POWERINT LYT4324E

LYT4211-4218/4311-4318
™
LYTSwitch-4高功率LED驱动器IC产品系列
单级PFC初级恒流控制器,适用于低线电压输入,
可控硅调光和非调光应用
产品特色
•
•
•
•
•
•
•
优于±5%的恒流(CC)调整精度
可控硅调光至低于5%的光输出量
快速启动
• 最大亮度时启动时间<250毫秒
• 10%亮度时启动时间<1秒
高功率因数(>0.9)
轻松满足EN61000-3-2要求
• 设计经优化后THD可低于10%
效率最高可达92%
采用132 kHz开关频率设计可使用较小的磁芯
AC
IN
V
D
LYTSwitch-4
CONTROL
S
R
BP
FB
PI-6800-050913
图 1. 典型电路原理图
高性能,内部集成了驱动电路、控制电路及开关管
LYTSwitch-4产品系列可设计具备高功率因数的离线式LED驱动
器,使其轻松满足国际标准规定的THD及谐波要求。输出电流精
度高,可达到优于±5%的恒流精度1。在典型应用中,效率可轻松
达到92%以上。
支持各种类型的可控硅调光器
适用于不同的应用和功率水平
元件编号
输入电压范围
可控硅调光
LYT4211-LYT4218
85-132 VAC
否
LYT4311-LYT4318
85-132 VAC
是
LYTSwitch-4产品系列可以为前沿及后沿可控硅调光应用提供出
色的导通(上电)性能。这会使驱动器具有更宽的调光范围以及
更快的启动速度,即使在低导通角下上电时也一样出色 – 具有大
输出功率表1.2
产品t 6
最小输出功率3
最大输出功率4
LYT4x11E/L5
2.5 W
12 W
LYT4x12E/L
2.5 W
15 W
LYT4x13E/L
3.8 W
18 W
路板。将PFC和CC功能同时集成到单级中还有助于降低成本和提
LYT4x14E/L
4.5 W
22 W
高效率。132 kHz 的开关频率允许使用较小的低成本磁芯。
LYT4x15E/L
5.5 W
25 W
LYT4x16E/L
6.8 W
35 W
电解电容。这意味着驱动器的使用寿命可以得到大幅延长,对于
LYT4x17E/L
8.0 W
50 W
灯泡和其他高温应用尤为显著。
LYT4x18E/L
18 W
78 W
调光比与低“点亮”启动电流。
低方案成本与长使用寿命
LYTSwitch-4
IC具有高集成度,采用初级侧控制技术,可省去光
隔离器和减少元件数。这样就可以使用低成本的单面印刷电
采用LYTSwitch-4系列器件的LED驱动器无需使用初级侧大容量铝
eSIP-7C(E封装)
eSIP-7F(L封装)
表 1. 输出功率表
注释:
1. 在典型设计中的性能。参见应用指。
2. 连续输出功率是在开放式设计及有足够的散热条件下测量得到的;器件周围
温度为70 °C。功率水平根据典型的LED灯串电压以效率>80%计算得出。
3. 最小输出功率要求CBP = 47 µF。
4. 最大输出功率要求CBP = 4.7 µF。
5. LYT4311 CBP = 47 µF,LYT4211 CBP = 4.7 µF。
6. 封装:eSIP-7C,eSIP-7F(参见图2)。
图 2. 封装选项
www.powerint.com
2013年10月
LYT4211-4218/4311-4318
拓扑结构
隔离
效率
成本
THD
输出电压
是
否
否
否
88%
92%
89%
90%
高
低
中
低
最好
良好
最好
最好
任何
受限
任何
高压
隔离反激式
降压式
抽头降压式
降压-升压式
表 2. 在典型非调光10 W低压设计中不同拓扑结构的性能
典型电路原理图
AC
IN
LYTSwitch-4
V
D
CONTROL
S
主要特色
反激式
R
BP
FB
PI-6800-050913
优势
• 提供隔离输出
• 支持最宽范围的输出电压
• 具有极佳的THD性能
限制
• 反激式变压器
• 总效率被变压器中的寄生电容和电感降低
• 需要更大的PCB面积来满足隔离要求
• 要求使用额外的元件(初级嵌位和偏置电路)
