ONSEMI BC856BWT1G

BC856BWT1,
SBC856BWT1 Series,
BC857BWT1,
SBC857BWT1 Series,
BC858AWT1 Series
General Purpose
Transistors
http://onsemi.com
COLLECTOR
3
PNP Silicon
1
BASE
These transistors are designed for general purpose amplifier
applications. They are housed in the SC−70/SOT−323 which is
designed for low power surface mount applications.
2
EMITTER
Features
• AEC−Q101 Qualified and PPAP Capable
• S Prefix for Automotive and Other Applications Requiring Unique
•
Site and Control Change Requirements
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
3
1
2
SC−70/SOT−323
CASE 419
STYLE 3
MARKING DIAGRAM
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Rating
Symbol
Collector-Emitter Voltage
BC856, SBC856
BC857, SBC857
BC858
VCEO
Collector-Base Voltage
BC856, SBC856
BC857, SBC857
BC858
VCBO
Emitter−Base Voltage
VEBO
Collector Current − Continuous
Value
Unit
V
−65
−45
−30
V
−80
−50
−30
−5.0
xx = Specific Device Code
M
= Date Code*
G
= Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation may vary depending
upon manufacturing location.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 5 of this data sheet.
−100
mAdc
Characteristic
Symbol
Max
Unit
Total Device Dissipation FR− 5 Board,
(Note 1) TA = 25°C
PD
150
mW
RqJA
883
°C/W
TJ, Tstg
−55 to +150
°C
THERMAL CHARACTERISTICS
Junction and Storage Temperature
1
V
IC
Thermal Resistance,
Junction−to−Ambient
xx M G
G
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. FR−5 = 1.0 x 0.75 x 0.062 in.
© Semiconductor Components Industries, LLC, 2011
November, 2011 − Rev. 3
1
Publication Order Number:
BC856BWT1/D
BC856BWT1, SBC856BWT1 Series, BC857BWT1, SBC857BWT1 Series, BC858AWT1
Series
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
OFF CHARACTERISTICS
Collector −Emitter Breakdown Voltage
(IC = −10 mA)
BC856, SBC856 Series
BC857, SBC857 Series
BC858 Series
V(BR)CEO
−65
−45
−30
−
−
−
−
−
−
V
Collector −Emitter Breakdown Voltage
(IC = −10 mA, VEB = 0)
BC856, SBC856 Series
BC857B, SBC857B Only
BC858 Series
V(BR)CES
−80
−50
−30
−
−
−
−
−
−
V
Collector −Base Breakdown Voltage
(IC = −10 mA)
BC856, SBC856 Series
BC857, SBC857 Series
BC858 Series
V(BR)CBO
−80
−50
−30
−
−
−
−
−
−
V
Emitter −Base Breakdown Voltage
(IE = −1.0 mA)
BC856, SBC856 Series
BC857, SBC857 Series
BC858 Series
V(BR)EBO
−5.0
−5.0
−5.0
−
−
−
−
−
−
V
ICBO
−
−
−
−
−15
−4.0
nA
mA
hFE
−
−
90
150
−
−
−
−
270
−
BC856A, BC858A
BC856B, SBC856B, BC857B,
125
220
180
290
250
475
BC857C
420
520
800
−
−
−
−
−0.3
−0.65
−
−
−0.7
−0.9
−
−
−0.6
−
−
−
−0.75
−0.82
fT
100
−
−
MHz
Output Capacitance
(VCB = −10 V, f = 1.0 MHz)
Cob
−
−
4.5
pF
Noise Figure
(IC = −0.2 mA, VCE = −5.0 Vdc, RS = 2.0 kW,
f = 1.0 kHz, BW = 200 Hz)
NF
−
−
10
dB
Collector Cutoff Current (VCB = −30 V)
Collector Cutoff Current (VCB = −30 V, TA = 150°C)
ON CHARACTERISTICS
DC Current Gain
(IC = −10 mA, VCE = −5.0 V)
SBC857B BC858B
BC856A, BC585A
