AVAGO MGA-22103-BLKG

MGA-22103
2.5-2.7 GHz WiMAX Power Amplifier Module
Data Sheet
Description
Features
Avago Technologies MGA-22103 power amplifier module
is designed for mobile and fixed wireless data applications
in the 2.5 to 2.7 GHz frequency range. The aggressive gain
shape limits the noise injected into radio receivers colocated in the same device. The PA is optimized for IEEE
802.16 WiMAX modulation but can be used for any high
linearity applications. The PA exhibits flat gain and good
match while providing linear power efficiency to meet
stringent mask conditions. It utilizes Avago Technologies
proprietary GaAs Enhancement-mode pHEMT technology
for superior performance across voltage and temperature
levels.
 Advanced GaAs E-pHEMT
The MGA-22103 is packaged in a 3 x 3 x 1 mm package for
space-constrained applications.
 25dB gain step in low power mode with reduced Idsq
 Integrated CMOS compatible pins for shutdown and
low power mode
 3 to 5 V supply
 Adjustable bias current with BCTRL pin
 Small size: 3 x 3 x 1 mm
 Stable under all loads or conditions
 -40° C to +85° C operation
At 2.5 GHz (BCTRL = 2.8 V)
 Gain of 34 dB
Functional Block Diagram
GND
16
 50  all RF ports
 PAE of 21% at SEM compliant Pout = 25 dBm
VCC1
GND
16
15
GND
14
 Meets 802.16 masks at 25 dBm Pout , 16 QAM WiMAX
with 3.3 V and 437 mA
VCC2
13
RFIN
1
GND
12
 16 QAM WiMAX EVM < -32 dB (2.5%) at 25 dBm
 Low power Idd, 85 mA at Pout = 0 dBm
 Portable WiMAX applications with stringent coexistence
requirements
PMOD
7
N/C
8
RFIN
11
GND
12
GND
313
BCTRL
44
VCC2
BSW
6
16
15
14
14
13
12 GND
12
11 RFOUT
11
17
GND
10 GND
10
19
5
16
7
8
NC
BSPLY
5
PAMOD
N/C
9
BCTRL
4
GND
Package Diagram
VCC1
GND
10
BIAS NETWORK
Applications
BSW
GND
3
RFOUT
11
GND
OMN
ISMN
BSPLY
GND
2
NC
Electrical Specifications
Absolute Minimum and Maximum Ratings
Table 1. Minimum and Maximum Ratings
Parameter
Specifications
Description
Pin
Supply Voltage
VCC1
VCC2
Bias Supply
BSPLY
Min.
3
Max.
Unit
5.5
V
5.5
V
Bias Control
BCTRL
1.65
5.5
V
Bias ON/OFF
BSW
1.65
5.5
V
Mode Control
PAMOD
1.65
5.5
V
RF Input Power
RFIN
15
dBm
MSL
MSL3
Channel Temperature
150
°C
150
°C
Storage Temperature
-65
Comments
Using 16 QAM ¾
Table 2. Recommended Operating Range
Parameter
Specifications
Description
Pin
Min.
Typical
Max.
Unit
Supply Voltage
VCC1
VCC2
3
3.3
5
V
Bias Supply
BSPLY
3
3.3
5
V
Bias Control
BCTRL
2.75
13
2.8
mA
2.85
BSW
1.65
Mode Control
PAMOD
1.65
1.8
3.3
7
1.8
Frequency Range
RFOUT
25
2.5
Thermal Resistance, ch-b
Case Temperature
2
V
A
27
dBm
2.7
GHz
23.4
-40
V
uA
3.3
17
RF Output Power
V
A
0.7
Bias ON/OFF
Comments
°C/W
+85
°C
Using 16 QAM ¾
Channel to board
WiMAX (802.16e) Electrical Specifications
All data measured on an FR4 demo board at Vcc1 = Vcc2 = 3.3 V, BCTRL = 2.8 V, Tc = 25° C, 50  at all ports. Unless
otherwise specified, all data is taken with OFDM 16-QAM ¾ convolutional coding modulated signal per IEEE 802.16e
with 10 MHz BW operating over the BW of 2.5 GHz to 2.7 GHz.
