IRF6645PbF IRF6645TRPbF l l l l l l l l l l l DirectFET Power MOSFET RoHS Compliant Lead-Free (Qualified up to 260°C Reflow) Application Specific MOSFETs Ideal for High Performance Isolated Converter Primary Switch Socket Optimized for Synchronous Rectification Low Conduction Losses High Cdv/dt Immunity Low Profile (<0.7mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques Halogen-Free Typical values (unless otherwise specified) VDSS VGS 100V max ±20V max Qg tot 14nC RDS(on) 28m@ 10V Qgd Vgs(th) 4.8nC 4.0V DirectFET ISOMETRIC SJ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SH SJ SP MZ MN Description The IRF6645PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an Micro8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6645PbF is optimized for primary side bridge topologies in isolated DC-DC applications, for wide range universal input Telecom applications (36V - 75V), and for secondary side synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters. Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage 100 V VGS Gate-to-Source Voltage ±20 Parameter e e @ 10V f ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 5.7 ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 4.5 ID @ TC = 25°C Continuous Drain Current, VGS 25 IDM Pulsed Drain Current EAS Single Pulse Avalanche Energy IAR Avalanche Current g g VGS, Gate-to-Source Voltage (V) Typical R DS (on) (m) ID = 3.4A 70 60 TJ = 125°C 50 40 TJ = 25°C 30 20 4 6 8 10 12 14 VGS, Gate-to-Source Voltage (V) 16 Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. 1 www.irf.com 45 h 80 © 2012 International Rectifier A 29 mJ 3.4 A 12 ID= 3.4A 10 VDS = 80V VDS= 50V 8 6 4 2 0 0 4 8 12 16 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 5.0mH, RG = 25, IAS = 3.4A. July 25, 2012 IRF6645/TRPbF Electrical Characteristic @ TJ = 25°C (unless otherwise specified) Parameter Conditions Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 100 ––– ––– V VDSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.12 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 28 35 m VGS = 10V, ID = 5.7A i VGS(th) Gate Threshold Voltage 3.0 ––– 4.9 V VGS(th)/TJ Gate Threshold Voltage Coefficient ––– -12 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 20 μA ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 7.4 ––– ––– Qg IGSS Total Gate Charge ––– 14 20 Qgs1 Pre-Vth Gate-to-Source Charge ––– 3.1 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 0.8 ––– VGS = 0V, ID = 250μA VDS = VGS, ID = 50μA VDS = 100V, VGS = 0V VDS = 80V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 10V, ID = 3.4A VDS = 50V nC VGS = 10V Qgd Gate-to-Drain Charge ––– 4.8 7.2 ID = 3.4A Qgodr Gate Charge Overdrive ––– 5.3 ––– See Fig. 15 Qsw Switch Charge (Qgs2 + Qgd) ––– 5.6 ––– 7.2 ––– nC VDS = 16V, VGS = 0V Qoss Output Charge ––– RG Gate Resistance ––– 1.0 ––– td(on) Turn-On Delay Time ––– 9.2 ––– VDD = 50V, VGS = 10Vi tr Rise Time ––– 5.0 ––– ID = 3.4A td(off) Turn-Off Delay Time ––– 18 ––– tf Fall Time ––– 5.1 ––– Ciss Input Capacitance ––– 890 ––– Coss Output Capacitance ––– 180 ––– ns RG=6.2 VGS = 0V pF VDS = 25V Crss Reverse Transfer Capacitance ––– 40 ––– ƒ = 1.0MHz Coss Output Capacitance ––– 870 ––– VGS = 0V, VDS = 1.0V, f=1.0MHz Coss Output Capacitance ––– 100 ––– VGS = 0V, VDS = 80V, f=1.0MHz Min. Typ. Max. ––– ––– 25 Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current Units MOSFET symbol A ––– ––– Conditions D showing the G integral reverse 45 S p-n junction diode. (Body Diode)g VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 3.4A, VGS = 0V i trr Reverse Recovery Time ––– 31 47 ns TJ = 25°C, IF = 3.4A, VDD = 50V Qrr Reverse Recovery Charge ––– 40 60 nC di/dt = 100A/μs c Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width 400μs; duty cycle 2%. 2 www.irf.com © 2012 International Rectifier July 25, 2012 IRF6645/TRPbF Absolute Maximum Ratings Parameter PD @TC = 25°C e Power Dissipation e Power Dissipation f TP Peak Soldering Temperature TJ Operating Junction and TSTG Storage Temperature Range Power Dissipation PD @TA = 25°C PD @TA = 70°C Max. Units 3.0 W 1.4 42 270 °C -40 to + 150 Thermal Resistance Parameter el Junction-to-Ambient jl Junction-to-Ambient kl Junction-to-Case fl RJA Typ. Max. ––– 58 Junction-to-Ambient RJA RJA RJC RJ-PCB 12.5 ––– 20 ––– ––– 3.0 1.0 ––– Junction-to-PCB Mounted Units °C/W 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 R1 R1 0.02 1 J 0.01 J 1 R2 R2 2 1 R3 R3 R4 R4 AC 2 3 3 4 Ci= iRi Ci= iRi 0.1 Ri (°C/W) i (sec) R5 R5 4 5 C 5 0.6677 0.000066 1.0463 0.000896 1.5612 0.004386 29.2822 0.686180 25.4550 32 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = Pdm x Zthja + Ta SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Mounted on minimum footprint full size board with metalized Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Ris measured at TJ of approximately 90°C. Used double sided cooling, mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). 