PD - 97199 IRF6622 DirectFET Power MOSFET l l l l l l l l l RoHs Compliant Containing No Lead and Bromide Low Profile (<0.6 mm) Dual Sided Cooling Compatible Ultra Low Package Inductance Optimized for High Frequency Switching Ideal for CPU Core DC-DC Converters Optimized for Control FET Socket Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques Typical values (unless otherwise specified) VDSS VGS RDS(on) RDS(on) 25V max ±20V max 4.9mΩ@ 10V 6.8mΩ@ 4.5V Qg Qgd Qgs2 Qrr Qoss Vgs(th) 3.8nC 1.6nC 7.1nC 7.7nC 1.8V tot 11nC DirectFET ISOMETRIC SQ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MP Description The IRF6622 combines the latest HEXFET Power MOSFET Silicon Technology with the advanced DirectFET packaging to achieve the lowest combined on-state resistance and gate charge in a package that has a footprint similar to that of a Micro-8, and only 0.6mm profile. The IRF6622 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6622 has been optimized for parameters that are critical in synchronous buck including Rds(on) and gate charge. Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h VGS, Gate-to-Source Voltage (V) Typical RDS(on) (mΩ) 20 ID = 15A 15 10 T J = 125°C 5 T J = 25°C 0 3 4 5 6 7 8 9 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance Vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com e e f Max. Units 25 ±20 15 12 59 120 13 12 V A mJ A 6.0 ID= 12A VDS= 20V VDS= 13V 5.0 4.0 VDS= 5.0V 3.0 2.0 1.0 0.0 0 2 4 6 8 10 12 14 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.18mH, RG = 25Ω, IAS = 12A. 1 04/04/06 IRF6622 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. BVDSS Drain-to-Source Breakdown Voltage 25 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 17 ––– Static Drain-to-Source On-Resistance ––– 4.9 6.3 ––– 6.8 8.9 VGS = 0V, ID = 250µA V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 15A c VGS = 4.5V, ID = 12A c VGS(th) Gate Threshold Voltage 1.35 1.8 2.35 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -5.9 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 1.0 µA IGSS gfs Qg Conditions Typ. Max. Units VDS = VGS, ID = 25µA VDS = 20V, VGS = 0V VDS = 20V, VGS = 0V, TJ = 125°C ––– ––– Gate-to-Source Forward Leakage ––– ––– 150 100 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V S VDS = 13V, ID = 12A Forward Transconductance 55 ––– ––– Total Gate Charge ––– 11 17 Qgs1 Pre-Vth Gate-to-Source Charge ––– 2.5 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.6 ––– Qgd Gate-to-Drain Charge ––– 3.8 ––– ID = 12A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 3.1 ––– See Fig. 15 Qsw ––– 5.4 ––– Qoss RG Output Charge Gate Resistance ––– ––– 7.7 1.8 ––– 3.1 td(on) Turn-On Delay Time ––– 13 ––– VDD = 13V, VGS = 4.5Vc ID = 12A VDS = 13V nC nC VGS = 4.5V VDS = 16V, VGS = 0V Ω tr Rise Time ––– 87 ––– td(off) Turn-Off Delay Time ––– 14 ––– tf Fall Time ––– 5.6 ––– Ciss Input Capacitance ––– 1450 ––– Coss Output Capacitance ––– 380 ––– Crss Reverse Transfer Capacitance ––– 210 ––– Min. Typ. Max. Units ––– ––– 2.7 ––– ––– 120 integral reverse ns Clamped Inductive Load VGS = 0V pF VDS = 13V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current Conditions MOSFET symbol A showing the VSD Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V c trr Reverse Recovery Time ––– 10 15 ns TJ = 25°C, IF = 12A Qrr Reverse Recovery Charge ––– 7.1 11 nC di/dt = 500A/µs c (Body Diode)d Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. Repetitive rating; pulse width limited by max. junction temperature. 