AMIS-30543 Micro-Stepping Motor Driver Introduction The AMIS−30543 is a micro−stepping stepper motor driver for bipolar stepper motors. The chip is connected through I/O pins and an SPI interface with an external microcontroller. It has an on−chip voltage regulator, reset−output and watchdog reset, able to supply peripheral devices. AMIS−30543 contains a current−translation table and takes the next micro−step depending on the clock signal on the “NXT” input pin and the status of the “DIR” (=direction) register or input pin. The chip provides a so−called “speed and load angle” output. This allows the creation of stall detection algorithms and control loops based on load−angle to adjust torque and speed. It is using a proprietary PWM algorithm for reliable current control. The AMIS−30543 is implemented in I2T100 technology, enabling both high−voltage analog circuitry and digital functionality on the same chip. The chip is fully compatible with the automotive voltage requirements. The AMIS−30543 is ideally suited for general−purpose stepper motor applications in the automotive, industrial, medical, and marine environment. With the on−chip voltage regulator it further reduces the BOM for mechatronic stepper applications. http://onsemi.com 1 32 QFN32 CASE 485J MARKING DIAGRAM 32 1 AMIS30543 0C543−001 AWLYYWWG Key Features • • • • • • • • • • • • • • • • • Dual H−Bridge for 2−Phase Stepper Motors Programmable Peak−Current Up to 3 A On−Chip Current Translator SPI Interface Speed and Load Angle Output Eleven Step Modes from Full Step Up to 128 Micro−Steps Fully Integrated Current−Sense PWM Current Control with Automatic Selection of Fast and Slow Decay Low EMC PWM with Selectable Voltage Slopes Active Fly−Back Diodes Full Output Protection and Diagnosis Thermal Warning and Shutdown Compatible with 5 V and 3.3 V Microcontrollers Integrated 5 V Regulator to Supply External Microcontroller Integrated Reset Function to Reset External Microcontroller Integrated Watchdog Function These Devices are Pb−Free and are RoHS Compliant © Semiconductor Components Industries, LLC, 2012 November, 2012 − Rev. 1 1 A WL YY WW G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 37 of this data sheet. Publication Order Number: AMIS−30543/D AMIS−30543 BLOCK DIAGRAM CLK Timebase VDD CPN CPP VCP Vreg Chargepump POR EMC CS DI DO NXT Logic & Registers DIR P W M T R A N S L A T O R OTP SPI Load Angle SLA I−sense EMC P W M Temp . Sense POR/WD AMIS−30543 Band− gap TST0 GND Figure 1. Block Diagram AMIS−30543 28 MOTXP 29 VBB 30 MOTXP 31 POR/WD TSTO DO DI CLK NXT VDD GND 32 27 26 25 1 24 GND 2 23 GND 3 22 4 21 AMIS−30543 MOTXN MOTXN 20 MOTYN 6 19 7 18 8 17 MOTYN GND GND DIR 5 ERR SLA 14 15 16 MOTYP 13 MOTYP VBB 12 CS CPP CPN 11 VCP 10 CLR 9 Figure 2. Pin Out AMIS−30543 http://onsemi.com 2 MOTXP MOTXN MOTYP MOTYN I−sense CLR ERR VBB AMIS−30543 Table 1. PIN LIST AND DESCRIPTION Description Equivalent Schematic Name Pin Type GND 1 Ground Supply DI 2 SPI Data In Digital Input Type 2 CLK 3 SPI Clock Input Digital Input Type 2 NXT 4 Next micro−step input Digital Input Type 2 DIR 5 Direction input Digital Input Type 2 ERR 6 Error output (open drain) Digital Output Type 4 SLA 7 Speed load angle output Analog Output Type 5 / 8 No function (to be left open in normal operation) CPN 9 Negative connection of charge pump capacitor High Voltage CPP 10 Positive connection of charge pump capacitor High Voltage VCP 11 Charge pump filter−capacitor High Voltage CLR 12 “Clear” = chip reset input Digital Input Type 1 CS 13 SPI chip select input Digital Input Type 2 Type 3 VBB 14 High voltage supply Input Supply MOTYP 15, 16 Negative end of phase Y coil output Driver Output GND 17, 18 Ground, heat sink Supply MOTYN 19, 20 Positive end of phase Y coil output Driver Output MOTXN 21, 22 Positive end of phase X coil output Driver Output GND 23, 24 Ground, heat sink Supply MOTXP 25, 26 Negative end of phase X coil output Driver Output VBB 27 High voltage supply input Supply Type 3 POR/WD 28 Power−on−reset and watchdog reset output (open drain) Digital Output Type 4 TST0 29 Test pin input (to be tied to ground in normal operation) Digital Input / 30 No function (to be left open in normal operation) DO 31 SPI data output (open drain) Digital Output Type 4 VDD 32 Logic supply output (needs external decoupling capacitor) Supply Type 3 Table 2. ABSOLUTE MAXIMUM RATINGS Symbol Parameter Min Max Unit VBB Analog DC supply voltage (Note 1) −0.3 +40 V TST Storage temperature −55 +160 °C Junction Temperature under bias (Note 2) −50 +175 °C VESD Electrostatic discharges on component level, All pins (Note 3) −2 +2 kV VESD Electrostatic discharges on component level, HiV pins (Note 4) −8 +8 kV TJ Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. For limited time < 0.5 s. 2. Circuit functionality not guaranteed. 3. Human body model (100 pF via 1.5 kW, according to JEDEC EIA−JESD22−A114−B). 4. HiV = High Voltage Pins MOTxx, VBB, GND; (100 pF via 1.5 kW, according to JEDEC EIA−JESD22−A114−B). http://onsemi.com 3 AMIS−30543 EQUIVALENT SCHEMATICS Following figure gives the equivalent schematics of the user relevant inputs and outputs. The diagrams are simplified representations of the circuits used. 4K IN OUT Rin TYPE 1: CLR input IN TYPE 4: DO, ERRB and PORB/WD open drain outputs 4K Rout TYPE 2 : CLK , DI, CSB , NXT , DIR inputs TYPE 5: SLA analog output VDD VBB VDD VBB . TYPE 3: VDD and VBB power supply inputs Figure 3. In− and Output Equivalent Diagrams http://onsemi.com 4 SLA AMIS−30543 PACKAGE THERMAL CHARACTERISTICS The AMIS−30543 is available in a NQFP32 package. For cooling optimizations, the NQFP has an exposed thermal pad which has to be soldered to the PCB ground plane. The ground plane needs thermal vias to conduct the heat to the bottom layer. Figure 4 gives an example for good power distribution solutions. For precise thermal cooling calculations the major thermal resistances of the device are given in Table 5. The thermal media to which the power of the devices has to be given are: • Static environmental air (via the case) • PCB board copper area (via the exposed pad) The major thermal resistances of the device are the Rth from the junction to the ambient (Rthja) and the overall Rth from the junction to exposed pad (Rthjp). In Table 4 below one can find the values for the Rthja and Rthjp, simulated according to JESD−51. The Rthja for 2S2P is simulated conform JEDEC JESD−51 as follows: • A 4−layer printed circuit board with inner power planes and outer (top and bottom) signal layers is used • Board thickness is 1.46 mm (FR4 PCB material) • The 2 signal layers: 70 mm thick copper with an area of 5500 mm2 copper and 20% conductivity • The 2 power internal planes: 36 mm thick copper with an area of 5500 mm2 copper and 90% conductivity The Rthja for 1S0P is simulated conform to JEDEC JESD−51 as follows: • A 1−layer printed circuit board with only 1 layer • Board thickness is 1.46 mm (FR4 PCB material) • The layer has a thickness of 70 mm copper with an area of 5500 mm2 copper and 20% conductivity ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ NQFP−32 Figure 4. Example of NQFP−32 PCB Ground Plane Layout in Top View (Preferred Layout at Top and Bottom) ELECTRICAL SPECIFICATION Recommend Operation Conditions Operating ranges define the limits for functional operation and parametric characteristics of the device. Note that the functionality of the chip outside these operating ranges is not guaranteed. Operating outside the recommended operating ranges for extended periods of time may affect device reliability. Table 3. OPERATING RANGES Symbol VBB TJ Parameter Min Max Unit Analog DC Supply +6 +30 V Junction Temperature (Note 5) −40 +172 °C 5. No more than 100 cumulative hours in life time above Ttw. http://onsemi.com 5 AMIS−30543 Table 4. DC PARAMETERS (The DC parameters are given for VBB and temperature in their operating ranges unless otherwise specified) Convention: currents flowing in the circuit are defined as positive. Symbol Pin(s) Parameter Remark/Test Conditions Min Typ Max Unit 30 V 12 mA 