3 www.irf.com Mounted to a PCB with small clip heatsink (still air) © 2012 International Rectifier Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) July 25, 2012 IRF6645/TRPbF 100 100 BOTTOM 10 6.0V 1 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V BOTTOM 10 6.0V 60μs PULSE WIDTH 60μs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 1 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 100 2.0 ID = 5.7A VDS = 10V 10 Typical RDS(on) (Normalized) 60μs PULSE WIDTH ID, Drain-to-Source Current ) VGS 15V 10V 8.0V 7.0V 6.0V TJ = 150°C TJ = 25°C TJ = -40°C 1 VGS = 10V 1.5 1.0 0.1 4.0 5.0 6.0 7.0 0.5 8.0 -60 -40 -20 0 VGS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics 10000 60 VGS = 8.0V (m DS(on) Coss Typical R C, Capacitance(pF) Ciss 100 TA= 25°C VGS = 7.0V Coss = Cds + Cgd Crss 50 VGS = 10V VGS = 15V 40 30 20 10 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 TJ , Junction Temperature (°C) Fig 7. Normalized On-Resistance vs. Temperature VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 1000 20 40 60 80 100 120 140 160 www.irf.com © 2012 International Rectifier 0 10 20 30 40 50 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current July 25, 2012 IRF6645/TRPbF 1000 TJ = 150°C TJ = 25°C TJ = -40°C 10.0 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 100.0 1.0 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100μsec 10 1msec 1 TA = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 1.1 1.0 10.0 100.0 1000.0 VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) Fig11. Maximum Safe Operating Area Fig 10. Typical Source-Drain Diode Forward Voltage 6.0 VGS(th) Gate threshold Voltage (V) 6.0 5.0 ID , Drain Current (A) 10msec 4.0 3.0 2.0 1.0 5.5 5.0 4.5 4.0 3.5 ID = 1.0A ID = 1.0mA 3.0 ID = 50μA ID = 250μA 2.5 2.0 0.0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 TJ , Temperature ( °C ) TJ , Ambient Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Ambient Temperature EAS, Single Pulse Avalanche Energy (mJ) 120 ID 1.5A 2.4A BOTTOM 3.4A TOP 100 80 60 40 20 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current 5 www.irf.com © 2012 International Rectifier July 25, 2012 IRF6645/TRPbF Id Vds Vgs L VCC DUT 0 1K Vgs(th) S Qgs1 Qgs2 Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS A I AS 0.01 tp Fig 16c. Unclamped Inductive Waveforms Fig 16b. Unclamped Inductive Test Circuit VDS RD VDS 90% VGS D.U.T. RG + - VDD 10V 10% VGS td(on) Pulse Width µs tr td(off) tf Duty Factor Fig 17a. Switching Time Test Circuit 6 www.irf.com © 2012 International Rectifier Fig 17b. Switching Time Waveforms July 25, 2012 IRF6645/TRPbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - D= Period P.W. + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, SJ Outline (Small Size Can, J-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. D G D S S D D G = GATE D = DRAIN S = SOURCE 7 www.irf.com © 2012 International Rectifier July 25, 2012 IRF6645/TRPbF DirectFET Outline Dimension, SJ Outline (Small Size Can, J-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS IMPERIAL METRIC MAX MIN CODE MIN MAX 4.85 0.187 A 4.75 0.191 3.95 0.146 B 3.70 0.156 2.85 0.108 C 2.75 0.112 0.45 0.014 D 0.35 0.018 0.62 0.023 E 0.58 0.024 0.62 0.023 F 0.58 0.024 0.72 0.027 G 0.68 0.028 0.72 0.027 H 0.68 0.028 K 0.98 1.02 0.039 0.040 2.32 0.090 L 2.28 0.091 M 0.616 0.676 0.0235 0.0274 R 0.020 0.080 0.0008 0.0031 0.17 0.003 P 0.08 0.007 DirectFET Part Marking 8 www.irf.com © 2012 International Rectifier July 25, 2012 IRF6645/TRPbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6645TRPBF). For 1000 parts on 7" reel, order IRF6645TR1PBF STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL METRIC IMPERIAL MIN MIN MAX MAX MIN MAX 12.992 6.9 N.C N.C 177.77 N.C 0.795 0.75 N.C 19.06 N.C N.C 0.504 0.53 0.50 0.520 13.5 12.8 0.059 0.059 N.C 1.5 N.C N.C 3.937 2.31 58.72 N.C N.C N.C N.C N.C 0.53 N.C 0.724 13.50 0.488 0.47 11.9 N.C 0.567 12.01 0.469 0.47 11.9 N.C 0.606 12.01 Loaded Tape Feed Direction CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.158 0.165 4.00 4.20 0.197 0.205 5.00 5.20 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 . This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 9 www.irf.com © 2012 International Rectifier July 25, 2012