• RMS开关及绕组电流更大,会增大损耗和降低效率
图 3a. 典型隔离反激式电路原理图
降压式
AC
IN
LYTSwitch-4
V
D
CONTROL
S
R
BP
FB
PI-6841-060313
优势
• 效率最高
• 元件数量少,体积小
• 简单的低成本电感
• 低漏极-源极电压应力
• EMI性能最佳/滤波元件数目最少
限制
• 单输入线电压范围
• 输出电压<0.6 × VIN(AC) × 1.41
• 输出电压适合低THD设计
• 非隔离
图 3b. 典型降压式电路原理图
抽头降压式
AC
IN
优势
• 非常适合低输出电压(<20 V)
• 高效率
• 元件数量少
• 简单的低成本抽头电感
限制
• 设计最适合单输入线电压
• 要求使用额外的元件(初级箝位电路)
• 非隔离
LYTSwitch-4
V
D
CONTROL
S
R
BP
FB
PI-6842-060313
图 3c. 典型抽头降压式电路原理图
降压-升压式
优势
• 非常适合非隔离高输出电压设计
• 高效率
• 元件数量少
• 可以使用简单、常见的低成本功率电感
• THD最低
限制
• 最大VOUT受到MOSFET击穿电压的限制
• 单输入线电压范围
• 非隔离
AC
IN
LYTSwitch-4
V
D
CONTROL
S
R
BP
FB
PI-6859-060313
图 3d. 典型降压-升压式电路原理图
2
版本D 10/13
www.powerint.com
LYT4211-4218/4311-4318
DRAIN (D)
5.9 V
REGULATOR
BYPASS (BP)
BYPASS
CAPACITOR
SELECT
FAULT
PRESENT
AUTO-RESTART
COUNTER
BYPASS PIN
UNDERVOLTAGE
1V
VOLTAGE
MONITOR (V)
STOP
LOGIC
JITTER
CLOCK
OSCILLATOR
LINE
SENSE
-
LEB
OCP
+
IV
FEEDBACK (FB)
VBG
PFC/CC
CONTROL
IFB
CURRENT LIMIT
COMPARATOR
-
ILIM
VSENSE
MI
FBOFF
DCMAX
IS
REFERENCE
BLOCK
REFERENCE (R)
SenseFet
FBOFF
DCMAX
OV
FEEDBACK
SENSE
Gate
Driver
Comparator
+
3-VT
5.9 V
5.0 V
-
MI
HYSTERETIC
THERMAL
SHUTDOWN
+
ILIM
SOFT-START
TIMER
VBG
6.4 V
PI-6843-071112
SOURCE (S)
图 4. 功能结构图
引脚功能描述
漏极(D)引脚:
电压监测(V)引脚:
这个引脚是功率FET的漏极连接点。在启动及稳态工作时还提供
该引脚与一个由整流管、滤波电容和电阻构成的外部输入线电
内部工作电流。
压峰值检测器相连。施加的电流用于控制输入过压(OV)的停止逻
源极(S)引脚:
辑,并提供前馈信号以控制输出电流和远程开/关功能。
这个引脚是功率FET的源极连接点。它也是旁路、反馈、参考及
电压监测引脚的接地参考。
Exposed Pad
(Backside) Internally
Connected to
SOURCE Pin
旁路(BP)引脚:
一个外部旁路电容连接到这个引脚,用于生成内部5.9 V的供电
电源。此外,该引脚还可通过旁路引脚电容值的选取提供输出功
E Package (eSIP-7C)
(Top View)
率选择。
7D
5S
4 BP
3 FB
2V
1R
反馈(FB)引脚:
反馈引脚用于输出电压反馈。流入反馈引脚的电流与输出电压
成正比。反馈引脚还包含开路负载和过载输出保护电路。
参考(R)引脚:
该引脚连接到一个外部精密电阻,用于配置调光(LYT4311-4318)
工作模式与非可控硅调光(LYT4211-4218)工作模式。
L Package (eSIP-7F)
Exposed Pad
(backside) Internally