5.5 V 5.5 V 8 mA 200 mA SUPPLY AND VOLTAGE REGULATORS VBB Nominal operating supply range VBB IBB VDD VDD_SLP IINT ILOAD VDD IDDLIM ILOAD_SLP 6 Total internal current consumption (Note 6) Unloaded outputs Regulated Output Voltage ILOAD within limits Regulated Output Voltage in Sleep Mode −1 mA ≤ ILOAD ≤ 0 mA VBB > 9 V Internal load current (Note 6) Unloaded outputs Max Output Current 6 V v VBB < 8 V 15 8 V v VBB v 30 V 40 Current limitation Pin shorted to ground Current Consumption when in Sleep Mode VBB > 9 V 4.5 5 4 230 mA POWER−ON−RESET (POR) VDDH Internal POR comparator threshold VDD rising VDDL VDD VDDHYS 3.9 4.2 4.4 V Internal POR comparator threshold VDD falling 3.86 V Internal POR comparator hysteresis 0.35 V 3000 mA MOTORDRIVER IMDmax,Peak MOTXP MOTXN MOTYP MOTYN RHS Max current through motor coil in normal operation On−resistance high−side driver, CUR[4:0] = 0...31 (Note 7) RLS3 On−resistance low−side driver, CUR[4:0] = 16...25 (Note 7) RLS2 On−resistance low−side driver, CUR[4:0] = 10...15 (Note 7) RLS1 On−resistance low−side driver, CUR[4:0] = 3...9 (Note 7) RLS0 On−resistance low−side driver, CUR[4:0] = 0...2 (Note 7) TJ = 130°C 0.15 TJ = 160°C 0.1 TJ = 160°C 0.2 TJ = 160°C 0.4 TJ = 160°C 0.8 TJ = 160°C 0.4 W 0.45 W 0.4 W 0.45 W 0.7 W 0.8 W 1.1 W 1.25 W 2.2 W 2.50 W 1 mA 0.65 V DIGITAL INPUTS Ileak VIL VIH DI, CLK NXT, DIR CLR, CS Input Leakage (Note 8) TJ = 160°C Logic Low Threshold 0 Logic High Threshold 2.35 Rpd_CLR CLR Internal Pulldown Resistor 120 Rpd_TST TST0 Internal Pulldown Resistor 3 200 VDD V 300 kW 9 kW 6. Current with oscillator running, all analogue cells active, SPI communication and NXT pulses applied. No floating inputs. Parameter guaranteed by design. 7. Characterization Data Only 8. Not valid for pins with internal Pulldown resistor http://onsemi.com 6 AMIS−30543 Table 4. DC PARAMETERS (The DC parameters are given for VBB and temperature in their operating ranges unless otherwise specified) Convention: currents flowing in the circuit are defined as positive. Symbol Pin(s) Parameter Remark/Test Conditions Min Typ Max Unit 0.5 V 170 °C DIGITAL OUTPUTS VOL DO, ERR, POR/WD Logic Low level open drain IOL = 5 mA THERMAL WARNING AND SHUTDOWN Ttw Thermal Warning Ttsd Thermal shutdown (Notes 9 and 10) 150 160 Ttw + 20 °C 2 * VBB – 2 V CHARGE PUMP Vcp Output voltage 6 V< VBB < 15 V VBB + 9 VBB + 12.5 VBB+16 V External buffer capacitor 15 V < VBB < 30 V 180 220 470 nF External pump capacitor 180 220 470 nF VCP Cbuffer Cpump CPP CPN PACKAGE THERMAL RESISTANCE VALUE Rthja NQFP Rthjp NQFP Thermal Resistance Junction−to−Ambient Simulated Conform JEDEC JESD−51, 2S2P 30 K/W Simulated Conform JEDEC JESD−51, 1S0P 60 K/W 0.95 K/W Thermal Resistance Junction−to−Exposed Pad SPEED AND LOAD ANGLE OUTPUT Vout Voff Gsla Rout SLA Output Voltage Range 0.2 VDD − 0.2 V Output Offset SLA pin −50 50 mV 1 kW Gain of SLA Pin = VBEMF / VCOIL SLAG = 0 0.5 SLAG = 1 0.25 Output Resistance SLA pin 9. No more than 100 cumulated hours in life time above Ttw. 10. Thermal shutdown is derived from thermal warning. Characterization Data Only. http://onsemi.com 7 AMIS−30543 Table 5. AC PARAMETERS (The AC parameters are given for VBB and temperature in their operating ranges) Symbol Pin(s) Parameter Remark/Test Conditions Min Typ Max Unit 3.6 4 4.4 MHz 20.5 22.8 25.1 kHz 41.0 45.6 50.2 kHz INTERNAL OSCILLATOR Frequency of internal oscillator fosc MOTOR DRIVER fPWM MOTxx PWM frequency Frequency depends only on internal oscillator Double PWM frequency tbrise MOTxx Turn−on voltage slope, 10% to 90% tbfall MOTxx Turn−off voltage slope, 90% to 10% EMC[1:0] = 00 200 V/ms EMC[1:0] = 01 140 V/ms EMC[1:0] = 10 70 V/ms EMC[1:0] = 11 35 V/ms EMC[1:0] = 00 200 V/ms EMC[1:0] = 01 140 V/ms EMC[1:0] = 10 70 V/ms EMC[1:0] = 11 35 V/ms DIGITAL OUTPUTS tH2L DO ERR Output fall−time from VinH to VinL Capacitive load 400 pF and pullup resistor of 1.5 kW 50 ns CHARGE PUMP fCP CPN CPP tCPU MOTxx Charge pump frequency 250 Startup time of charge pump (Note 11) Spec external components kHz 5 ms CLR FUNCTION CLR tCLR Hard reset duration time 100 ms POWER−UP tPU tPOR POR/WD tRF Powerup time VBB = 12 V, ILOAD = 50 mA, CLOAD = 220 nF 100 ms Reset duration See Figure 16 100 ms Reset filter time See Figure 16 0.5 ms WATCHDOG Watchdog time out interval tWDTO tWDPR POR/WD 32 Prohibited watchdog acknowledge delay 512 2 ms ms NXT FUNCTION tNXT_HI NXT Minimum, High Pulse Width See Figure 5 2 ms tNXT_HI NXT Minimum, Low Pulse Width See Figure 5 2 ms NXT Hold Time, Following Change of DIR See Figure 5 0.5 ms NXT Hold Time, Before Change of DIR See Figure 5 0.5 ms tDIR_SET NXT tDIR_HOLD 11. Guaranteed by design http://onsemi.com 8 AMIS−30543 tNXT_LO tNXT_HI 0.5 VCC NXT tDIR_SET ÌÌÌ ÌÌÌ ÌÌÌ DIR tDIR_HOLD ÌÌÌÌÌÌÌÌÌ ÌÌÌÌÌÌÌÌÌ ÌÌÌÌÌÌÌÌÌ VALID Figure 5. NXT−Input Timing Diagram Table 6. SPI TIMING PARAMETERS Symbol tCLK Parameter Min Max Unit 1 ms tCLK_HIGH SPI Clock High Time 100 ns tCLK_LOW SPI Clock Low Time 100 ns DI Set Up Time, Valid Data Before Rising Edge of CLK 50 ns DI Hold Time, Hold Data After Rising Edge of CLK 50 ns tCSB_HIGH CS High Time 2.5 ms tSET_CSB CS Set Up Time, CS Low Before Rising Edge of CLK 100 ns tSET_CLK CLK Set Up Time, CLK Low Before Rising Edge of CS 100 ns tSET_DI tHOLD_DI SPI Clock Period Typ 0. 2 VCC CS 0 .2 VCC tSET _CSB tCLK tSET_CLK 0 .8 VCC CLK 0 ,2 VCC 0.2 VCC tCLK_HI ÌÌÌ ÌÌÌ ÌÌÌ DI tSET_DI tCLK _LO tHOLD_DI 0.8 VCC VALID ÌÌÌÌÌÌÌÌÌÌÌ ÌÌÌÌÌÌÌÌÌÌÌ ÌÌÌÌÌÌÌÌÌÌÌ Figure 6. SPI Timing http://onsemi.com 9 AMIS−30543 TYPICAL APPLICATION SCHEMATIC 100 nF 100 nF C2 C4 C5 R2 100 nF R3 D1 100 nF C6 R4 VDD VBB 32 14 DIR VBB 4 DO 31 3 CS 10 25, 26 2 CLK 21, 22 13 CLR 15, 16 12 ERR 6 SLA C8 9 AMIS−30543 NXT DI mC 28 5 100mF 220 nF 27 11 POR/WD V BAT C1 C3 19, 20 VCP CPN C7 220 nF CPP MOTXP MOTXN MOTYP M MOTYN 7 R1 1 17 18 23 24 29 TSTO GND Figure 7. Typical Application Schematic AMIS−30543 Table 7. EXTERNAL COMPONENTS LIST AND DESCRIPTION Component Typ Value Tolerance Unit VBB Buffer Capacitor (Note 12) 100 −20 +80% mF VBB Decoupling Block Capacitor (Note 13) 100 −20 +80% nF C4 VDD Buffer Capacitor 100 $20% nF C5 VDD Buffer Capacitor 100 $20% nF C6 Charge Pump Buffer Capacitor 220 $20% nF C7 Charge Pump Pumping Capacitor 220 $20% nF C8 Low Pass Filter SLA 1 $20% nF R1 Low Pass Filter SLA 5.6 $1% kW R2, R3, R4 Pullup Resistor Open Drain Output 4.7 $1% kW D1 Optional Reverse Protection Diode MURD530 C1 C2, C3 Function 12. ESR < 1 W. 13. ESR < 50 mW. http://onsemi.com 10 AMIS−30543 FUNCTIONAL DESCRIPTION H−Bridge Drivers A full H−bridge is integrated for each of the two stator windings. Each H−bridge consists of two low−side and two high−side N−type MOSFET switches. Writing logic ‘0’ in bit <MOTEN> disables all drivers (high−impedance). Writing logic ‘1’ in this bit enables both bridges and current can flow in the motor stator windings. In order to avoid large currents through the H−bridge switches, it is guaranteed that the top− and bottom−switches of the same half−bridge are never conductive simultaneously (interlock delay). A two−stage protection against shorts on motor lines is implemented. In a first stage, the current in the driver is limited. Secondly, when excessive voltage is sensed across the transistor, the transistor is switched off. In order to reduce the radiated/conducted emission, voltage slope control is implemented in the output switches. The output slope is defined by the gate−drain capacitance of output transistor and the (limited) current that drives the gate. There are two trimming bits for slope control (see Table 12 SPI Control Parameter Overview EMC[1:0]). The power transistors are equipped with so−called “active diodes”: when a current is forced trough the transistor switch in the reverse direction, i.e. from source to drain, then the transistor is switched on. This ensures that most of the current flows through the channel of the transistor instead of through the inherent parasitic drain−bulk diode of the transistor. Depending on the desired current range and the micro−step position at hand, the RDS(on) of the low−side transistors will be adapted