BC856B, SBC856B, BC857B,
BC857C
(IC = −2.0 mA, VCE = −5.0 V)
SBC857B, BC858B
Collector −Emitter Saturation Voltage
(IC = −10 mA, IB = −0.5 mA)
(IC = −100 mA, IB = −5.0 mA)
VCE(sat)
Base −Emitter Saturation Voltage
(IC = −10 mA, IB = −0.5 mA)
(IC = −100 mA, IB = −5.0 mA)
VBE(sat)
Base −Emitter On Voltage
(IC = −2.0 mA, VCE = −5.0 V)
(IC = −10 mA, VCE = −5.0 V)
VBE(on)
V
V
V
SMALL−SIGNAL CHARACTERISTICS
Current −Gain − Bandwidth Product
(IC = −10 mA, VCE = −5.0 Vdc, f = 100 MHz)
http://onsemi.com
2
BC856BWT1, SBC856BWT1 Series, BC857BWT1, SBC857BWT1 Series, BC858AWT1
Series
BC857/SBC847/BC858
-1.0
1.5
TA = 25°C
-0.9
VCE = -10 V
TA = 25°C
VBE(sat) @ IC/IB = 10
-0.8
V, VOLTAGE (VOLTS)
hFE , NORMALIZED DC CURRENT GAIN
2.0
1.0
0.7
0.5
-0.7
VBE(on) @ VCE = -10 V
-0.6
-0.5
-0.4
-0.3
-0.2
0.3
VCE(sat) @ IC/IB = 10
-0.1
0.2
-0.2
-0.5 -1.0 -2.0
-5.0 -10 -20
-50
IC, COLLECTOR CURRENT (mAdc)
0
-0.1 -0.2
-100 -200
Figure 1. Normalized DC Current Gain
1.0
θVB , TEMPERATURE COEFFICIENT (mV/ °C)
VCE , COLLECTOR-EMITTER VOLTAGE (V)
TA = 25°C
-1.6
-1.2
IC =
-10 mA
IC = -50 mA
IC = -200 mA
IC = -100 mA
IC = -20 mA
-0.4
0
-0.02
-55°C to +125°C
1.2
1.6
2.0
2.4
2.8
-10 -20
-0.1
-1.0
IB, BASE CURRENT (mA)
-0.2
10
Cib
7.0
TA = 25°C
5.0
Cob
3.0
2.0
1.0
-0.4 -0.6
-1.0
-2.0
-4.0 -6.0
-10
-10
-1.0
IC, COLLECTOR CURRENT (mA)
-100
Figure 4. Base−Emitter Temperature Coefficient
f,
T CURRENT-GAIN - BANDWIDTH PRODUCT (MHz)
Figure 3. Collector Saturation Region
C, CAPACITANCE (pF)
-100
-50
Figure 2. “Saturation” and “On” Voltages
-2.0
-0.8
-0.5 -1.0 -2.0
-5.0 -10 -20
IC, COLLECTOR CURRENT (mAdc)
-20 -30 -40
400
300
200
150
VCE = -10 V
TA = 25°C
100
80
60
40
30
20
-0.5
-1.0
-2.0 -3.0
-5.0
-10
-20
-30
-50
VR, REVERSE VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (mAdc)
Figure 5. Capacitances
Figure 6. Current−Gain − Bandwidth Product
http://onsemi.com
3
BC856BWT1, SBC856BWT1 Series, BC857BWT1, SBC857BWT1 Series, BC858AWT1
Series
BC856/SBC856
TJ = 25°C
VCE = -5.0 V
TA = 25°C
-0.8
V, VOLTAGE (VOLTS)
hFE , DC CURRENT GAIN (NORMALIZED)
-1.0
2.0
1.0
0.5
VBE(sat) @ IC/IB = 10
-0.6
VBE @ VCE = -5.0 V
-0.4
-0.2
0.2
VCE(sat) @ IC/IB = 10
0
-0.2
-1.0 -2.0 -5.0 -10 -20 -50 -100 -200
IC, COLLECTOR CURRENT (mA)
-0.1 -0.2
-0.5
-50 -100 -200
-5.0 -10 -20
-1.0 -2.0
IC, COLLECTOR CURRENT (mA)
Figure 8. “On” Voltage
-2.0
-1.0
-1.6
-1.2
IC =
-10 mA
-20 mA
-50 mA
-100 mA -200 mA
-0.8
-0.4
TJ = 25°C
0
-0.02
-0.05 -0.1 -0.2
-0.5 -1.0 -2.0
IB, BASE CURRENT (mA)
-5.0
-10
θVB, TEMPERATURE COEFFICIENT (mV/ °C)
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 7. DC Current Gain
-20
-1.4
-1.8
-2.6
-3.0
-0.2
f,
T CURRENT-GAIN - BANDWIDTH PRODUCT
C, CAPACITANCE (pF)
TJ = 25°C
Cib
10
8.0
Cob
4.0
2.0
-0.1 -0.2
-0.5
-1.0 -2.0
-5.0 -10 -20
VR, REVERSE VOLTAGE (VOLTS)
-0.5 -1.0
-50
-2.0
-5.0 -10 -20
IC, COLLECTOR CURRENT (mA)
-100 -200
Figure 10. Base−Emitter Temperature Coefficient
40
6.0