2 www.irf.com IRF6622 Absolute Maximum Ratings c c f Max. Units 2.2 1.4 34 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter cg dg eg fg RθJA RθJA RθJA RθJC RθJ-PCB Typ. Max. Units ––– 12.5 20 ––– 1.0 58 ––– ––– 3.7 ––– °C/W Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor c 0.017 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 Ri (°C/W) R5 R5 τA τ2 τ1 τ2 τ3 τ3 τ4 τ4 τ5 1.620 τA τ5 Ci= τi/Ri Ci= τi/Ri 0.1 0.01 1E-006 0.0001 0.001 2.141 0.001354 22.289 0.375850 20.046 7.41 11.914 99 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 τi (sec) 0.000126 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6622 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 1 2.5V 0.1 BOTTOM 10 2.5V ≤60µs PULSE WIDTH 0.1 1 10 1 100 0.1 1000 Fig 4. Typical Output Characteristics 100 1000 2.0 VDS = 15V ≤60µs PULSE WIDTH ID = 15A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (Α) 10 Fig 5. Typical Output Characteristics 1000 100 T J = 150°C T J = 25°C 10 T J = -40°C 1 0.1 V GS = 10V 1.5 1.0 V GS = 4.5V 0.5 1 2 3 4 5 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 10000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) 50 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T J = 25°C Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 40 Typical RDS(on) ( mΩ) C oss = C ds + C gd C, Capacitance(pF) 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Ciss 1000 Coss 30 20 10 Crss 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.01 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 0 20 40 60 80 100 120 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF6622 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100 10 T J = 150°C T J = 25°C T J = -40°C 1 100µsec 10 1 0.1 T A = 25°C VGS = 0V 10msec Single Pulse 0 0.01 0.2 0.4 0.6 0.8 1.0 1.2 0.01 VSD, Source-to-Drain Voltage (V) 0.10 1.00 10.00 100.00 VDS, Drain-to-Source Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area 60 Typical VGS(th) Gate threshold Voltage (V) 3.0 50 ID, Drain Current (A) 1msec T J = 150°C 40 30 20 10 2.5 2.0 ID = 50µA 50 75 100 125 ID = 100µA 1.0 ID = 250µA ID = 1mA 0.5 ID = 1.0A 0.0 0 25 ID = 25µA 1.5 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 60 ID 3.7A 5.3A BOTTOM 12A TOP 50 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6622 Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6622 D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. Re-Applied Voltage + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D G D www.irf.com S D 7 IRF6622 DirectFET Outline Dimension, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.52 E 0.48 0.82 F 0.78 0.92 G 0.88 0.82 H 0.78 N/A J N/A 0.97 K 0.93 2.10 L 2.00 0.59 M 0.48 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN MAX 0.187 0.191 0.146 0.156 0.108 0.112 0.014 0.018 0.019 0.020 0.031 0.032 0.035 0.036 0.031 0.032 N/A N/A 0.037 0.038 0.079 0.083 0.019 0.023 0.001 0.003 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6622 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6622). For 1000 parts on 7" reel, order IRF6622TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MAX MIN MIN CODE MIN MIN MAX MAX MAX A N.C 6.9 12.992 330.0 177.77 N.C N.C N.C B 0.75 0.795 N.C 20.2 19.06 N.C N.C N.C C 0.53 0.504 0.50 12.8 13.5 0.520 12.8 13.2 D 0.059 0.059 N.C 1.5 1.5 N.C N.C N.C E 2.31 3.937 N.C 100.0 58.72 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 13.50 18.4 G 0.47 0.488 N.C 12.4 11.9 0.567 12.01 14.4 H 0.47 0.469 N.C 11.9 11.9 0.606 12.01 15.4 Loaded Tape Feed Direction NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MAX 0.311 0.319 8.10 0.154 0.161 4.10 0.469 0.484 12.30 0.215 0.219 5.55 0.158 0.165 4.20 0.197 0.205 5.20 0.059 N.C N.C 0.059 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/06 www.irf.com 9 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/