such that excellent current−sense accuracy is maintained. The RDS(on) of the high−side transistors remain unchanged; see Table 4 DC Parameters for more details. PWM Current Control A PWM comparator compares continuously the actual winding current with the requested current and feeds back the information to a digital regulation loop. This loop then generates a PWM signal, which turns on/off the H−bridge switches. The switching points of the PWM duty−cycle are synchronized to the on−chip PWM clock. The frequency of the PWM controller can be doubled and an artificial jitter can be added (see Table 12 SPI Control Parameter Overview PWMJ). The PWM frequency will not vary with changes in the supply voltage. Also variations in motor−speed or load−conditions of the motor have no effect. There are no external components required to adjust the PWM frequency. Automatic Forward and Slow−Fast Decay The PWM generation is in steady−state using a combination of forward and slow−decay. The absence of fast−decay in this mode, guarantees the lowest possible current−ripple “by design”. For transients to lower current levels, fast−decay is automatically activated to allow high−speed response. The selection of fast or slow decay is completely transparent for the user and no additional parameters are required for operation. Icoil Set value Actual value t 0 TPWM Forward & Slow Decay Forward & Slow Decay Fast Decay & Forward Figure 8. Forward and Slow/Fast Decay PWM http://onsemi.com 11 AMIS−30543 Automatic Duty Cycle Adaptation In case the supply voltage is lower than 2*Bemf, then the duty cycle of the PWM is adapted automatically to > 50% to maintain the requested average current in the coils. This process is completely automatic and requires no additional parameters for operation. The over−all current−ripple is divided by two if PWM frequency is doubled (see Table 12 SPI Control Parameter Overview PWMF) Icoil Duty Cycle < 50% Duty Cycle < 50% Duty Cycle > 50% Actual value Set value t Figure 9. Automatic Duty Cycle Adaption TPWM Step Translator and Step Mode The step translator provides the control of the motor by means of SM[2:0], ESM[2:0], SPI register DIRCTRL and input pins DIR and NXT. It is translating consecutive steps in corresponding currents in both motor coils for a given step mode. One out of eleven possible stepping modes can be selected through SPI−bits SM[2:0] and ESM[2:0] (see Table 12 SPI Control Parameter Overview). After power−on or hard reset, the coil−current translator is set to the default 1/32 micro−stepping at position ‘0’. When remaining in the same step mode, subsequent translator positions are all in the same column and increased or decreased with 1. Table 9 lists the output current vs. the translator position. As shown in Figure 10 the output current−pairs can be projected approximately on a circle in the (Ix, Iy) plane. There are, however, two exceptions: uncompensated half step and uncompensated full step. In these step modes the currents are not regulated to a fraction of Imax but are in all intermediate steps regulated at 100%. In the (Ix, Iy) plane the current−pairs are projected on a square. Table 8 lists the output current vs. the translator position for these cases. Table 8. SQUARE TRANSLATOR TABLE FOR UNCOMPENSATED FULL STEP AND UNCOMPENSATED HALF STEP Stepmode ( SM[2:0] ) % of Imax 101 110 MSP[8:0] Uncompensated Half Step Uncompensated Full Step Coil x Coil y 0 0000 0000 0 − 0 100 0 0100 0000 1 1 100 100 0 1000 0000 2 − 100 0 0 1100 0000 3 2 100 −100 1 0000 0000 4 − 0 −100 1 0100 0000 5 3 −100 −100 1 1000 0000 6 − −100 0 1 1100 0000 7 0 −100 100 http://onsemi.com 12 AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 Comp full 2ph Comp full 1ph Coil X Coil Y 0 0 100 1 100 2 100 4 100 5 100 6 100 7 100 9 100 10 100 11 99 12 99 13 99 15 99 16 99 17 99 18 98 20 98 21 98 22 98 23 97 24 97 25 97 27 96 28 96 29 96 30 95 31 95 33 95 34 94 35 94 36 93 37 93 38 92 39 92 41 91 42 91 43 90 44 90 45 89 46 89 47 88 48 88 49 87 ESM[2:0] 001 010 000 000 000 MSP[8:0] 1/128 1/64 1/32 1/16 1/8 1/4 Comp 1/2 000000000 0 0 0 0 0 0 0 000000001 1 000000010 2 000000011 3 000000100 4 000000101 5 000000110 6 000000111 7 000001000 8 000001001 9 000001010 10 000001011 11 000001100 12 000001101 13 000001110 14 000001111 15 000010000 16 000010001 17 000010010 18 000010011 19 000010100 20 000010101 21 000010110 22 000010111 23 000011000 24 000011001 25 000011010 26 000011011 27 000011100 28 000011101 29 000011110 30 000011111 31 000100000 32 000100001 33 000100010 34 000100011 35 000100100 36 000100101 37 000100110 38 000100111 39 000101000 40 000101001 41 000101010 42 1 2 1 3 4 2 1 5 6 3 7 8 4 2 1 9 10 5 11 12 6 3 13 14 7 15 16 8 4 2 1 17 18 9 19 20 10 5 21 http://onsemi.com 13 % of Imax AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE (continued) SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 1/4 Comp 1/2 Comp full 2ph Comp full 1ph ESM[2:0] 001 MSP[8:0] 1/128 000101011 43 000101100 44 000101101 45 000101110 46 000101111 47 000110000 48 000110001 49 000110010 50 000110011 51 000110100 52 000110101 53 000110110 54 000110111 55 000111000 56 000111001 57 000111010 58 000111011 59 000111100 60 000111101 61 000111110 62 000111111 63 001000000 64 001000001 65 001000010 66 001000011 67 001000100 68 001000101 69 001000110 70 001000111 71 001001000 72 001001001 73 001001010 74 001001011 75 001001100 76 001001101 77 001001110 78 001001111 79 001010000 80 001010001 81 001010010 82 001010011 83 001010100 84 001010101 85 010 1/64 22 000 1/32 000 1/16 000 1/8 11 23 24 12 6 3 25 26 13 27 28 14 7 29 30 15 31 32 16 8 4 2 33 34 17 35 36 18 9 37 38 19 39 40 20 10 5 41 42 21 http://onsemi.com 14 1 0 % of Imax Coil X Coil Y 50 86 51 86 52 85 53 84 55 84 56 83 57 82 58 82 59 81 60 80 61 80 62 79 62 78 63 77 64 77 65 76 66 75 67 74 68 73 69 72 70 72 71 71 72 70 72 69 73 68 74 67 75 66 76 65 77 64 77 63 78 62 79 62 80 61 80 60 81 59 82 58 82 57 83 56 84 55 84 53 85 52 86 51 86 50 AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE (continued) SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 1/4 Comp 1/2 Comp full 2ph Comp full 1ph ESM[2:0] 001 010 MSP[8:0] 1/128 1/64 001010110 86 43 001010111 87 001011000 88 001011001 89 001011010 90 001011011 91 001011100 92 001011101 93 001011110 94 001011111 95 001100000 96 001100001 97 001100010 98 001100011 99 001100100 100 001100101 101 001100110 102 001100111 103 001101000 104 001101001 105 001101010 106 001101011 107 001101100 108 001101101 109 001101110 110 001101111 111 001110000 112 001110001 113 001110010 114 001110011 115 001110100 116 001110101 117 001110110 118 001110111 119 001111000 120 001111001 121 001111010 122 001111011 123 001111100 124 001111101 125 001111110 126 001111111 127 010000000 128 44 000 1/32 22 000 1/16 000 1/8 11 45 46 23 47 48 24 12 6 3 49 50 25 51 52 26 13 53 54 27 55 56 28 14 7 57 58 29 59 60 30 15 61 62 31 63 64 32 16 8 4 http://onsemi.com 15 2 1 % of Imax Coil X Coil Y 87 49 88 48 88 47 89 46 89 45 90 44 90 43 91 42 91 41 92 39 92 38 93 37 93 36 94 35 94 34 95 33 95 31 95 30 96 29 96 28 96 27 97 25 97 24 97 23 98 22 98 21 98 20 98 18 99 17 99 16 99 15 99 13 99 12 99 11 100 10 100 9 100 7 100 6 100 5 100 4 100 2 100 1 100 0 AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE (continued) SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 1/4 Comp 1/2 Comp full 2ph Comp full 1ph ESM[2:0] 001 MSP[8:0] 1/128 010000001 129 010000010 130 010000011 131 010000100 132 010000101 133 010000110 134 010000111 135 010001000 136 010001001 137 010001010 138 010001011 139 010001100 140 010001101 141 010001110 142 010001111 143 010010000 144 010010001 145 010010010 146 010010011 147 010010100 148 010010101 149 010010110 150 010010111 151 010011000 152 010011001 153 010011010 154 010011011 155 010011100 156 010011101 157 010011110 158 010011111 159 010100000 160 010100001 161 010100010 162 010100011 163 010100100 164 010100101 165 010100110 166 010100111 167 010101000 168 010101001 169 010101010 170 010101011 171 010 1/64 000 1/32 000 1/16 000 1/8 65 66 33 67 68 34 17 69 70 35 71 