-55°C to 125°C
-2.2
Figure 9. Collector Saturation Region
20
qVB for VBE
VCE = -5.0 V
500
200
100
50
20
-100
-1.0
-10
IC, COLLECTOR CURRENT (mA)
-50 -100
Figure 11. Capacitance
Figure 12. Current−Gain − Bandwidth Product
http://onsemi.com
4
r(t), TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
BC856BWT1, SBC856BWT1 Series, BC857BWT1, SBC857BWT1 Series, BC858AWT1
Series
1.0
0.7
0.5
D = 0.5
0.2
0.3
0.2
0.1
0.05
SINGLE PULSE
0.1
0.07
0.05
ZqJC(t) = r(t) RqJC
RqJC = 83.3°C/W MAX
ZqJA(t) = r(t) RqJA
RqJA = 200°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) − TC = P(pk) RqJC(t)
P(pk)
SINGLE PULSE
t1
t2
0.03
DUTY CYCLE, D = t1/t2
0.02
0.01
0.1
0.2
0.5
1.0
2.0
10
5.0
20
50
t, TIME (ms)
100
200
500
1.0k
2.0k
5.0k 10k
Figure 13. Thermal Response
The safe operating area curves indicate IC−VCE limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall
below the limits indicated by the applicable curve.
The data of Figure 14 is based upon TJ(pk) = 150°C; TC
or TA is variable depending upon conditions. Pulse curves
are valid for duty cycles to 10% provided TJ(pk) ≤ 150°C.
TJ(pk) may be calculated from the data in Figure 13. At
high case or ambient temperatures, thermal limitations
will reduce the power that can be handled to values less
than the limitations imposed by the secondary breakdown.
-200
IC, COLLECTOR CURRENT (mA)
1s
3 ms
-100
TA = 25°C
-50
TJ = 25°C
BC858
BC857
BC856
-10
-5.0
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
-2.0
-1.0
-5.0
-10
-30 -45 -65 -100
VCE, COLLECTOR-EMITTER VOLTAGE (V)
Figure 14. Active Region Safe Operating Area
ORDERING INFORMATION
Device
BC856BWT1G
SBC856BWT1G
BC857BWT1G
SBC857BWT1G
BC857CWT1G
BC858AWT1G
BC858BWT1G
Marking
Package
Shipping†
3B
SC−70/SOT−323
(Pb−Free)
3,000 / Tape & Reel
3F
SC−70/SOT−323
(Pb−Free)
3,000 / Tape & Reel
3G
SC−70/SOT−323
(Pb−Free)
3,000 / Tape & Reel
3J
SC−70/SOT−323
(Pb−Free)
3,000 / Tape & Reel
3K
SC−70/SOT−323
(Pb−Free)
3,000 / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
5
BC856BWT1, SBC856BWT1 Series, BC857BWT1, SBC857BWT1 Series, BC858AWT1
Series
PACKAGE DIMENSIONS
SC−70 (SOT−323)
CASE 419−04
ISSUE N
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
e1
DIM
A
A1
A2
b
c
D
E
e
e1
L
HE
3
E
HE
1
2
b
e
A
0.05 (0.002)
c
A2
MIN
0.80
0.00
0.30
0.10
1.80
1.15
1.20
0.20
2.00
MILLIMETERS
NOM
MAX
0.90
1.00
0.05
0.10
0.70 REF
0.35
0.40
0.18
0.25
2.10
2.20
1.24
1.35
1.30
1.40
0.65 BSC
0.38
0.56
2.10
2.40
MIN
0.032
0.000
0.012
0.004
0.071
0.045
0.047
0.008
0.079
INCHES
NOM
0.035
0.002
0.028 REF
0.014
0.007
0.083
0.049
0.051
0.026 BSC
0.015
0.083
MAX
0.040
0.004
0.016
0.010
0.087
0.053
0.055
0.022
0.095
STYLE 3:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
L
A1
SOLDERING FOOTPRINT*
0.65
0.025
0.65
0.025
1.9
0.075
0.9
0.035
0.7
0.028
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
6
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
BC856BWT1/D