Table 3. RF Electrical Characteristics
Performance
Parameter
Min.
Input Return Loss
Gain Flatness
Gain Variation (VCC)
High
Power
Mode
SEM-A @ 5.05 MHz
Max.
dB
dB
Over any 10 MHz
1
dB
3 V to 5 V
-34
-30
dB
Vcc = 3.3 V
-36
-32
-20
-13
dBm/100 kHz
IBW = 100 kHz
dBm/MHz
IBW = 1 MHz
dBm
802.16e
mA
Pout = 25 dBm
-20
-13
SEM-C @ 10.5 MHz
-26
-19
SEM-D @11.5 MHz
-27
-25
SEM-E @15.5 MHz
-37
-29.5
SEM-F @ 20.5 MHz
-40
-37
Gain
+25
437
31
EVM
Gain Step
34
37
-36
18
Total DC Current
Comments
1
SEM-B @ 6.5 MHz
Total DC Current
Unit
-10
-1
EVM
Pout (SEM Compliant)
Low
Power
Mode
Typical
23
Vcc = 3.6 V
dB
dB
24
Pout = 0 dBm
dB
85
mA
Pout = 0 dBm
P1dB
31
dBm
CW Single Tone
Psat
32
dBm
CW Single Tone
2fo
Settling Time
Icc leakage current
0.2
-36
dBm/MHz
0.5
S
10
40
A
Noise Power in Cell Band
-146
dBm/Hz
Noise Power in GPS Band
-149
dBm/Hz
Noise Power in PCS
-144
dBm/Hz
3
Max current specified at 85° C
Selected performance plots
EVM Frequency Sweep (Vcc = 3.0 to 5.0 V)
Tambient = 25° C and Pout = 25 dBm
-20.00
-20.00
3V0
3V3
3V6
4V2
5V0
-25.00
3V3
3V6
4V2
5V0
-22.00
-24.00
-30.00
EVM [dB]
EVM [dB]
EVM Frequency Sweep (Vcc = 3.0 to 5.0 V)
Tambient = 25° C and Pout = 26 dBm
-35.00
-26.00
-28.00
-30.00
-40.00
-32.00
-45.00
2500
2600
Frequency [MHz]
-34.00
2500
2700
Figure 1. EVM Frequency Sweep at 25° C and Pout = 25 dBm over Vcc
EVM [dB]
EVM [dB]
EVM Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = 25° C and Vcc = 3.3V
-30° C
25° C
+85° C
2600
Frequency [MHz]
2700
Figure 3. EVM Frequency Sweep at Vcc = 3.3 V and Pout = 25 dBm over
Tambient
-20
-22
-24
-26
-28
-30
-32
-34
-36
-38
-40
-42
-44
-46
-48
2.5 GHz
2.6 GHz
2.7 GHz
20
EVM [dB]
EVM [dB]
21
22
23
Pout [dBm]
24
25
Figure 5. EVM Power Sweep at Vcc = 3.3 V and -30° C over Frequency
4
22
23
Pout [dBm]
24
25
26
EVM Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = +85° C and Vcc = 3.3 V
2.5 GHz
2.6 GHz
2.7 GHz
20
21
Figure 4. EVM Power Sweep at Vcc = 3.3 V and 25° C over Frequency
EVM Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = -30° C and Vcc = 3.3 V
-20
-22
-24
-26
-28
-30
-32
-34
-36
-38
-40
-42
-44
2700
Figure 2. EVM Frequency Sweep at 25° C and Pout = 26 dBm over Vcc
EVM Frequency Sweep (Tambient = -30° C to +85° C)
Vcc = 3.3 V and Pout = 25 dBm
-20.00
-22.00
-24.00
-26.00
-28.00
-30.00
-32.00
-34.00
-36.00
-38.00
-40.00
2500
2600
Frequency [MHz]
26
-20
-22
-24
-26
-28
-30
-32
-34
-36
-38
-40
-42
-44
2.5 GHz
2.6 GHz
2.7 GHz
20
21
22
23
Pout [dBm]
24
25
Figure 6. EVM Power Sweep at Vcc = 3.3 V and +85° C over Frequency
26
Gain Frequency Sweep (Vcc = 3.0 to 5.0 V)
Tambient = 25° C and Pout = 25 dBm
Gain Frequency Sweep (Tambient = -30° C to +85° C)
Vcc = 3.3 V and Pout = 25 dBm
39
40.00
3V0
3V3
3V6
4V2
5V0
39.00
37
37.00
Gain [dB]
Gain [dB]
38.00
-30° C
25° C
+85° C
36.00
35.00
34.00
35
33
31
33.00
32.00
2500
2600
Frequency [MHz]
29
2500
2700
Figure 7. Gain Frequency Sweep at 25° C and Pout = 25 dBm over Vcc