72 36 18 9 73 74 37 75 76 38 19 77 78 39 79 80 40 20 10 5 81 82 41 83 84 42 21 85 http://onsemi.com 16 % of Imax Coil X Coil Y 100 −1 100 −2 100 −4 100 −5 100 −6 100 −7 100 −9 100 −10 99 −11 99 −12 99 −13 99 −15 99 −16 99 −17 98 −18 98 −20 98 −21 98 −22 97 −23 97 −24 97 −25 96 −27 96 −28 96 −29 95 −30 95 −31 95 −33 94 −34 94 −35 93 −36 93 −37 92 −38 92 −39 91 −41 91 −42 90 −43 90 −44 89 −45 89 −46 88 −47 88 −48 87 −49 86 −50 AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE (continued) SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 1/4 Comp 1/2 Comp full 2ph Comp full 1ph ESM[2:0] 001 010 000 MSP[8:0] 1/128 1/64 1/32 010101100 172 86 43 010101101 173 010101110 174 010101111 175 010110000 176 010110001 177 010110010 178 010110011 179 010110100 180 010110101 181 010110110 182 010110111 183 010111000 184 010111001 185 010111010 186 010111011 187 010111100 188 010111101 189 010111110 190 010111111 191 011000000 192 011000001 193 011000010 194 011000011 195 011000100 196 011000101 197 011000110 198 011000111 199 011001000 200 011001001 201 011001010 202 011001011 203 011001100 204 011001101 205 011001110 206 011001111 207 011010000 208 011010001 209 011010010 210 011010011 211 011010100 212 011010101 213 011010110 214 000 1/16 000 1/8 87 88 44 22 11 89 90 45 91 92 46 23 93 94 47 95 96 48 24 12 6 97 98 49 99 100 50 25 101 102 51 103 104 52 26 13 105 106 53 107 http://onsemi.com 17 3 1 % of Imax Coil X Coil Y 86 −51 85 −52 84 −53 84 −55 83 −56 82 −57 82 −58 81 −59 80 −60 80 −61 79 −62 78 −62 77 −63 77 −64 76 −65 75 −66 74 −67 73 −68 72 −69 72 −70 71 −71 70 −72 69 −72 68 −73 67 −74 66 −75 65 −76 64 −77 63 −77 62 −78 62 −79 61 −80 60 −80 59 −81 58 −82 57 −82 56 −83 55 −84 53 −84 52 −85 51 −86 50 −86 49 −87 AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE (continued) SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 1/4 Comp 1/2 Comp full 2ph Comp full 1ph ESM[2:0] 001 MSP[8:0] 1/128 011010111 215 011011000 216 011011001 217 011011010 218 011011011 219 011011100 220 011011101 221 011011110 222 011011111 223 011100000 224 011100001 225 011100010 226 011100011 227 011100100 228 011100101 229 011100110 230 011100111 231 011101000 232 011101001 233 011101010 234 011101011 235 011101100 236 011101101 237 011101110 238 011101111 239 011110000 240 011110001 241 011110010 242 011110011 243 011110100 244 011110101 245 011110110 246 011110111 247 011111000 248 011111001 249 011111010 250 011111011 251 011111100 252 011111101 253 011111110 254 011111111 255 100000000 256 100000001 257 010 1/64 108 000 1/32 54 000 1/16 000 1/8 27 109 110 55 111 112 56 28 14 7 113 114 57 115 116 58 29 117 118 59 119 120 60 30 15 121 122 61 123 124 62 31 125 126 63 127 128 64 32 16 8 http://onsemi.com 18 4 2 % of Imax Coil X Coil Y 48 −88 47 −88 46 −89 45 −89 44 −90 43 −90 42 −91 41 −91 39 −92 38 −92 37 −93 36 −93 35 −94 34 −94 33 −95 31 −95 30 −95 29 −96 28 −96 27 −96 25 −97 24 −97 23 −97 22 −98 21 −98 20 −98 18 −98 17 −99 16 −99 15 −99 13 −99 12 −99 11 −99 10 −100 9 −100 7 −100 6 −100 5 −100 4 −100 2 −100 1 −100 0 −100 −1 −100 AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE (continued) SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 1/4 Comp 1/2 Comp full 2ph Comp full 1ph ESM[2:0] 001 010 MSP[8:0] 1/128 1/64 100000010 258 129 100000011 259 100000100 260 100000101 261 100000110 262 100000111 263 100001000 264 100001001 265 100001010 266 100001011 267 100001100 268 100001101 269 100001110 270 100001111 271 100010000 272 100010001 273 100010010 274 100010011 275 100010100 276 100010101 277 100010110 278 100010111 279 100011000 280 100011001 281 100011010 282 100011011 283 100011100 284 100011101 285 100011110 286 100011111 287 100100000 288 100100001 289 100100010 290 100100011 291 100100100 292 100100101 293 100100110 294 100100111 295 100101000 296 100101001 297 100101010 298 100101011 299 100101100 300 130 000 1/32 000 1/16 000 1/8 65 131 132 66 33 133 134 67 135 136 68 34 17 137 138 69 139 140 70 35 141 142 71 143 144 72 36 18 9 145 146 73 147 148 74 37 149 150 75 http://onsemi.com 19 % of Imax Coil X Coil Y −2 −100 −4 −100 −5 −100 −6 −100 −7 −100 −9 −100 −10 −100 −11 −99 −12 −99 −13 −99 −15 −99 −16 −99 −17 −99 −18 −98 −20 −98 −21 −98 −22 −98 −23 −97 −24 −97 −25 −97 −27 −96 −28 −96 −29 −96 −30 −95 −31 −95 −33 −95 −34 −94 −35 −94 −36 −93 −37 −93 −38 −92 −39 −92 −41 −91 −42 −91 −43 −90 −44 −90 −45 −89 −46 −89 −47 −88 −48 −88 −49 −87 −50 −86 −51 −86 AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE (continued) SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 1/4 Comp 1/2 Comp full 2ph Comp full 1ph ESM[2:0] 001 MSP[8:0] 1/128 100101101 301 100101110 302 100101111 303 100110000 304 100110001 305 100110010 306 100110011 307 100110100 308 100110101 309 100110110 310 100110111 311 100111000 312 100111001 313 100111010 314 100111011 315 100111100 316 100111101 317 100111110 318 100111111 319 101000000 320 101000001 321 101000010 322 101000011 323 101000100 324 101000101 325 101000110 326 101000111 327 101001000 328 101001001 329 101001010 330 101001011 331 101001100 332 101001101 333 101001110 334 101001111 335 101010000 336 101010001 337 101010010 338 101010011 339 101010100 340 101010101 341 101010110 342 101010111 343 010 1/64 000 1/32 000 1/16 000 1/8 151 152 76 38 19 153 154 77 155 156 78 39 157 158 79 159 160 80 40 20 10 161 162 81 163 164 82 41 165 166 83 167 168 84 42 21 169 170 85 171 http://onsemi.com 20 5 2 % of Imax Coil X Coil Y −52 −85 −53 −84 −55 −84 −56 −83 −57 −82 −58 −82 −59 −81 −60 −80 −61 −80 −62 −79 −62 −78 −63 −77 −64 −77 −65 −76 −66 −75 −67 −74 −68 −73 −69 −72 −70 −72 −71 −71 −72 −70 −72 −69 −73 −68 −74 −67 −75 −66 −76 −65 −77 −64 −77 −63 −78 −62 −79 −62 −80 −61 −80 −60 −81 −59 −82 −58 −82 −57 −83 −56 −84 −55 −84 −53 −85 −52 −86 −51 −86 −50 −87 −49 −88 −48 AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE (continued) SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 1/4 Comp 1/2 Comp full 2ph Comp full 1ph ESM[2:0] 001 010 000 000 MSP[8:0] 1/128 1/64 1/32 1/16 101011000 344 172 86 43 101011001 345 101011010 346 101011011 347 101011100 348 101011101 349 101011110 350 101011111 351 101100000 352 101100001 353 101100010 354 101100011 355 101100100 356 101100101 357 101100110 358 101100111 359 101101000 360 101101001 361 101101010 362 101101011 363 101101100 364 101101101 365 101101110 366 101101111 367 101110000 368 101110001 369 101110010 370 101110011 371 101110100 372 101110101 373 101110110 374 101110111 375 101111000 376 101111001 377 101111010 378 101111011 379 101111100 380 101111101 381 101111110 382 101111111 383 110000000 384 110000001 385 110000010 386 000 1/8 173 174 87 175 176 88 44 22 11 177 178 89 179 180 90 45 181 182 91 183 184 92 46 23 185 186 93 187 188 94 47 189 190 95 191 192 96 48 24 12 193 http://onsemi.com 21 6 3 % of Imax Coil X Coil Y −88 −47 −89 −46 −89 −45 −90 −44 −90 −43 −91 −42 −91 −41 −92 −39 −92 −38 −93 −37 −93 −36 −94 −35 −94 −34 −95 −33 −95 −31 −95 −30 −96 −29 −96 −28 −96 −27 −97 −25 −97 −24 −97 −23 −98 −22 −98 −21 −98 −20 −98 −18 −99 −17 −99 −16 −99 −15 −99 −13 −99 −12 −99 −11 −100 −10 −100 −9 −100 −7 −100 −6 −100 −5 −100 −4 −100 −2 −100 −1 −100 0 −100 1 −100 2 AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE (continued) SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 1/4 Comp 1/2 Comp full 2ph Comp full 1ph ESM[2:0] 001 MSP[8:0] 1/128 110000011 387 110000100 388 110000101 389 110000110 390 110000111 391 110001000 392 110001001 393 110001010 394 110001011 395 110001100 396 110001101 397 110001110 398 110001111 399 110010000 400 110010001 401 110010010 402 110010011 403 110010100 404 110010101 405 110010110 406 110010111 407 110011000 408 110011001 409 110011010 410 110011011 411 110011100 412 110011101 413 110011110 414 110011111 415 110100000 416 110100001 417 110100010 418 110100011 419 110100100 420 110100101 421 110100110 422 110100111 423 110101000 424 110101001 425 110101010 426 110101011 427 110101100 428 110101101 429 010 1/64 194 000 1/32 000 1/16 000 1/8 97 195 196 98 49 197 198 99 199 200 100 50 25 201 202 101 203 204 102 51 205 206 