Connected to
SOURCE Pin (see
eSIP-7C Package
Drawing)
1 3 5
R FB S
7
Lead Bend Outward 2 4
V BP D
from Drawing
(Refer to eSIP-7F Package
Outline Drawing)
PI-5432-082411
图 5. 引脚配置
3
www.powerint.com
版本D 10/13
LYT4211-4218/4311-4318
功能描述
LYTSwitch-4器件将一个控制器和一个高压功率FET单片集成到了
参考引脚
同一个封装内。控制器可同时提供单级高功率因数校正(PFC)和
参考引脚通过外部电阻接地(源极)。选取的值设定内部参
恒流输出。LYTSwitch-4控制器包括一个振荡器、反馈(检测及
考,从而决定采用调光(LYT4311-4318)工作模式还是非调光
逻辑)电路、5.9 V稳压器、迟滞过热保护、频率抖动、逐周期限
(LYT4211-4218)工作模式,以及电压监测引脚的输入过压阈
流、自动重启动、电感校正、功率因数以及恒流控制电路。
值。对于采用LYT4211-4218器件的非调光或PWM调光应用,
外部电阻的值应为24.9 kW ±1%。对于采用LYT4311-4318器件
反馈引脚电流控制特性
下图显示了反馈引脚电流的工作边界。电流超过I FB(SKIP)时,开关
被禁止;电流低于IFB(AR)时,器件进入自动重启动模式。
的相位角AC调光应用,外部电阻的值应为49.9 kW ±1%。由于
电阻容差直接影响输出容差,建议采用1%的电阻容差。不得使
用其他电阻值。
旁路引脚电容功率增益的选择
LYTSwitch-4器件能够调整内部增益以适应满输出功率设置或减
IFB(SKIP)
输出功率设置。这样就可以根据散热和效率的需要,选择较大
Skip-Cycle
规格的器件并达到降低耗散的目的。功率增益根据旁路引脚电
容的值来选择。满功率设置通过一个4.7 mF电容来选取,减功率
设置(为获得更高效率)通过一个47 mF电容来选取。旁路引脚电
容可同时设定功率增益和过流保护(OCP)阈值。与较大规格的器
CC Control
Region
IFB
件不同,LYT4x11的功率增益不可编程。LYT4x11器件使用一个
47 mF电容。
开关频率
在正常工作条件下,开关频率为132 kHz。为使EMI电平更低,
IFB(DCMAXR)
将开关频率抖动(调制)了约2.6 kHz。启动时的频率为66 kHz,
以便在对AC输入进行相位角调光时缩短启动时间。在深度调光
Soft-Start and
CC Fold-Back
Region
时禁止抖动。
软启动
控制器具有软启动调整功能,在输出电容很大的设计中可以防止电
源在软启动期间(t SOF T )误认为输出短路而进入自动重启动保护状
态。在启动时,LYTSwitch-4对最大占空比加以限制以输出功率。软
IFB(AR)
启动持续总时间为tSOFT。
Auto-Restart
DC10
DCMAX
Maximum Duty Cycle
PI-5433-060410
远程ON/OFF和EcoSmart™
电压监测引脚上连有1 V的输入阈值比较器,此电压阈值也可用于
实现远程ON/OFF控制。当电压监测引脚接收到禁止输出的信号
时(电压监测引脚通过光耦器的光电管接地),LYTSwitch-4将
在内部功率FET被强行关断之前完成其当前开关周期。
图 6. 反馈引脚电流特性
反馈引脚电流还可用于箝位最大占空比,以限制过载和开环情
况下的可用输出功率。这种占空比减小特性还可以使启动时输
出电流单调上升,并有助于防止过冲。
远程ON/OFF功能也可用作LYTSwitch-4的节能模式或电源
开关,使之长时间处于极低功耗状态。进入此模式后,
当LYTSwitch-4被远程导通,它将在旁路脚电压再次达到5.9 V时
执行正常的软启动程序。在最差情况下,从远程导通到启动的
延迟时间可与旁路脚的整个充放电时间相同。这种降低功耗的