Gain Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = -30° C and Vcc = 3.3 V
40
40
2.5 GHz
2.6 GHz
2.7 GHz
39
38
37
36
35
36
35
34
33
33
20
21
22
23
24
Pout [dBm]
25
26
2.5 GHz
2.6 GHz
2.7 GHz
20
21
22
23
Pout [dBm]
24
32
20
21
22
23
Pout [dBm]
24
25
Figure 10. Gain Power Sweep at Vcc = 3.3 V and -30° C over Pout
Gain Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = +85° C and Vcc = 3.3 V
Gain [dB]
37
34
Figure 9. Gain Power Sweep at Vcc = 3.3 V and 25° C over Pout
25
Figure 11. Gain Power Sweep at Vcc = 3.3 V and +85° C over Pout
5
2.5 GHz
2.6 GHz
2.7 GHz
39
Gain [dB]
Gain [dB]
38
38
37
36
35
34
33
32
31
30
29
28
2700
Figure 8. Gain Frequency Sweep at Vcc = 3.3 V and Pout = 25 dBm over
Tambient
Gain Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = 25° C and Vcc = 3.3V
32
2600
Frequency [MHz]
26
26
0.600
0.580
0.560
0.540
0.520
0.500
0.480
0.460
0.440
0.420
0.400
2500
Total Current Frequency Sweep (Tambient = -30° C to +85° C)
Vcc = 3.3 V and Pout = 25 dBm
3V0
3V3
3V6
4V2
5V0
Itotal [A]
Itotal [A]
Total Current Frequency Sweep (Vcc = 3.0 to 5.0 V)
Tambient = 25° C and Pout = 25 dBm
2600
Frequency [MHz]
2700
Figure 12. Total Current Frequency Sweep at 25° C and Pout = 25 dBm over Vcc
0.62
0.62
2.5 GHz
2.6 GHz
2.7 GHz
0.46
0.42
0.34
23
Pout [dBm]
24
25
26
Figure 14. Total Current Power Sweep at 3.3 V and 25° C over Frequency
0.62
2.5 GHz
2.6 GHz
2.7 GHz
0.58
Itotal [A]
0.54
0.5
0.46
0.42
0.38
0.34
0.3
20
21
22
23
Pout [dBm]
24
25
0.30
20
21
22
23
Pout [dBm]
24
25
Figure 15. Total Current Power Sweep at 3.3 V and -30° C over Frequency
Total Current Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = +85° C and Vcc = 3.3 V
26
Figure 16. Total Current Power Sweep at 3.3 V and +85° C over Frequency
6
0.42
0.34
22
2.5 GHz
2.6 GHz
2.7 GHz
0.46
0.38
21
Total Current Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = -30° C and Vcc = 3.3 V
0.50
0.38
20
2700
0.54
0.50
0.30
2600
Frequency [MHz]
0.58
Itotal [A]
Itotal [A]
0.54
-30° C
25° C
+85° C
Figure 13. Total Current Frequency Sweep at 3.3 V and Pout = 25 dBm over
Tambient
Total Current Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = 25° C and Vcc = 3.3 V
0.58
0.60
0.58
0.56
0.54
0.52
0.50
0.48
0.46
0.44
0.42
0.40
2500
26
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Vcc = 3.3 V and Tambient = 25° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Vcc = 3.6 V and Tambient = 25° C
30
30
Spec
2.5 GHz
2.6 GHz
2.7 GHz
20
10
Pout [dBm/MHz]
Pout [dBm/MHz]
10
0
-10
-20
-30
0
-10
-20
-30
-40
-40
-50
-50
-60
-25.00
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
-60
-25.00
25.00
Figure 17. SEM Frequency Sweep at Vcc = 3.3 V and 25° C (2 dB Post-PA loss
assumed)
25.00
0
-10
-20
-30
10
0
-10
-20
-30
-40
-40
-50
-50
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
-60
-25.00
25.00
Figure 19. SEM Frequency Sweep at Vcc = 4.2 V and 25° C (2 dB Post-PA loss
assumed)
Spec
