PD - 96141B IRFR540ZPbF IRFU540ZPbF Features l l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free Halogen-Free HEXFET® Power MOSFET D VDSS = 100V RDS(on) = 28.5mΩ G Description This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. ID = 35A S D-Pak IRFR540ZPbF Absolute Maximum Ratings Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 35 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) Pulsed Drain Current 140 P D @T C = 25°C Power Dissipation V GS Linear Derating Factor Gate-to-Source Voltage d E AS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value E AS (Tested ) c IAR Avalanche Current E AR TJ Repetitive Avalanche Energy T STG Storage Temperature Range h Parameter RθJA Junction-to-Ambient j mJ A °C Mounting Torque, 6-32 or M3 screw Junction-to-Ambient (PCB mount) 39 -55 to + 175 y ij 300 y 10 lbf in (1.1N m) Thermal Resistance RθJA W W/°C V mJ Reflow Soldering Temperature, for 10 seconds j 91 0.61 ± 20 75 Operating Junction and Junction-to-Case A See Fig.12a, 12b, 15, 16 g RθJC Units 25 c IDM I-Pak IRFU540ZPbF Typ. Max. ––– 1.64 ––– 40 ––– 110 Units °C/W HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 09/30/10 IRFR/U540ZPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Drain-to-Source Breakdown Voltage 100 ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.092 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 22.5 28.5 mΩ VGS = 10V, ID = 21A VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 50µA gfs Forward Transconductance 28 ––– ––– S VDS = 25V, ID = 21A IDSS Drain-to-Source Leakage Current ––– ––– 20 µA ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 39 59 Qgs Gate-to-Source Charge ––– 11 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 12 ––– VGS = 10V td(on) Turn-On Delay Time ––– 14 ––– VDD = 50V tr Rise Time ––– 42 ––– ID = 21A td(off) Turn-Off Delay Time ––– 43 ––– tf Fall Time ––– 34 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, IGSS ––– V Conditions V(BR)DSS Internal Source Inductance ––– 7.5 e VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V ID = 21A nC ns nH LS VGS = 0V, ID = 250µA VDS = 50V RG = 13 Ω e e D ––– 6mm (0.25in.) from package and center of die contact VGS = 0V G S Ciss Input Capacitance ––– 1690 ––– Coss Output Capacitance ––– 180 ––– Crss Reverse Transfer Capacitance ––– 100 ––– Coss Output Capacitance ––– 720 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 110 ––– VGS = 0V, VDS = 80V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 190 ––– VGS = 0V, VDS = 0V to 80V VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 35 ISM (Body Diode) Pulsed Source Current ––– ––– 140 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 21A, VGS = 0V trr Reverse Recovery Time ––– 32 48 ns TJ = 25°C, IF = 21A, VDD = 50V Qrr Reverse Recovery Charge ––– 40 60 nC di/dt = 100A/µs ton Forward Turn-On Time 2 c MOSFET symbol A showing the integral reverse e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFR/U540ZPbF 1000 100 BOTTOM 1000 ≤60µs PULSE WIDTH TOP Tj = 25°C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 100 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 4.5V 10 ≤60µs PULSE WIDTH Tj = 175°C 4.5V 1 1 0.1 1 10 100 0.1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 70 Gfs , Forward Transconductance (S) ID, Drain-to-Source Current(Α) 1 100 TJ = 175°C 10 TJ = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 2 3 4 5 6 7 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com TJ = 25°C 60 50 40 TJ = 175°C 30 20 VDS = 10V 380µs PULSE WIDTH 10 0 8 0 10 20 30 40 50 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRFR/U540ZPbF 3000 20 2500 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance(pF) Coss = Cds + Cgd 2000 Ciss 1500 1000 500 Coss Crss 0 ID= 21A VDS = 80V VDS= 50V VDS= 20V 16 12 8 4 0 1 10 0 100 1000.0 ID, Drain-to-Source Current (A) 1000 100.0 TJ = 175°C 10.0 TJ = 25°C 1.0 VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 30 40 50 60 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage ISD, Reverse Drain Current (A) 20 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 1.2 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10 1.4 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100µsec 1msec 10 10msec 1 Tc = 25°C Tj = 175°C Single Pulse DC 0.1 0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFR/U540ZPbF 2.5 ID = 21A VGS = 10V RDS(on) , Drain-to-Source On Resistance (Normalized) ID , Drain Current (A) 40 30 20 10 2.0 1.5 1.0 0.5 0 25 50 75 100 125 150 -60 -40 -20 175 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) TC , CaseTemperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( ZthJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 2.626 0.000052 0.6611 0.001297 0.7154 0.01832 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 15V DRIVER L VDS D.U.T RG 20V VGS + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) IRFR/U540ZPbF 160 I D 6.5A 9.4A BOTTOM 21A TOP 120 80 40 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.5 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VGS(th) Gate threshold Voltage (V) 10 V ID = 1.0mA ID = 250µA ID = 50µA 4.0 3.5 3.0 2.5 2.0 1.5 VCC 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRFR/U540ZPbF 100 Avalanche Current (A) Duty Cycle = Single Pulse 10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses 0.01 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 40 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 21A 30 20 10 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U540ZPbF D.U.T Driver Gate Drive + • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFR/U540ZPbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRFR120 WITH AS SEMBLY LOT CODE 1234 AS SEMBLED ON WW 16, 2001 IN THE ASS EMBLY LINE "A" PART NUMBER INTERNATIONAL RECTIFIER LOGO Note: "P" in assembly line position indicates "Lead-Free" IRFR120 12 116A 34 AS SEMBLY LOT CODE DATE CODE YEAR 1 = 2001 WEEK 16 LINE A "P" in assembly line position indicates "Lead-Free" qualification to the consumer-level OR INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFR120 12 ASS EMBLY LOT CODE 34 DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) P = DESIGNATES LEAD-FREE PRODUCT QUALIFIED TO THE CONSUMER LEVEL (OPTIONAL) YEAR 1 = 2001 WEEK 16 A = AS SEMBLY S ITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRFR/U540ZPbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRF U120 WIT H AS SEMBLY LOT CODE 5678 AS SEMBLED ON WW 19, 2001 IN THE ASS EMB LY LINE "A" INT ERNATIONAL RECTIF IER LOGO PART NUMBER IRFU120 119A 56 78 ASS EMBLY LOT CODE Note: "P" in ass embly line pos ition indicates Lead-Free" DAT E CODE YEAR 1 = 2001 WEEK 19 LINE A OR INT ERNATIONAL RECTIFIER LOGO PART NUMB ER IRFU120 56 ASSEMBLY LOT CODE 78 DAT E CODE P = DESIGNAT ES LEAD-F REE PRODUCT (OPT IONAL) YEAR 1 = 2001 WEEK 19 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRFR/U540ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.17mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 21A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . Rθ is measured at TJ approximately 90°C Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/2010 www.irf.com 11