远程关断模式可省去昂贵且不可靠的线上机械开关。
4
版本D 10/13
www.powerint.com
LYT4211-4218/4311-4318
过流保护
电流限流电路检测功率FET的电流。当电流超过内部阈值(I LIMIT)
时,在该周期剩余阶段会关断功率FET。在功率FET导通后,前
沿消隐电路会将电流限流比较器抑制片刻(tLEB)。通过设置前沿消
V
D
CONTROL
隐时间,可以防止由电容及整流管反向恢复产生的电流尖峰引起
BP
导通的功率FET提前误关断。
S
R
FB
输入过压保护
该器件具有输入过压检测功能,可限制通过电压监测引脚检测
到的最高工作电压。需要使用一个由二极管和电容构成的外部峰
值检测器,通过电阻向电压监测引脚提供输入峰值线电压。
PI-5435-052510
图 7. 远程ON/OFF电压监测引脚控制
5.9 V稳压器/分流电压箝位
在功率FET处于关断期间,内部的5.9 V稳压器就会从漏极电压吸
收电流,将连接到旁路引脚的旁路电容充电到5.9 V。旁路引脚
电阻设定输入过压(OV)关断阈值,当超过阈值时就会强制
LYTSwitch-4停止开关。当输入线电压恢复正常水平后,器件将
恢复正常工作。OV阈值有少量迟滞以防止噪声引发切换。当功
率FET关断时,由于没有反射电压和漏感尖峰电压叠加到漏极,
经整流的直流高压抗浪涌冲击能力增大到功率FET的额定电压
是内部供电电压节点。当功率FET导通时,器件利用储存在旁路
(670 V)。
电容内的能量工作。内部电路极低的功率耗散使LYTSwitch-4可
迟滞热关断
使用从漏极吸收的电流持续工作。一个47或4.7 mF的旁路电容就
热关断电路检测控制器的结温度。阈值设置在142 °C并具备75 °C
足够实现高频率的去耦及能量存储。此外,当有电流通过一个
的迟滞范围。当结温度超过这个阈值(142 °C),功率FET开关被
外部的电阻提供给旁路引脚时,一个6.4 V分流稳压箝位电路会
禁止,直到结温度下降75 °C,功率FET才会重新使能。
将旁路引脚电压箝位在6.4 V。这样就很方便从偏置绕组由外部
向LYTSwitch-4供电,从而提高工作效率。建议从偏置绕组向旁
路引脚供电,以维持正常工作。
自动重启动
安全工作区(SOA)保护
该器件还带有安全工作区(SOA)保护模式,在峰值开关电流达到
ILIMIT阈值且开关导通时间小于tON(SOA)时,可禁止40个周期的FET开
关。这种保护模式可以在LED发生短路的情况下,以及在自动
在开环故障(反馈引脚电阻开路或反馈绕组短路)、输出短路
重启动保护被抑制的软启动期间进行启动时对器件提供保护。
或过载情况下,控制器进入自动重启动模式。在软启动结束
SOA保护模式在正常工作情况下仍然有效。
后,一旦反馈引脚电流低于IFB(AR)阈值,控制器立即“报告”短路
和开路故障。为了降低此故障情况下的功耗,关断/自动重启动
电路将通常以DC AR的自动重启动占空比对电源进行接通(与软
启动持续时间相同)和关断操作,直到故障排除为止。如果故
障在自动重启动关断期间消除,电源将保持自动重启动,直到
整个关断时间计时结束。设计时必须特别注意,应采用最适合
的输出电容容量,以确保在软启动期间(t SOFT)结束后,反馈引脚
电流高于I FB(AR) 阈值,使电源能够成功启动。软启动期间结束
后,自动重启动只有在反馈引脚电流低于IFB(AR)时才会激活。
5
www.powerint.com
版本D 10/13
LYT4211-4218/4311-4318
应用范例
20 W可控硅调光的高功率因数LED驱动器的设计范例(DER-350)
制在L1、L2、L3、C1和AC输入阻抗之间形成的任何谐振。
需要使用一个较小的大容量电容(C4)为初级开关电流提供低阻
图8所示为基于LYTSwitch-4系列器件中的LYT4317E设计的一款
抗源。C2和C4的最大值受到限定,以使功率因数始终大于0.9。
可控硅调光高功率因数LED驱动器的电路图。只需要简单地改变
LYTSwitch-4初级
元 件 值 就 可 以 将 该 设 计 配 置 为 非调 光 应 用 。 该 驱 动 器 可 以