103 207 208 104 52 26 13 209 210 105 211 212 106 53 213 214 107 http://onsemi.com 22 % of Imax Coil X Coil Y −100 4 −100 5 −100 6 −100 7 −100 9 −100 10 −99 11 −99 12 −99 13 −99 15 −99 16 −99 17 −98 18 −98 20 −98 21 −98 22 −97 23 −97 24 −97 25 −96 27 −96 28 −96 29 −95 30 −95 31 −95 33 −94 34 −94 35 −93 36 −93 37 −92 38 −92 39 −91 41 −91 42 −90 43 −90 44 −89 45 −89 46 −88 47 −88 48 −87 49 −86 50 −86 51 −85 52 AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE (continued) SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 1/4 Comp 1/2 Comp full 2ph Comp full 1ph ESM[2:0] 001 010 MSP[8:0] 1/128 1/64 110101110 430 215 110101111 431 110110000 432 110110001 433 110110010 434 110110011 435 110110100 436 110110101 437 110110110 438 110110111 439 110111000 440 110111001 441 110111010 442 110111011 443 110111100 444 110111101 445 110111110 446 110111111 447 111000000 448 111000001 449 111000010 450 111000011 451 111000100 452 111000101 453 111000110 454 111000111 455 111001000 456 111001001 457 111001010 458 111001011 459 111001100 460 111001101 461 111001110 462 111001111 463 111010000 464 111010001 465 111010010 466 111010011 467 111010100 468 111010101 469 111010110 470 111010111 471 111011000 472 216 000 1/32 108 000 1/16 54 000 1/8 27 217 218 109 219 220 110 55 221 222 111 223 224 112 56 28 14 225 226 113 227 228 114 57 229 230 115 231 232 116 58 29 233 234 117 235 236 118 59 http://onsemi.com 23 7 3 % of Imax Coil X Coil Y −84 53 −84 55 −83 56 −82 57 −82 58 −81 59 −80 60 −80 61 −79 62 −78 62 −77 63 −77 64 −76 65 −75 66 −74 67 −73 68 −72 69 −72 70 −71 71 −70 72 −69 72 −68 73 −67 74 −66 75 −65 76 −64 77 −63 77 −62 78 −62 79 −61 80 −60 80 −59 81 −58 82 −57 82 −56 83 −55 84 −53 84 −52 85 −51 86 −50 86 −49 87 −48 88 −47 88 AMIS−30543 Table 9. CIRCULAR TRANSLATOR TABLE (continued) SM[2:0] xxx xxx 000 001 010 011 100 xxx xxx 000 000 011 100 1/4 Comp 1/2 Comp full 2ph Comp full 1ph ESM[2:0] 001 MSP[8:0] 1/128 111011001 473 111011010 474 111011011 475 111011100 476 111011101 477 111011110 478 111011111 479 111100000 480 111100001 481 111100010 482 111100011 483 111100100 484 111100101 485 111100110 486 111100111 487 111101000 488 111101001 489 111101010 490 111101011 491 111101100 492 111101101 493 111101110 494 111101111 495 111110000 496 111110001 497 111110010 498 111110011 499 111110100 500 111110101 501 111110110 502 111110111 503 111111000 504 111111001 505 111111010 506 111111011 507 111111100 508 111111101 509 111111110 510 111111111 511 010 1/64 000 1/32 000 1/16 000 1/8 237 238 119 239 240 120 60 30 15 241 242 121 243 244 122 61 245 246 123 247 248 124 62 31 249 250 125 251 252 126 63 253 254 127 255 http://onsemi.com 24 % of Imax Coil X Coil Y −46 89 −45 89 −44 90 −43 90 −42 91 −41 91 −39 92 −38 92 −37 93 −36 93 −35 94 −34 94 −33 95 −31 95 −30 95 −29 96 −28 96 −27 96 −25 97 −24 97 −23 97 −22 98 −21 98 −20 98 −18 98 −17 99 −16 99 −15 99 −13 99 −12 99 −11 99 −10 100 −9 100 −7 100 −6 100 −5 100 −4 100 −2 100 −1 100 AMIS−30543 IY IY IY Start = 0 Start = 0 Start = 0 Step 1 Step 2 Step 1 Step 1 Step 3 Step 2 Step 2 IX IX IX Step 3 Step 3 1/4th micro step Uncompensated half step IY Compensated half step IY Step 3 IY Start = 0 Start = 0 Step 3 Step 3 Step 1 IX IX Uncompensated full step IX Step 2 Step 1 Step 2 Start = 0 Step 1 Step 2 Compensated full step, 1 phase on Compensated full step, 2 phase on Figure 10. Translator Table: Circular and Square Direction The direction of rotation is selected by means of following combination of the DIR input pin and the SPI−controlled direction bit <DIRCTRL>. (see Table 12 SPI Control Parameter Overview) Parameter Overview), the next step is initiated either on the rising edge or the falling edge of the NXT input. Translator Position The translator position MSP[8:0] can be read in SPI Status Register 3 and Status Register 4 (See Table 14 SR3 and SR4). This is a 9−bit number equivalent to the 1/128th micro−step (see Table 9 “Circular Translator Table”). The translator position is updated immediately following a NXT trigger. NXT Input Changes on the NXT input will move the motor current one step up/down in the translator table (even when the motor is disabled: <MOTEN> = 0). Depending on the NXT−polarity bit <NXTP> (see Table 12 SPI Control NXT Update Translator Position Update Translator Position Figure 11. Translator Position Timing Diagram Synchronization of Step Mode and NXT Input When step mode is re−programmed to another resolution (Figure 12), then this is put in effect immediately upon the first arriving “NXT” input. If the micro−stepping resolution is increased, the coil currents will be regulated to the nearest micro−step, according to the fixed grid of the increased resolution. If however the micro−stepping resolution is decreased, then it is possible to introduce an offset (or phase shift) in the micro−step translator table. If the step resolution is decreased at a translator table position that is shared both by the old and new resolution setting, then the offset is zero and micro−stepping is proceeds according to the translator table. If the translator position is not shared both by the old and new resolution setting, then the micro−stepping proceeds with an offset relative to the translator table (See Figure 12 right hand side). http://onsemi.com 25 AMIS−30543 Change from lower to higher resolution Iy Iy DIR endpos NXT3 NXT2 Change from higher to lower resolution Iy DIR NXT1 NXT4 NXT1 endpos startpos Ix DIR startpos NXT2 Ix Ix 1/4th step Halfstep Iy DIR Ix NXT3 1/8th step Halfstep PC20070604.6 Figure 12. NXT−Step Mode Synchronization Left: Change from lower to higher resolution. The left−hand side depicts the ending half−step position during which a new step mode resolution was programmed. The right−hand side diagram shows the effect of subsequent NXT commands on the micro−step position. Right: Change from higher to lower resolution. The left−hand side depicts the ending micro−step position during which a new step mode resolution was programmed. The right−hand side diagram shows the effect of subsequent NXT commands on the half−step position. Note: It is advised to reduce the micro−stepping resolution only at micro−step positions that overlap with desired micro−step positions of the new resolution. Programmable Peak−Current The amplitude of the current waveform in the motor coils (coil peak current = Imax) is adjusted by means of an SPI parameter “CUR[4:0]” (see Table 12 SPI Control Parameter Overview). Whenever this parameter is changed, the coil−currents will be updated immediately at the next PWM period. Figure 13 presents the Peak−Current and Current Ratings in conjunction to the Current setting CUR[4:0]. Peak Current 3090 mA Current Range 3 CUR[4:0] = 16 −> 25 1205 mA Current Range 2 CUR[4:0] = 10 −> 15 680 mA Current Range 1 CUR[4:0] = 3 −> 9 305 mA Current Range 0 CUR[4:0] = 0 −> 2 0 2 9 15 Figure 13. Programmable Peak−Current Overview http://onsemi.com 26 25 CUR[4:0] AMIS−30543 Speed and Load Angle Output The SLA−pin provides an output voltage that indicates the level of the Back−e.m.f. voltage of the motor. This Back−e.m.f. voltage is sampled during every so−called ”coil current zero crossings”. Per coil, two zero−current positions exist per electrical period, yielding in total four zero−current observation points per electrical period. V BEMF I COIL t ZOOM Previous Micro−step I COIL Coil Current Zero Crossing Next Micro−step Current Decay Zero Current t V COIL Voltage Transient VBB |V BEMF | t Figure 14. Principle of Bemf Measurement behavior of the coil voltage is not visible anymore, this mode generates smoother Back e.m.f. input for post−processing, e.g. by software. In order to bring the sampled Back e.m.f. to a descent output level (0 V to 5 V), the sampled coil voltage VCOIL is divided by 2 or by 4. This divider is set through an SPI bit <SLAG>. (see Table 12 SPI Control Parameter Overview) The following drawing illustrates the operation of the SLA−pin and the transparency−bit. “PWMsh” and “ICOIL = 0” are internal signals that define together with SLAT the sampling and