ONSEMI BC847BDW1T1G

BC846BDW1T1,
BC847BDW1T1,
BC848CDW1T1
Dual General Purpose
Transistors
http://onsemi.com
NPN Duals
(3)
These transistors are designed for general purpose amplifier
applications. They are housed in the SOT−363/SC−88 which is
designed for low power surface mount applications.
• Device Marking:
BC846BDW1T1 = 1B
BC847BDW1T1 = 1F
BC848CDW1T1 = 1L
(2)
Q1
Q2
(4)
(5)
Features
SOT−363
CASE 419B
STYLE 1
6
MAXIMUM RATINGS
1
Symbol
BC846
BC847
BC848
Unit
Collector −Emitter Voltage
VCEO
65
45
30
V
Collector −Base Voltage
VCBO
80
50
30
V
Emitter −Base Voltage
VEBO
6.0
6.0
5.0
V
IC
100
100
100
mAdc
Collector Current −
Continuous
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits
are exceeded, device functional operation is not implied, damage may occur
and reliability may be affected.
THERMAL CHARACTERISTICS
Characteristic
(6)
DIAGRAM
MARKING
• Pb−Free Package is Available
Rating
(1)
Symbol
Max
Unit
Total Device Dissipation
Per Device
FR−5 Board (Note 1)
TA = 25°C
Derate Above 25°C
PD
380
250
mW
Thermal Resistance,
Junction−to−Ambient
Junction and Storage
Temperature Range
3.0
mW/°C
RJA
328
°C/W
TJ, Tstg
−55 to +150
°C
1xm
1x = Specific Device Code
x = B, F, L
m = Date Code
ORDERING INFORMATION
Package
Shipping†
BC846BDW1T1
SOT−363
3000 Units/Reel
BC847BDW1T1
SOT−363
3000 Units/Reel
BC847BDW1T1G
SOT−363
(Pb−Free)
3000 Units/Reel
BC848CDW1T1
SOT−363
3000 Units/Reel
Device
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
1. FR−5 = 1.0 x 0.75 x 0.062 in
 Semiconductor Components Industries, LLC, 2004
June, 2004 − Rev. 3
1
Publication Order Number:
BC846BDW1T1/D
BC846BDW1T1, BC847BDW1T1, BC848CDW1T1
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
65
45
30
−
−
−
−
−
−
80
50
30
−
−
−
−
−
−
80
50
30
−
−
−
−
−
−
6.0
6.0
5.0
−
−
−
−
−
−
−
−
−
−
15
5.0
BC846B, BC847B
BC848C
−
−
150
270
−
−
BC846B, BC847B
BC848C
200
420
290
520
450
800
Unit
OFF CHARACTERISTICS
Collector −Emitter Breakdown Voltage
(IC = 10 mA)
Collector −Emitter Breakdown Voltage
(IC = 10 A, VEB = 0)
Collector −Base Breakdown Voltage
(IC = 10 A)
Emitter −Base Breakdown Voltage
(IE = 1.0 A)
V(BR)CEO
BC846
BC847
BC848
V
V(BR)CES
BC846
BC847
BC848
V
V(BR)CBO
BC846
BC847
BC848
V
V(BR)EBO
BC846
BC847
BC848
Collector Cutoff Current (VCB = 30 V)
(VCB = 30 V, TA = 150°C)
ICBO
V
nA
A
ON CHARACTERISTICS
DC Current Gain
(IC = 10 A, VCE = 5.0 V)
(IC = 2.0 mA, VCE = 5.0 V)
hFE
−
Collector −Emitter Saturation Voltage (IC = 10 mA, IB = 0.5 mA)
Collector −Emitter Saturation Voltage (IC = 100 mA, IB = 5.0 mA)
VCE(sat)
−
−
−
−
0.25
0.6
V