3V0
3V3
3V6
4V2
5V0
20
Pout [dBm/MHz]
Pout [dBm/MHz]
10
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
25.00
Figure 20. SEM at Vcc = 3.3 V, 25° C and 2.5 GHz over Vcc (2dB Post-PA loss
assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Freq = 2.6 GHz and Tambient = 25° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Freq = 2.7 GHz and Tambient = 25° C
30
30
10
0
-10
-20
-30
10
0
-10
-20
-30
-40
-40
-50
-50
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
25.00
Figure 21. SEM at Vcc = 3.3 V, 25° C and 2.6 GHz over Vcc (2 dB Post-PA loss
assumed)
Spec
3V0
3V3
3V6
4V2
5V0
20
Pout [dBm/MHz]
Spec
3V0
3V3
3V6
4V2
5V0
20
Pout [dBm/MHz]
15.00
30
Spec
2.5 GHz
2.6 GHz
2.7 GHz
20
7
-5.00
5.00
freq_offset [MHz]
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Freq = 2.5 GHz and Tambient = 25° C
30
-60
-25.00
-15.00
Figure 18. SEM Frequency Sweep at Vcc = 3.6 V and 25° C (2dB Post-PA loss
assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Vcc = 4.2 V and Tambient = 25° C
-60
-25.00
Spec
2.5 GHz
2.6 GHz
2.7 GHz
20
-60
-25.00
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
25.00
Figure 22. SEM at Vcc = 3.3 V, 25° C and 2.7 GHz over Vcc (2dB Post-PA loss
assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.5 GHz and Tambient = -30° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.6 GHz and Tambient = -30° C
30
30
20
Pout [dBm/MHz]
10
0
-10
-20
-30
10
0
-10
-20
-30
-40
-40
-50
-50
-60
-25.00
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
-60
-25.00
25.00
Figure 23. SEM at Vcc = 3.3 V, -30° C and 2.5 GHz over Vcc (2 dB Post-PA loss
assumed)
-20
-30
10
Pout [dBm/MHz]
0
-10
0
-10
-20
-30
-40
-40
-50
-50
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
-60
-25.00
25.00
Figure 25. SEM at Vcc = 3.3 V, -30° C and 2.7 GHz over Vcc (2 dB Post-PA loss
assumed)
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
25.00
Figure 26. SEM at Vcc = 3.3 V, 25° C and 2.5 GHz over Vcc (2 dB Post-PA loss
assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.7 GHz and Tambient = 25° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.6 GHz and Tambient = 25° C
30
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
20
10
Pout [dBm/MHz]
25.00
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
20
0
-10
-20
-30
10
0
-10
-20
-30
-40
-40
-50
-50
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
25.00
Figure 27. SEM at Vcc = 3.3 V, 25° C and 2.6 GHz over Vcc (2 dB Post-PA loss
assumed)
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
20
Pout [dBm/MHz]
Pout [dBm/MHz]
10
8
15.00
30
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
20
-60
-25.00
-5.00
5.00
freq_offset [MHz]
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.5 GHz and Tambient = 25° C
30
30
-15.00
Figure 24. SEM at Vcc = 3.3 V, -30° C and 2.6 GHz over Vcc (2 dB Post-PA loss
assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.7 GHz and Tambient = -30° C
