , (Normalized)
Drain-Source On-Resistance
BVDSS , (Normalized)
Drain-Source Breakdown Voltage
SSH9N80A
@ Notes :
1. VGS = 0 V
2. ID = 250 µA
0.8
-75
-50
-25
0
25
50
75
100
125
150
3.0
2.5
2.0
1.5
1.0
@ Notes :
1. VGS = 10 V
0.5
2. ID = 4.5 A
0.0
-75
175
-50
-25
0
25
50
75
100
125
150
175
TJ , Junction Temperature [ oC]
TJ , Junction Temperature [ oC]
Fig 9. Max. Safe Operating Area
Fig 10. Max. Drain Current vs. Case Temperature
[A]
ID , Drain Current
102
10 µs
100 µs
101
1 ms
10 ms
DC
100
@ Notes :
1. TC = 25 oC
10-1
8
6
4
2
2. TJ = 150 oC
3. Single Pulse
101
102
0
25
103
50
75
100
Tc , Case Temperature [ oC]
VDS , Drain-Source Voltage [V]
Thermal Response
Fig 11. Thermal Response
D=0.5
10- 1
@ Notes :
1. Zθ J C (t)=0.52
0.2
o C/W
Max.
2. Duty Factor, D=t1 /t2
0.1
3. TJ M -TC =PD M *Z
θJC
(t)
0.05
θ
10-2
Z JC(t) ,
ID , Drain Current
[A]
10
Operation in This Area
is Limited by R DS(on)
PDM
0.02
0.01
t1
single pulse
t2
10- 2
10- 5
10- 4
10- 3
10- 2
10- 1
t 1 , Square Wave Pulse Duration
100
[sec]
101
125
150
N-CHANNEL
POWER MOSFET
Fig 7. Breakdown Voltage vs. Temperature
1.2
1.1
1.0
0.9
Fig 8. On-Resistance vs. Temperature
RDS(on) , (Normalized)
Drain-Source On-Resistance
BVDSS , (Normalized)
Drain-Source Breakdown Voltage
SSH9N80A
@ Notes :
1. VGS = 0 V
2. ID = 250 µA
0.8
-75
-50
-25
0
25
50
75
100
125
150
3.0
2.5
2.0
1.5
1.0
@ Notes :
1. VGS = 10 V
0.5
2. ID = 4.5 A
0.0
-75
175
-50
-25
0
25
50
75
100
125
150
175
TJ , Junction Temperature [ oC]
TJ , Junction Temperature [ oC]
Fig 9. Max. Safe Operating Area
Fig 10. Max. Drain Current vs. Case Temperature
[A]
ID , Drain Current
102
10 µs
100 µs
101
1 ms
10 ms
DC
100
@ Notes :
1. TC = 25 oC
10-1
8
6
4
2
2. TJ = 150 oC
3. Single Pulse
101
102
0
25
103
50
75
100
Tc , Case Temperature [ oC]
VDS , Drain-Source Voltage [V]
Thermal Response
Fig 11. Thermal Response
D=0.5
10- 1
@ Notes :
1. Zθ J C (t)=0.52
0.2
o C/W
Max.
2. Duty Factor, D=t1 /t2
0.1
3. TJ M -TC =PD M *Z
θJC
(t)
0.05
θ
10-2
Z JC(t) ,
ID , Drain Current
[A]
10
Operation in This Area
is Limited by R DS(on)
PDM
0.02
0.01
t1
single pulse
t2
10- 2
10- 5
10- 4
10- 3
10- 2
10- 1
t 1 , Square Wave Pulse Duration
100
[sec]
101
125
150
N-CHANNEL
POWER MOSFET
SSH9N80A
Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms
DUT
+
VDS
--
IS
L
Driver
VGS
RG
VGS
VGS
( Driver )
Same Type
as DUT
VDD
• dv/dt controlled by “RG•
• IS controlled by Duty Factor “D”
Gate Pulse Width
D = -------------------------Gate Pulse Period
10V
IFM , Body Diode Forward Current
IS
( DUT )
di/dt
IRM
Body Diode Reverse Current
VDS
( DUT )
Body Diode Recovery dv/dt
Vf
Body Diode
Forward Voltage Drop
VDD
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
CoolFET™
CROSSVOLT™
E2CMOSTM
FACT™
FACT Quiet Series™
FAST®
FASTr™
GTO™
HiSeC™
ISOPLANAR™
MICROWIRE™
POP™
PowerTrench™
QS™
Quiet Series™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
TinyLogic™
UHC™
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
2. A critical component is any component of a life
support device or system whose failure to perform can
systems which, (a) are intended for surgical implant into
be reasonably expected to cause the failure of the life
the body, or (b) support or sustain life, or (c) whose
support device or system, or to affect its safety or
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.