hold moments of the coil voltage. Because of the relatively high recirculation currents in the coil during current decay, the coil voltage VCOIL shows a transient behavior. As this transient is not always desired in application software, two operating modes can be selected by means of the bit <SLAT> (see “SLA−transparency” in Table 12 SPI Control Parameter Overview). The SLA pin shows in “transparent mode” full visibility of the voltage transient behavior. This allows a sanity−check of the speed−setting versus motor operation and characteristics and supply voltage levels. If the bit “SLAT” is cleared, then only the voltage samples at the end of each coil current zero crossing are visible on the SLA−pin. Because the transient http://onsemi.com 27 AMIS−30543 VCOIL div2 div4 Ssh Sh buf SLA−pin Ch Csh Icoil=0 PWMsh SLAT NOT(Icoil=0) PWMsh Icoil=0 SLAT VCOIL t SLA−pin last sample is retained VBEMF retain last sample previous output is kept at SLA pin SLAT = 1 => SLA−pin is “transparent” during VBEMF sampling @ Coil Current Zero Crossing. SLA−pin is updated “real−time”. t SLAT = 0 => SLA−pin is not “transparent” during VBEMF sampling @ Coil Current Zero Crossing. SLA−pin is updated when leaving current−less state. Figure 15. Timing Diagram of SLA−Pin Open Coil/Current Not Reached Detection Open coil detection is based on the observation of 100% duty cycle of the PWM regulator. If in a coil 100% duty cycle is detected for longer than 200 ms then the related driver transistors are disabled (high−impedance) and an appropriate bit in the SPI status register is set (<OPENX> or <OPENY>). (Table 14) When the resistance of a motor coil is very large and the supply voltage is low, it can happen that the motor driver is not able to deliver the requested current to the motor. Under these conditions the PWM controller duty cycle will be 100% and after 200 ms the error pin and <OPENX>, <OPENY> will flag this situation (motor current is kept alive). This feature can be used to test if the operating conditions (supply voltage, motor coil resistance) still allow reaching the requested coil−current or else the coil current should be reduced. Warning, Error Detection and Diagnostics Feedback Thermal Warning and Shutdown When junction temperature rises above TTW, the thermal warning bit <TW> is set (Table 14 SPI Status registers Address SR0). If junction temperature increases above thermal shutdown level, then the circuit goes in “Thermal Shutdown” mode (<TSD>) and all driver transistors are disabled (high impedance) (see Table 14 SPI Status registers Address SR2). The conditions to reset flag <TSD> is to be at a temperature lower than Ttw and to clear the <TSD> flag by reading it using any SPI read command. Overcurrent Detection The overcurrent detection circuit monitors the load current in each activated output stage. If the load current exceeds the over−current detection threshold, then the overcurrent flag is set and the drivers are switched off to reduce the power dissipation and to protect the integrated circuit. Each driver transistor has an individual detection bit (see Table 14 SPI Status Registers Address SR1 and SR2: <OVCXij> and <OVCYij>). Error condition is latched and the microcontroller needs to clean the status bits to reactivate the drivers. Note: Successive reading the SPI Status Registers 1 and 2 in case of a short circuit condition, may lead to damage to the drivers. Charge Pump Failure The charge pump is an important circuit that guarantees low RDS(on) for all drivers, especially for low supply voltages. If supply voltage is too low or external components are not properly connected to guarantee RDS(on) of the drivers, then the bit <CPFAIL> is set (Table 14). Also after POR the charge pump voltage will need some time to exceed the required threshold. During that time <CPFAIL> will be set to “1”. http://onsemi.com 28 AMIS−30543 Error Output This is a digital output to flag a problem to the external microcontroller. The signal on this output is active low and the logic combination of: NOT(ERRB) = <TW> OR <TSD> OR <OVCXij> OR <OVCYij> OR <OPENi> OR <CPFAIL> circuitry, the specified Iload should be reduced with the consumption of internal circuitry (unloaded outputs) and the loads connected to logic outputs. See Table 4. DC parameters Power−On Reset (POR) Function The open drain output pin POR/WD provides an “active low” reset for external purposes. At powerup of AMIS−30543, this pin will be kept low for some time to reset for example an external microcontroller. A small analogue filter avoids resetting due to spikes or noise on the VDD supply. Logic Supply Regulator AMIS−30543 has an on−chip 5 V low−drop regulator with external capacitor to supply the digital part of the chip, some low−voltage analog blocks and external circuitry. The voltage level is derived from an internal bandgap reference. To calculate the available drive−current for external VBB t VDD tPD tPU VDDH VDDL t < tRF POR/WD pin tPOR tRF Figure 16. Power−on−Reset Timing Diagram Watchdog Function The watchdog function is enabled/disabled through <WDEN> bit (Table 11: SPI CONTROL REGISTERS). Once this bit has been set to “1” (watchdog enable), the microcontroller needs to re−write this bit to clear an internal timer before the watchdog timeout interval expires. In case the timer is activated and WDEN is acknowledged too early (before tWDPR) or not within the interval (after tWDTO), then a reset of the microcontroller will occur through POR/WD pin. In addition, a warm/cold boot bit <WD> is available (see Tables 14 and 15) for further processing when the external microcontroller is alive again. The voltage regulator and charge pump remains functional during and after the reset and the POR/WD pin is not activated. Watchdog function is reset completely. Sleep Mode The bit <SLP> in SPI Control Register 2 (See Table 10) is provided to enter a so−called “sleep mode”. This mode allows reduction of current−consumption when the motor is not in operation. The effect of sleep mode is as follows: • The drivers are put in HiZ • All analog circuits are disabled and in low−power mode • All internal registers are maintaining their logic content • NXT and DIR inputs are forbidden • SPI communication remains possible (slight current increase during SPI communication) • Oscillator and digital clocks are silent, except during SPI communication • Registers cannot be cleared by using the CLR pin CLR pin (=Hard Reset) Logic 0 on CLR pin allows normal operation of the chip. To reset the complete digital inside AMIS−30543, the input CLR needs to be pulled to logic 1 during minimum time given by tCLR (Table 5 AC Parameters). This reset function clears all internal registers without the need of a power−cycle, except in sleep mode. Logic 0 on CLR pin resumes normal operation again. VBB should be minimum 9 V to be able to enter Sleep Mode. http://onsemi.com 29 AMIS−30543 Normal operation is resumed after writing logic ‘0’ to bit <SLP>. A startup time is needed for the charge pump to stabilize. After this time, NXT commands can be issued. The voltage regulator remains active but with reduced current−output capability (ILOADSLP). The watchdog timer stops running and it’s value is kept in the counter. Upon leaving sleep mode, this timer continues from the value it had before entering sleep mode. VBB t VDD tPU VDDH t tPOR POR/WD pin tWDRD tPOR tDSPI Enable WD = tWDPR or = tWDTO > tWDPR and < tWDTO Acknowledge WD t tWDTO WD timer t Figure 17. Watchdog Timing Diagram NOTE: tDSPI is the time needed by the external microcontroller to shift−in the <WDEN> bit after a powerup. The duration of the watchdog timeout interval is programmable through the WDT[3:0] bits (See also Table 11: SPI CONTROL REGISTERS. The timing is given in Table 10 below. Table 10. WATCHDOG TIMEOUT INTERVAL AS FUNCTION OF WDT[3.0] Index WDT[3:0] tWDTO (ms) Index WDT[3:0] tWDTO (ms) 0 0000 32 8 1000 288 1 0001 64 9 1001 320 2 0010 96 10 1010 352 3 0011 128 11 1011 384 4 0100 160 12 1100 416 5 0101 192 13 1101 448 6 0110 224 14 1110 480 7 0111 256 15 