-60
-25.00
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
20
Pout [dBm/MHz]
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
-60
-25.00
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
25.00
Figure 28. SEM at Vcc = 3.3 V, 25° C and 2.7 GHz over Vcc (2 dB Post-PA loss
assumed)
30
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
20
10
Pout [dBm/MHz]
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.6 GHz and Tambient = 85° C
0
-10
-20
-30
-20
-30
-50
-50
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
25.00
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.7 GHz and Tambient = 85° C
30
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
20
10
Pout [dBm/MHz]
0
-10
-40
Figure 29. SEM at Vcc = 3.3 V, +85° C and 2.5 GHz over Vcc (2 dB Post-PA loss
assumed)
0
-10
-20
-30
-40
-50
-60
-25.00
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
25.00
Figure 31. SEM at Vcc = 3.3 V, +85° C and 2.7 GHz over Vcc (2 dB Post-PA loss
assumed)
9
10
-40
-60
-25.00
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
20
Pout [dBm/MHz]
30
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.5 GHz and Tambient = 85° C
-60
-25.00
-15.00
-5.00
5.00
freq_offset [MHz]
15.00
25.00
Figure 30. SEM at Vcc = 3.3 V, +85° C and 2.6 GHz over Vcc (2 dB Post-PA loss
assumed)
Evaluation Board Description
Table 4. Pin Description:
Recommended turn on sequence
Top Pin No.
Function
Bottom Pin No.
Function
1
VCC2
2
VCC2
 Apply VCC1 and VCC2
3
B_SPLY
4
GND
 Apply BSPLY
5
VCC1
6
GND
 Apply BCTRL
7
NC
8
GND
 Apply BSW
9
PAMOD
10
GND
 For HPM Apply PAMOD HI
11
NC
12
GND
 For LPM Apply PAMOD LO
13
NC
14
B_SW
 Apply RF Input not to exceed 15 dBm
15
B_CTRL
16
GND
17
NC
18
GND
19
NC
20
GND
Turn off in reverse order
Table 5. Typical Test Conditions:
Pin
HPM
LPM
VCC1, 2
3.3 V
3.3 V
Supply Voltage
PAMOD
1.8 V
0V
Low Power Mode
B_SPLY
3.3 V
3.3 V
Bias Voltage
B_CTRL
2.8 V
2.8 V
Bias Control
B_SW
1.8 V
1.8 V
PA Enable
Notes: VCC1, VCC2 and B_SPLY can be tied together to reduce supply voltages, but B_CTRL
needs to be a regulated voltage which is optimized for 2.8 V at Vcc of 3.3 V. Other bias points
are described under flexible BCTRL optimization section.
Demoboard Top Pins
19 17 15 13 11 9 7 5 3 1
10
Demoboard Bottom Pins
2 4
6 8 10 12 14 16 18 20
Application Circuit MGA-22103
Vdd1
Vdd2
47 MF
10 MF
0.1 MF
10 MF
100 pF
VCC2 13
GND 14
VCC1 15
GND 16
100 pF
RF In
1 RF In
GND 12
2 GND
RF Out 11
3 GND
GND 10
RF Out
BCTRL
4 BCTRL
100 pF
8 NC
7 PAMOD
100 pF
6 BSW
100 pF
5 BSPLY
0.1 MF
NC 9
100 pF
BSPLY
BSW
PAMOD
Using 3.3 V or 5 V Supply and connecting Vcc1, Vcc2, BSLPY and BCTRL
Vbat
R1
R2
Vcc1
Vcc2
BSPLY
3.3 V Example:
VBCTRL =
R2
*VBATT
R1 + R2
10 M
2.85 V =
*3.3 V
R1 + 10 M
R1 = 1. 58 M
R2 = 10 M
11
BCTRL
Notes:
BCTRL regulates the device current, thus R1 and R2 should have good
tolerance rating. If available, a voltage regulator is the preferred method
of bias.
