AON6242 60V N-Channel MOSFET General Description The AON6242 uses trench MOSFET technology that is uniquely optimized to provide the most efficient hi gh frequency switching performance.Power losses are minimized due to an extremely low combination of RDS(ON) and Crss.In addition,switching behavior is well controlled with a soft recovery body diode.This dev ice is ideal for boost converters and synchronous rectifie rs for consumer, telecom, industrial power supplies and LED backlighting. Product Summary VDS 60V ID (at VGS=10V) 85A RDS(ON) (at VGS=10V) < 3.6mΩ RDS(ON) (at VGS = 4.5V) < 4.5mΩ 100% UIS Tested 100% Rg Tested D Top View 1 8 2 7 3 6 4 5 G S Absolute Maximum Ratings TA=25°C unless otherwise noted Symbol Parameter Drain-Source Voltage VDS VGS Gate-Source Voltage Continuous Drain Current G TC=25°C Pulsed Drain Current C Continuous Drain Current A 18.5 A 14.5 Avalanche Current C IAR 75 A Repetitive avalanche energy L=0.1mH C TC=25°C EAR 281 mJ Power Dissipation B TC=100°C TA=25°C Power Dissipation A Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case 83 PD 2.3 Steady-State Steady-State RθJA RθJC W 1.4 TJ, TSTG Symbol t ≤ 10s W 33 PDSM TA=70°C Junction and Storage Temperature Range 1/6 V 240 IDSM TA=70°C ±20 66 IDM TA=25°C Units V 85 ID TC=100°C Maximum 60 -55 to 150 Typ 14 40 1 °C Max 17 55 1.5 Units °C/W °C/W °C/W www.freescale.net.cn AON6242 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS Drain-Source Breakdown Voltage BVDSS Conditions Min ID=250µA, VGS=0V Max 60 1 Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±20V VGS(th) Gate Threshold Voltage VDS=VGS, ID=250µA 1.5 ID(ON) On state drain current VGS=10V, VDS=5V 240 Units V VDS=60V, VGS=0V IDSS TJ=55°C 5 µA 100 nA 2 2.5 V 3 3.6 4.8 5.8 VGS=4.5V, ID=16A 3.6 4.5 VGS=10V, ID=20A RDS(ON) Typ Static Drain-Source On-Resistance TJ=125°C A gFS Forward Transconductance VDS=5V, ID=20A 140 VSD Diode Forward Voltage IS=1A,VGS=0V 0.7 IS Maximum Body-Diode Continuous Current G DYNAMIC PARAMETERS Ciss Input Capacitance mΩ mΩ S 1 V 85 A 4240 5305 6370 pF VGS=0V, VDS=30V, f=1MHz 375 540 705 pF 6.5 22 38 pF VGS=0V, VDS=0V, f=1MHz 0.45 0.9 1.35 Ω SWITCHING PARAMETERS Qg(10V) Total Gate Charge 48 60 72 nC Qg(4.5V) Total Gate Charge 18 23 28 Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance Qgs Gate Source Charge Qgd Gate Drain Charge VGS=10V, VDS=30V, ID=20A nC 3 nC tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf Turn-Off Fall Time trr Body Diode Reverse Recovery Time IF=20A, dI/dt=500A/µs 17 24.5 32 Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 87 125 163 VGS=10V, VDS=30V, RL=1.5Ω, RGEN=3Ω nC 16 13 ns 4 ns 47 ns 6.5 ns ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. 2/6 www.freescale.net.cn AON6242 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 3.5V 90 80 4.5V 70 80 10V 70 ID(A) ID (A) 60 50 40 60 50 40 30 125°C 30 VGS=3V 20 20 10 10 0 25°C 0 0 1 2 3 4 VDS (Volts) Fig 1: On-Region Characteristics (Note E) 5 1.5 2.5 3 3.5 VGS(Volts) Figure 2: Transfer Characteristics (Note E) 4.5 Normalized On-Resistance VGS=4.5V 3.5 3.0 VGS=10V 2.5 4 1.8 VGS=10V ID=20A 1.6 1.4 VGS=4.5V ID=16A 1.2 17 5 2 10 1 2.0 0.8 0 5 10 15 20 25 30 0 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 7 25 50 75 100 125 150 0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18 Temperature (Note E) 175 1.0E+02 ID=20A 1.0E+01 6 40 1.0E+00 IS (A) 125°C RDS(ON) (mΩ Ω) 2 2 4.0 RDS(ON) (mΩ Ω) VDS=5V 90 5 1.0E-01 125°C 1.0E-02 4 25°C 1.0E-03 3 1.0E-04 25°C 2 1.0E-05 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) 3/6 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) www.freescale.net.cn AON6242 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 6000 10 VDS=30V ID=20A Capacitance (pF) VGS (Volts) Ciss 5000 8 6 4 2 4000 3000 2000 Coss 1000 Crss 0 0 0 10 20 30 40 Qg (nC) Figure 7: Gate-Charge Characteristics 50 0 60 1000.0 10 20 30 40 50 VDS (Volts) Figure 8: Capacitance Characteristics 400 TJ(Max)=150°C TC=25°C 350 100.0 10µs 10us RDS(ON) 300 100us 10.0 Power (W) ID (Amps) 60 1ms DC 1.0 TJ(Max)=150°C TC=25°C 0.1 250 17 5 2 10 200 150 100 50 0.0 0 0.01 0.1 1 10 VDS (Volts) 100 1000 0.0001 0.001 0.01 0.1 1 10 0 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-toCase (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse RθJC=1.5°C/W 40 1 PD 0.1 Ton Single Pulse T 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) 4/6 www.freescale.net.cn AON6242 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 160 IAR (A) Peak Avalanche Current 100 Power Dissipation (W) TA=25°C 120 TA=100°C 80 TA=150°C 40 60 40 20 TA=125°C 0 0 1 0 10 100 1000 Time in avalanche, tA (us) Figure 12: Single Pulse Avalanche capability (Note C) 25 50 75 100 125 TCASE (° °C) Figure 13: Power De-rating (Note F) 150 10000 100 TA=25°C 80 1000 Power (W) Current rating ID(A) 80 60 40 100 10 20 0 1 0 25 50 75 100 125 TCASE (° °C) Figure 14: Current De-rating (Note F) 150 0.0001 0.01 1 100 10000 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note G) Zθ JA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse RθJA=55°C/W 0.1 PD 0.01 Ton Single Pulse T 0.001 0.0001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note G) 5/6 www.freescale.net.cn AON6242 G ate C harge Test C ircuit & W aveform V gs Qg 1 0V + + V ds VDC - Q gs Q gd V DC - DUT V gs Ig C ha rg e R esistive S w itching Test C ircuit & W aveform s RL V ds Vds V gs 90% + Vd d DUT VDC - Rg 1 0% V gs V gs t d(on) tr t d(off) t on tf t off U nclam ped Inductive S w itching (U IS ) Test C ircuit & W aveform s L 2 E A R = 1/2 L IA R Vds B VD SS V ds Id + Vdd Vg s V gs I AR V DC - Rg Id DUT Vg s V gs D iode R ecovery T est C ircuit & W aveform s Q rr = - V ds + Id t DUT V gs V ds Isd V gs Ig 6/6 L Isd + Vdd t rr d I/dt I RM V dd V DC - IF Vd s www.freescale.net.cn