1111 512 http://onsemi.com 30 AMIS−30543 SPI INTERFACE DO signal is the output from the Slave (AMIS−30543), and DI signal is the output from the Master. A chip select line (CS) allows individual selection of a Slave SPI device in a multiple−slave system. The CS line is active low. If AMIS−30543 is not selected, DO is pulled up with the external pull up resistor. Since AMIS−30543 operates as a Slave in MODE 0 (CPOL = 0; CPHA = 0) it always clocks data out on the falling edge and samples data in on rising edge of clock. The Master SPI port must be configured in MODE 0 too, to match this operation. The SPI clock idles low between the transferred bytes. The diagram below is both a Master and a Slave timing diagram since CLK, DO and DI pins are directly connected between the Master and the Slave. The serial peripheral interface (SPI) allows an external microcontroller (Master) to communicate with AMIS−30543. The implemented SPI block is designed to interface directly with numerous micro−controllers from several manufacturers. AMIS−30543 acts always as a Slave and can’t initiate any transmission. The operation of the device is configured and controlled by means of SPI registers which are observable for read and/or write from the Master. SPI Transfer Format and Pin Signals During a SPI transfer, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line (CLK) synchronizes shifting and sampling of the information on the two serial data lines (DO and DI). 1 # CLK cycle 2 3 4 5 6 7 8 CS CLK DI MSB 6 5 4 3 2 1 LSB DO MSB 6 5 4 3 2 1 LSB Figure 18. Timing Diagram of a SPI Transfer NOTE: ÌÌÌÌ ÌÌÌÌ ÌÌÌ ÌÌÌ ÌÌÌ At the falling edge of the eight clock pulse the data−out shift register is updated with the content of the addressed internal SPI register. The internal SPI registers are updated at the first rising edge of the AMIS−30543 system clock when CS = High Transfer Packet: Serial data transfer is assumed to follow MSB first rule. The transfer packet contains one or more bytes. BYTE 1 BYTE 2 Command and SPI Register Address Data MSB CMD2 LSB CMD1 Command MSB CMD0 ADDR4 ADDR3 ADDR2 ADDR1 ADDR0 D7 LSB D6 D5 D4 D3 D2 D1 D0 SPI Register Address Figure 19. SPI Transfer Packet Byte 1 contains the Command and the SPI Register Address and indicates to AMIS−30543 the chosen type of operation and addressed register. Byte 2 contains data, or sent from the Master in a WRITE operation, or received from AMIS−30543 in a READ operation. http://onsemi.com 31 AMIS−30543 READ command. This READ command contains the address of the SPI register to be read out. At the falling edge of the eight clock pulse the data−out shift register is updated with the content of the corresponding internal SPI register. In the next 8−bit clock pulse train this data is shifted out via DO pin. At the same time the data shifted in from DI (Master) should be interpreted as the following successive command or dummy data. Two command types can be distinguished in the communication between master and AMIS−30543: • READ from SPI Register with address ADDR[4:0]: CMD2 = “0” • WRITE to SPI Register with address ADDR[4:0]: CMD2 = “1” READ Operation If the Master wants to read data from Status or Control Registers, it initiates the communication by sending a Registers are updated with internal status at the rising edge of the internal AMIS−30543 clock when CS = 1 CS COMMAND DI READ DATA from ADDR 1 COMMAND or DUMMY DATA from previous command or NOT VALID after POR or RESET DO DATA DATA OLD DATA or NOT VALID DATA from ADDR1 Figure 20. Single READ Operation where DATA from SPI Register with Address 1 is Read by the Master All 4 Status Registers (see SPI Registers) contain 7 data bits and a parity check bit. The most significant bit (D7) represents a parity of D[6:0]. If the number of logical ones in D[6:0] is odd, the parity bit D7 equals “1”. If the number of logical ones in D[6:0] is even then the parity bit D7 equals “0”. This simple mechanism protects against noise and increases the consistency of the transmitted data. If a parity check error occurs it is recommended to initiate an additional READ command to obtain the status again. Also the Control Registers can be read out following the same routine. Control Registers don’t have a parity check. The CS line is active low and may remain low between successive READ commands as illustrated in Figure 22. There is however one exception. In case an error condition is latched in one of Status Registers (see SPI Registers) the ERR pin is activated (See Section Error Output). This signal flags a problem to the external microcontroller. By reading the Status Registers information about the root cause of the problem can be determined. After this READ operation the Status Registers are cleared. Because the Status Registers and ERR pin (see SPI Registers) are only updated by the internal system clock when the CS line is high, the Master should force CS high immediately after the READ operation. For the same reason it is recommended to keep the CS line high always when the SPI bus is idle. WRITE Operation If the Master wants to write data to a Control Register it initiates the communication by sending a WRITE command. This contains the address of the SPI register to write to. The command is followed with a data byte. This incoming data will be stored in the corresponding Control Register after CS goes from low to high! AMIS−30543 responds on every incoming byte by shifting out via DO the data stored in the last received address. It is important that the writing action (command − address and data) to the Control Register is exactly 16 bits long. If more or less bits are transmitted the complete transfer packet is ignored. A WRITE command executed for a read−only register (e.g. Status Registers) will not affect the addressed register and the device operation. Because after a power−on−reset the initial address is unknown the data shifted out via DO is not valid. http://onsemi.com 32 AMIS−30543 The NEW DATA is written into the corresponding internal register at the rising edge of CS CS COMMAND DI DATA NEW DATA for ADDR3 WRITE DATA to ADDR3 DATA from previous command or NOT VALID after POR or RESET DATA DO DATA OLD DATA or NOT VALID OLD DATA from ADDR3 Figure 21. Single WRITE Operation Where DATA from the Master is Written in SPI Register with Address 3 Examples of combined READ and WRITE Operations In the following examples successive READ and WRITE operations are combined. In Figure 22 the Master first reads the status from Register at ADDR4 and at ADDR5 followed CS Registers are updated with the internal status at the rising edge of the internal AMIS−30543 clock when CS = 1 COMMAND READ DATA from ADDR4 DI DATA from previous command or NOT VALID after POR or RESET DO by writing a control byte in Control Register at ADDR2. Note that during the write command the old data of the pointed register is returned at the moment the new data is shifted in DATA OLD DATA or NOT VALID The NEW DATA is written into the corresponding internal register at the rising edge of CS COMMAND COMMAND DATA READ DATA from ADDR5 WRITE DATA to ADDR 2 NEW DATA for ADDR2 DATA DATA DATA DATA from ADDR4 DATA from ADDR5 OLD DATA from ADDR2 Figure 22. 