Base −Emitter Saturation Voltage (IC = 10 mA, IB = 0.5 mA)
Base −Emitter Saturation Voltage (IC = 100 mA, IB = 5.0 mA)
VBE(sat)
−
−
0.7
0.9
−
−
V
Base −Emitter Voltage (IC = 2.0 mA, VCE = 5.0 V)
Base −Emitter Voltage (IC = 10 mA, VCE = 5.0 V)
VBE(on)
580
−
660
−
700
770
mV
fT
100
−
−
MHz
Cobo
−
−
4.5
pF
−
−
10
SMALL−SIGNAL CHARACTERISTICS
Current −Gain − Bandwidth Product
(IC = 10 mA, VCE = 5.0 Vdc, f = 100 MHz)
Output Capacitance (VCB = 10 V, f = 1.0 MHz)
Noise Figure
(IC = 0.2 mA, VCE = 5.0 Vdc, RS = 2.0 k,f = 1.0 kHz, BW = 200 Hz)
http://onsemi.com
2
NF
dB
BC846BDW1T1, BC847BDW1T1, BC848CDW1T1
TYPICAL CHARACTERISTICS − BC847 & BC848
1.0
VCE = 10 V
TA = 25°C
1.5
TA = 25°C
0.9
0.8
V, VOLTAGE (VOLTS)
hFE , NORMALIZED DC CURRENT GAIN
2.0
1.0
0.8
0.6
0.4
VBE(sat) @ IC/IB = 10
0.7
VBE(on) @ VCE = 10 V
0.6
0.5
0.4
0.3
0.2
0.3
VCE(sat) @ IC/IB = 10
0.1
0.2
0.2
0.5
50
2.0
5.0 10
1.0
20
IC, COLLECTOR CURRENT (mAdc)
100
0
0.1
200
2.0
TA = 25°C
1.6
IC = 200 mA
1.2
IC =
IC =
10 mA 20 mA
IC = 50 mA
IC = 100 mA
0.8
0.4
0
0.02
10
0.1
1.0
IB, BASE CURRENT (mA)
20
1.0
−55°C to +125°C
1.2
1.6
2.0
2.4
2.8
f,
T CURRENT−GAIN − BANDWIDTH PRODUCT (MHz)
C, CAPACITANCE (pF)
TA = 25°C
Cib
3.0
Cob
2.0
1.0
0.4 0.6 0.8 1.0
2.0
4.0 6.0 8.0 10
VR, REVERSE VOLTAGE (VOLTS)
20
100
Figure 4. Base−Emitter Temperature Coefficient
10
5.0
10
1.0
IC, COLLECTOR CURRENT (mA)
0.2
Figure 3. Collector Saturation Region
7.0
50 70 100
Figure 2. “Saturation” and “On” Voltages
θVB, TEMPERATURE COEFFICIENT (mV/ °C)
VCE , COLLECTOR−EMITTER VOLTAGE (V)
Figure 1. Normalized DC Current Gain
0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30
IC, COLLECTOR CURRENT (mAdc)
40
400
300
200
VCE = 10 V
TA = 25°C
100
80
60
40
30
20
0.5 0.7
Figure 5. Capacitances
1.0
2.0 3.0
5.0 7.0 10
20
IC, COLLECTOR CURRENT (mAdc)
30
Figure 6. Current−Gain − Bandwidth Product
http://onsemi.com
3
50
BC846BDW1T1, BC847BDW1T1, BC848CDW1T1
TYPICAL CHARACTERISTICS − BC846
TA = 25°C
VCE = 5 V
TA = 25°C
0.8
VBE(sat) @ IC/IB = 10
V, VOLTAGE (VOLTS)
hFE , DC CURRENT GAIN (NORMALIZED)
1.0
2.0
1.0
0.5
0.6
VBE @ VCE = 5.0 V
0.4
0.2
0.2
VCE(sat) @ IC/IB = 10
0
10
100
1.0
IC, COLLECTOR CURRENT (mA)
0.1 0.2
0.2
0.5
1.0
2.0
TA = 25°C
1.6
20 mA
50 mA
100 mA
200 mA
1.2
IC =
10 mA
0.8
0.4
0
0.02
0.05
0.1
0.2
0.5
1.0 2.0
IB, BASE CURRENT (mA)
5.0
10
20
20
Cib
10
6.0
Cob
0.2
0.5
1.0 2.0
10 20
5.0
VR, REVERSE VOLTAGE (VOLTS)
50
50
100
200
−1.4
−1.8
VB for VBE
−55°C to 125°C
−2.2
−2.6
−3.0
f,
T CURRENT−GAIN − BANDWIDTH PRODUCT
C, CAPACITANCE (pF)
TA = 25°C
0.1
200
0.2
0.5
10 20
5.0
1.0 2.0