In this example we set R2 at 10 MOhm and solve for R1 with simple
voltage divider equation. Use high resistance values to limit leakage
current.
Given:
5.0 V Example:
VBCTRL = 2.85 V
VBCTRL =
VBAT = 3.3 V
R2 = 10 M
R1 = ?
R2
*VBATT
R1 + R2
10 M
2.85 V =
*5.0 V
R1 + 10 M
R1 = 7.54 M
R2 = 10 M
Given:
VBCTRL = 2.85 V
VBAT = 5.0 V
R2 = 10 M
R1 = ?
Land Pattern
2
11
RFOUT
4
5
6
7
8
NC
BCTRL
PAMOD
3
BSW
GND
17
GND
10
GND
9
NC
0.30±0.10
0.10±0.10
Top view through package
RFIN
1
GND
2
GND
3
BCTRL
4
5
6
7
8
Figure 33. Recommended soldermask opening
0.20±0.10
VCC2
1.50±0.10
2
GND
3
BCTRL
4
17
GND
BSPLY
5
0.15±0.10
13
6
7
12
GND
11
RFOUT
10
GND
9
NC
Top view through package
Figure 34. Package dimensions
12
Notes:
1. All units are in millimeters
2. Package is symmetrical
8
NC
GND
PAMOD
1
BSW
3.00±0.10
1.50±0.10
RFIN
14
0.30±0.10
0.30±0.10
GND
VCC1
GND
3.00±0.10
15
0.55±0.10
GND
11
RFOUT
10
GND
9
NC
Top view through package
Figure 32. Recommended footprint
16
VCC2
17
GND
12
0.40±0.10
0.10±0.10
GND
0.65±0.10
GND
13
NC
12
14
PAMOD
1
15
BSW
RFIN
16
BSPLY
13
1.60±0.10
3.00±0.10
14
GND
GND
0.20±0.10
15
BSPLY
3.00±0.10
1.50±0.10
16
0.55±0.10
1.50±0.10
VCC1
3.00±0.10
VCC2
GND
VCC1
GND
3.00±0.10
Handling and Storage
Typical SMT Reflow Profile for Maximum Temperature = 260+0/-5° C
tp
TP
CRITICAL ZONE
TL TO TP
RAMP UP
TEMPERATURE
TL
tL
Tsmax
Tsmin
ts
PREHEAT
RAMP DOWN
25
t 25° C TO PEAK
TIME
Profile Feature
Sn-Pb Solder
Pb-Free Solder
Average ramp-up rate (TL to TP)
3°C/sec max
3°C/sec max
Preheat
– Temperature Min (Tsmin)
– Temperature Max (Tsmax)
– Time (mon to max) (ts)
100° C
150° C
60-120 sec
100° C
150° C
60-180 sec
Tsmax to TL
– Ramp-up Rate
3°C/sec max
Time maintained above:
– Temperature (TL)
– Time (TL)
183° C
60-150 sec
217° C
60-150 sec
Peak temperature (Tp)
240 +0/-5° C
260 +0/-5° C
Time within 5° C of actual Peak Temperature (tp)
10-30 sec
10-30 sec
Ramp-down Rate
6°C/sec max
6°C/sec max
Time 25° C to Peak Temperature
6 min max
8 min max
MGA-22103 Part Number Ordering Information
Part Number
Devices Per
Container
Container
MGA-22103-BLKG
100
7” Reel
MGA-22103-TR1G
3000
13” Reel
13
Tape and Reel Information
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved.
AV02-2812EN - June 28, 2011