2 Successive READ Commands Followed by a WRITE Command transmitted. This rule also applies when the master device wants to initiate an SPI transfer to read the Status Registers. Because the internal system clock updates the Status Registers only when CS line is high, the first read out byte might represent old status information. After the write operation the Master could initiate a read back command in order to verify the data correctly written as illustrated in Figure 23. During reception of the READ command the old data is returned for a second time. Only after receiving the READ command the new data is http://onsemi.com 33 AMIS−30543 The NEW DATA is written into the corresponding internal register at the rising edge of CS Registers are updated with the internal status at the rising edge of CS CS DI COMMAND DATA COMMAND WRITE DATA to ADDR2 NEW DATA for ADDR2 READ DATA from ADDR2 DATA from previous command or NOT VALID after POR or RESET DATA DO DATA DATA OLD DATA from ADDR2 NEW DATA from ADDR2 DATA OLD DATA or NOT VALID OLD DATA from ADDR2 COMMAND or DUMMY Figure 23. A WRITE Operation Where DATA from the Master is Written in SPI Register with Address 2 Followed by a READ Back Operation to Confirm a Correct WRITE Operation NOTE: The internal data−out shift buffer of AMIS−30543 is updated with the content of the selected SPI register only at the last (every eight) falling edge of the CLK signal (see SPI Transfer Format and Pin Signals). As a result, new data for transmission cannot be written to the shift buffer at the beginning of the transfer packet and the first byte shifted out might represent old data. Table 11. SPI CONTROL REGISTERS (All SPI control registers have Read/Write Access and default to “0” after power−on or hard reset) Structure Content Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Access R/W R/W R/W R/W R/W R/W R/W R/W Address Reset 0 0 0 0 0 0 0 0 WR (00h) Data WDEN − − − CR0 (01h) Data CR1 (02h) Data DIRCTRL NXTP − − PWMF PWMJ CR2 (03h) Data MOTEN SLP SLAG SLAT − − CR3 (09h) Data − − − − − Where: R/W Reset: WDT[3:0] SM[2:0] CUR[4:0] Read and Write access Status after power−On or hard reset http://onsemi.com 34 EMC[1:0] − ESM[2:0] − AMIS−30543 Table 12. SPI CONTROL PARAMETER OVERVIEW Symbol Description DIRCTRL Controls the direction of rotation (in combination with logic level on input DIR) Status <DIR> = 0 <DIR> = 1 NXTP EMC[1:0] Selects if NXT triggers on rising or falling edge Turn On – Turn−off Slopes of motor driver (Note 14) Value <DIRCTRL> = 0 CW motion (Note 15) <DIRCTRL> = 1 CCW motion (Note 15) <DIRCTRL> = 0 CCW motion (Note 15) <DIRCTRL> = 1 CW motion (Note 15) <NXTP> = 0 Trigger on rising edge <NXTP> = 1 Trigger on falling edge 00 Very Fast 01 Fast 10 Slow 11 Very Slow SLAT Speed load angle transparency bit <SLAT> = 0 SLA is not transparent <SLAT> = 1 SLA is transparent SLAG Speed load angle gain setting <SLAG> = 0 Gain = 0.5 <SLAG> = 1 Gain = 0.25 PWMF Enables doubling of the PWM frequency (Note 14) <PWMF> = 0 Default Frequency <PWMF> = 1 Double Frequency <PWMJ> = 0 Jitter disabled PWMJ SM[2:0] ESM[2:0] SLP MOTEN Enables jittery PWM Stepmode (only valid if ESM[2:0] = 000) Stepmode Enables sleep mode (if VBB > 9 V) Activates the motor driver outputs <PWMJ> = 1 Jitter enabled 000 1/32 Micro − Step 001 1/16 Micro − Step 010 1/8 Micro − Step 011 1/4 Micro − Step 100 Compensated Half Step 101 Uncompensated Half Step 110 Uncompensated full step 111 Uncompensated full step 001 1/128 Micro−Step 010 1/64 Micro−Step 011 Compensated full step, 2 phase on 100 Compensated full step, 1 phase on Other Stepping mode defined by SM[2:0] <SLP> = 0 Active mode <SLP> = 1 Sleep mode <MOTEN> = 0 Drivers disabled <MOTEN> = 1 Drivers enabled 14. The typical values can be found in Table 4: DC Parameters and in Table 5: AC parameters 15. Depending on the wiring of the motor connections http://onsemi.com 35 AMIS−30543 CUR[4:0] Selects IMCmax peak. This is the peak or amplitude of the regulated current waveform in the motor coils. Table 13. SPI CONTROL PARAMETER OVERVIEW CUR[4:0] Current Range (Note 17) 0 1 2 Current (mA) (Note 16) Index CUR[4:0] Current Range (Note 17) Index CUR[4:0] Current (mA) (Note 16) 0 00000 132 16 10000 1405 1 00001 245 17 10001 1520 2 00010 355 18 10010 1695 3 00011 395 19 10011 1850 4 00100 445 20 10100 2070 5 00101 485 21 10101 2240 6 00110 540 22 10110 2440 7 00111 585 23 10111 2700 8 01000 640 24 11000 2845 3 9 01001 715 25 11001 3000 10 01010 780 26 11010 3000 11 01011 870 27 11011 3000 12 01100 955 28 11100 3000 13 01101 1060 29 11101 3000 14 01110 1150 30 11110 3000 15 01111 1260 31 11111 3000 16. Typical current amplitude at TJ = 125 17. Reducing the current over different current ranges might trigger overcurrent detection. See dedicated application note for solutions SPI Status Register Description All 4 SPI status registers have Read Access and are default to “0” after power−on or hard reset. Table 14. SPI STATUS REGISTERS Structure Content Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Access R R R R R R R R Address Reset 0 0 0 0 0 0 0 0 SR0 (04h) Data is not latched PAR TW CPFAIL WD SR1 (05h) Data is latched PAR OVCXPT OVCXPB OVCXNT OVCXNB − − − SR2 (06h) Data is latched PAR OVCYPT OVCYPB OVCYNT OVCYNB TSD − − SR3 (07h) Data is not latched PAR MSP[8:2] SR4 (0Ah) Data is not latched PAR MSP[6:0] Where: R Reset PAR Read only mode access Status after power−on or hard reset Parity check http://onsemi.com 36 OPENCOIL_X OPENCOIL_Y AMIS−30543 Table 15. SPI STATUS FLAGS OVERVIEW Mnemonic Flag Length (bit) Related SPI Register CPFail Charge pump failure 1 Status Register 0 MSP[8:0] Micro−step position 9 OPENX OPEN Coil X 1 Status Register 0 ‘1’ = Open coil detected ‘0’ OPENY OPEN Coil Y 1 Status Register 0 ‘1’ = Open coil detected ‘0’ OVCXNB OVer Current on X H−bridge; MOTXN terminal; Bottom tran. 1 Status Register 1 ‘0’ = no failure ‘1’ = failure: indicates that over current is detected at bottom transistor XN−terminal ‘0’ OVCXNT OVer Current on X H−bridge; MOTXN terminal; Top transist. 1 Status Register 1 ‘0’ = no failure ‘1’ = failure: indicates that over current is detected at top transistor XN−terminal ‘0’ OVCXPB OVer Current on X H−bridge; MOTXP terminal; Bottom tran. 1 Status Register 1 ‘0’ = no failure ‘1’ = failure: indicates that over current is detected at bottom transistor XP−terminal ‘0’ OVCXPT OVer Current on X H−bridge; MOTXP terminal; Top transist. 1 Status Register 1 ‘0’ = no failure ‘1’ = failure: indicates that over current is detected at top transistor XP−terminal ‘0’ OVCYNB OVer Current on Y H−bridge; MOTYN terminal; Bottom tran. 1 Status Register 2 ‘0’ = no failure ‘1’ = failure: indicates that over current is detected at bottom transistor YN−terminal ‘0’ OVCYNT OVer Current on Y H−bridge; MOTYN terminal; Top transist. 1 Status Register 2 ‘0’ = no failure ‘1’ = failure: indicates that over current is detected at top transistor YN−terminal ‘0’ OVCYPB OVer Current on Y H−bridge; MOTYP terminal; Bottom tran. 1 Status Register 2 ‘0’ = no failure ‘1’ = failure: indicates that over current is detected at bottom transistor YP−terminal ‘0’ OVCYPT OVer Current on Y H−bridge; MOTYP terminal; Top transist. 1 Status Register 2 ‘0’ = no failure ‘1’ = failure: indicates that over current is detected at top transistor YP−terminal ‘0’ TSD Thermal shutdown 1 Status Register 2 ‘0’ TW Thermal warning 1 Status Register 0 ‘0’ Watchdog event 1 Status Register 0 WD NOTE: Reset State Comment ‘0’ = no failure ‘1’ = failure: indicates that the charge pump does not reach the required voltage level. Note 1 ‘0’ Status Register 3 and Translator micro step position Status Register 4 ‘1’ = watchdog reset after time−out ‘000000000’ ‘0’ WD − This bit indicates that the watchdog timer has not been cleared properly. If the master reads that WD is set to “1” after reset, it means that a watchdog reset occurred (warm boot) instead of POR (cold boot). WD bit will be cleared only when the master writes “0” to WDEN bit. Table 16. ORDERING INFORMATION Peak Current Temperature Range AMIS30543C5431G 3000 mA AMIS30543C5431RG 3000 mA Part No. Package Shipping† −40°C to 125°C NQFP−32 (7 x 7 mm) (Pb−Free) Units / Tubes −40°C to 125°C NQFP−32 (7 x 7 mm) (Pb−Free) Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 37 AMIS−30543 PACKAGE DIMENSIONS QFN32 CASE 485J−02 ISSUE C A B D PIN 1 LOCATION NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. E DIM A A1 A3 b D D2 E E2 e K L 2X 0.15 C 2X 0.15 C TOP VIEW (A3) 0.10 C MILLIMETERS MIN NOM MAX 0.800 0.900 1.000 0.000 0.025 0.050 0.200 REF 0.250 0.250 0.350 7.00 BSC 5.160 5.260 5.360 7.00 BSC 5.160 5.260 5.360 0.650 BSC 0.200 −−− −−− 0.300 0.400 0.500 A 0.08 C SEATING PLANE A1 SIDE VIEW C D2 L 9 32X EXPOSED PAD e K 16 4X 17 8 8 e 1 b E2 24 32 25 32X NOTE 3 0.10 C A B 0.05 C BOTTOM VIEW ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 38 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative AMIS−30543/D