PD - 97284 AUTOMOTIVE MOSFET Features l l l l l l IRLR3114ZPbF IRLU3114ZPbF HEXFET® Power MOSFET Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Logic Level D VDSS = 40V RDS(on) = 4.9mΩ G Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. S D-Pak I-Pak IRLR3114ZPbF IRLU3114ZPbF Absolute Maximum Ratings ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS (Thermally limited) EAS (Tested ) IAR EAR TJ TSTG Parameter Max. Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) 130 89 42 500 140 c Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Reflow Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw d c h g Thermal Resistance RθJC RθJA RθJA j Parameter Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient j ij Units A W 0.95 ±16 130 260 See Fig.12a, 12b, 15, 16 W/°C V mJ A mJ -55 to + 175 °C 300 10 lbf in (1.1N m) y y Typ. Max. Units ––– ––– ––– 1.05 40 110 °C/W HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 5/9/07 IRLR/U3114ZPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Min. Typ. Max. Units Conditions Qg Qgs Qgd td(on) tr td(off) tf LD Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance 40 ––– ––– ––– 1.0 98 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.032 3.9 5.2 ––– ––– ––– ––– ––– ––– 40 12 18 25 140 33 50 4.5 ––– ––– 4.9 6.5 2.5 ––– 20 250 100 -100 56 ––– ––– ––– ––– ––– ––– ––– LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 3810 650 350 2390 580 820 ––– ––– ––– ––– ––– ––– S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 32V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 32V gfs IDSS IGSS V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 42A VGS = 4.5V, ID = 42A V VDS = VGS, ID = 100µA S VDS = 10V, ID = 42A µA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 16V VGS = -16V ID = 42A nC VDS = 20V VGS = 4.5V VDD = 20V ID = 42A ns RG = 3.7Ω VGS = 4.5V D Between lead, e e e e nH pF G f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 130 ISM (Body Diode) Pulsed Source Current ––– ––– 500 VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time ––– ––– ––– ––– 30 27 1.3 45 41 2 c Conditions MOSFET symbol A V ns nC D showing the integral reverse G S p-n junction diode. TJ = 25°C, IS = 42A, VGS = 0V TJ = 25°C, IF = 42A, VDD = 20V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRLR/U3114ZPbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.7V 2.5V 100 10 1 2.5V 10 2.5V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 0.1 0.1 BOTTOM 1 1 10 0.1 100 1 10 100 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 200 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.7V 2.5V 100 T J = 175°C T J = 25°C 10 1 VDS = 15V ≤60µs PULSE WIDTH 0.1 T J = 25°C 150 100 T J = 175°C 50 V DS = 10V 380µs PULSE WIDTH 0 1 2 3 4 5 6 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 7 0 20 40 60 80 100 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRLR/U3114ZPbF 100000 6.0 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd VGS, Gate-to-Source Voltage (V) ID= 42A C, Capacitance (pF) Coss = Cds + Cgd 10000 Ciss Coss 1000 Crss 100 5.0 VDS= 32V VDS= 20V VDS= 8.0V 4.0 3.0 2.0 1.0 0.0 1 10 100 0 VDS, Drain-to-Source Voltage (V) 40 50 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 30 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 1000 T J = 175°C T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 100 1msec 10msec 10 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 DC 1 0.0 0.5 1.0 1.5 2.0 2.5 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 20 QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 100 10 3.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRLR/U3114ZPbF 2.0 ID, Drain Current (A) 120 RDS(on) , Drain-to-Source On Resistance (Normalized) 140 Limited By Package 100 80 60 40 20 ID = 42A VGS = 10V 1.5 1.0 0.5 0 25 50 75 100 125 150 -60 -40 -20 0 20 40 60 80 100120140160180 175 T J , Junction Temperature (°C) T C , Case Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.1 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τC τ τ2 τ3 Ci= τi/Ri Ci i/Ri 1E-005 τ3 τ4 τ4 Ri (°C/W) τi (sec) 0.0350 0.000013 0.2433 0.000077 0.4851 0.001043 0.2867 0.004658 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 R4 R4 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRLR/U3114ZPbF D.U.T RG VGS 20V DRIVER L VDS + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) 600 15V ID 9.7A 17A BOTTOM 42A TOP 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 3.0 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VCC VGS(th) , Gate threshold Voltage (V) 10 V 2.5 2.0 1.5 1.0 ID ID ID ID = 150µA = 250µA = 1.0mA = 1.0A 0.5 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRLR/U3114ZPbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) 100 0.01 0.05 0.10 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 150 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 42A 100 50 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRLR/U3114ZPbF D.U.T Driver Gate Drive + * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - D= Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs VDS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRLR/U3114ZPbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information (;$03/( 7+,6,6$1,5)5 3$57180%(5 :,7+$66(0%/< ,17(51$7,21$/ /27&2'( ,5)5 5(&7,),(5 $66(0%/('21:: /2*2 ,17+($66(0%/</,1($ '$7(&2'( $ <($5 :((. /,1($ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ $66(0%/< LQGLFDWHV/HDG)UHH /27&2'( 3LQDVVHPEO\OLQHSRVLWLRQLQGLFDWHV /HDG)UHHTXDOLILFDWLRQWRWKHFRQVXPHUOHYHO 3$57180%(5 25 ,17(51$7,21$/ 5(&7,),(5 ,5)5 '$7(&2'( 3 '(6,*1$7(6/($')5(( 3 '(6,*1$7(6/($')5(( /2*2 352'8&7237,21$/ 352'8&748$/,),('727+( $66(0%/< &21680(5/(9(/237,21$/ /27&2'( <($5 :((. $ www.irf.com $66(0%/<6,7(&2'( 9 IRLR/U3114ZPbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information (;$03/( 7+,6,6$1,5)8 :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1($ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)8 $ $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1($ 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)8 $66(0%/< /27&2'( 10 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( www.irf.com IRLR/U3114ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.15mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 42A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material). Rθ is measured at TJ approximately 90°C. Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/07 www.irf.com 11