IC, COLLECTOR CURRENT (mA)
Figure 10. Base−Emitter Temperature Coefficient
40
2.0
100
−1.0
Figure 9. Collector Saturation Region
4.0
50
Figure 8. “On” Voltage
θVB, TEMPERATURE COEFFICIENT (mV/ °C)
VCE , COLLECTOR−EMITTER VOLTAGE (VOLTS)
Figure 7. Normalized DC Current Gain
10 20
2.0
5.0
IC, COLLECTOR CURRENT (mA)
500
VCE = 5 V
TA = 25°C
200
100
50
20
1.0
5.0 10
50 100
IC, COLLECTOR CURRENT (mA)
100
Figure 11. Capacitance
Figure 12. Current−Gain − Bandwidth Product
http://onsemi.com
4
BC846BDW1T1, BC847BDW1T1, BC848CDW1T1
1.0
r(t), TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
D = 0.5
0.2
0.1
0.1
0.05
0.02
0.01
ZJA(t) = r(t) RJA
RJA = 328°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) − TC = P(pk) RJC(t)
P(pk)
t1
0.01
t2
DUTY CYCLE, D = t1/t2
SINGLE PULSE
0.001
0
10
1.0
100
t, TIME (ms)
1.0k
10k
100k
1.0M
Figure 13. Thermal Response
The safe operating area curves indicate IC−VCE limits
of the transistor that must be observed for reliable
operation. Collector load lines for specific circuits must
fall below the limits indicated by the applicable curve.
The data of Figure 14 is based upon TJ(pk) = 150°C; TC
or TA is variable depending upon conditions. Pulse
curves are valid for duty cycles to 10% provided TJ(pk) ≤
150°C. T J(pk) may be calculated from the data in
Figure 13. At high case or ambient temperatures,
thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by the
secondary breakdown.
−200
IC, COLLECTOR CURRENT (mA)
1s
3 ms
−100
−50
−10
−5.0
−2.0
−1.0
TA = 25°C
TJ = 25°C
BC558
BC557
BC556
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
−5.0
−10
−30 −45 −65 −100
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 14. Active Region Safe Operating Area
http://onsemi.com
5
BC846BDW1T1, BC847BDW1T1, BC848CDW1T1
PACKAGE DIMENSIONS
SOT−363 (SC−88)
CASE 419B−02
ISSUE T
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419B−01 OBSOLETE, NEW STANDARD 419B−02.
A
G
6
5
4
1
2
3
DIM
A
B
C
D
G
H
J
K
N
S
−B−
S
D 6 PL
0.2 (0.008)
M
B
M
MILLIMETERS
MIN
MAX
1.80
2.20
1.15
1.35
0.80
1.10
0.10
0.30
0.65 BSC
−−−
0.10
0.10
0.25
0.10
0.30
0.20 REF
2.00
2.20
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2
N
J
C
H
INCHES
MIN
MAX
0.071 0.087
0.045 0.053
0.031 0.043
0.004 0.012
0.026 BSC
−−− 0.004
0.004 0.010
0.004 0.012
0.008 REF
0.079 0.087
K
SOLDERING FOOTPRINT*
0.50
0.0197
0.65
0.025
0.65
0.025
0.40
0.0157
1.9
0.0748
SCALE 20:1
mm inches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
http://onsemi.com
6
For additional information, please contact your
local Sales Representative.
BC846BDW1T1/D