为向U1提供峰值输入电压信息,经整流AC的输入峰值经由D2对
36 V电压、0.7 A恒流驱动LED灯串,非常适合高流明PAR灯替换
C6充电。然后电流经过R10,注入U1的电压监测引脚。器件也
应用。该设计可以在90至132 VAC的输入电压范围内进行工作。
会利用此检测电流来设定输入过压保护阈值。电阻R9为C6提供
放电通路,时间常数远大于经整流AC的放电时间,以防止生成
该设计的主要目标是实现与标准前沿可控硅AC调光器的兼容,达
线电压频率纹波。
到极宽调光范围(1000:1,550 mA:0.55 mA)、高效率(>85%)
和高功率因数(> 0.9)。这种设计能够对空载(开路负载)、过压、
电压监测引脚电流和反馈引脚电流在内部用来控制平均输出LED
输出短路或过载和过热等故障提供全面防护。
电流。对于可控硅相位调光应用,可在参考引脚上使用一个
电路描述
49.9 kW电阻(R14),在电压监测引脚上使用一个2 MW(R10)电阻,
LYTSwitch-4器件(U1- LYT4317E)在单个封装中集成了功率FET、
使输入电压和输出电流之间保持线性关系,从而扩大调光范围。
控制器和多种启动功能,能够减少典型设计方案的元件数。U1作
为隔离式连续导通模式反激式转换器的组成部分,通过其内部
由于漏感会带来影响,二极管D3、R15和C7将漏极电压箝位
控制算法和小输入电容设计可以实现高功率因数。连续导通模
到一个安全水平。需要使用二极管D4来防止反向电流在经整流
式工作可以减小初级峰值电流和RMS电流。这都有利于EMI噪声
AC输入电压(C4上的电压)低于反射输出电压(VOR)的期间内
的降低,可以使用更简单、更小的EMI滤波元件,并提升工作效
流经U1。
率。无需使用次级侧检测即可维持输出电流调节,因而可省去
电流检测电阻并提升工作效率。
二极管D6、C5、C9、R19和R20构成初级偏置电源,能量来自
输入级
变压器的辅助绕组。电容C8对U1的旁路引脚进行局部去耦,该引
保险丝F1提供元件故障保护,RV1在差模浪涌期间提供箝位,
脚是内部控制器的供电引脚。在启动期间,C8从与器件漏极引
使U1的峰值漏极电压始终低于内部功率FET的670 V额定值。桥式
脚相连的内部高压电流源被充电至约6 V。此时器件开始开关,
整流器BR1对AC输入电压进行整流。EMI滤波由L1-L3、C1、
器件的供电电流再由偏置供电经过R17提供。电容C8还可选择输
C4、R2、R24、R25以及Y级安全电容(CY1)共同提供,Y电容跨
出功率模式(本设计选用适合减功率的47mF来降低U1耗散和提
接初级侧和次级侧之间的安全绝缘层。电阻R2、R24和R25可抑
高效率)。
C13
R26 100 pF
30 Ω 200 V
D9
DFLU1400-7
R24
47 kΩ
1/8 W
BR1
MB6S
600 V
D2
DFLU1400
R9
510 kΩ
1/8 W
FL1
1
FL2
D3
US1J
R2
L1 47 kΩ
1 mH 1/8 W
R6
360 kΩ
L3
5 mH
L2
1 mH
T1
RM8
LYTSwitch-4
U1
LYT4317E
RV1
140 VAC
L
90 - 132
VAC
Q1
X0202MA2BL2
N
C3
470 nF
50 V
R8
100 Ω
1W
D5
BAV16
R17
3 kΩ
1/10 W
V
CONTROL
S
R
R18
165 kΩ
1%
1/16 W
BP
FB
R14
49.9 kΩ
1%
1/16 W C8
47 µF
16 V
Q2
MMBT3904
C14
10 nF
50 V
RTN
C9
56 µF
50 V
C5
100 nF
50 V
R19
20 kΩ
1/8 W
D4
US1D
C4
C6
100 nF 2.2 µF
250 V 250 V
D
F1
5A
R20
39 Ω
1/8 W
D8
BAV21
VR4
MAZS3300ML
33 V
C2
100 nF
250 V
R25
47 kΩ
1/8 W
11
R10
2 MΩ
1%
C1
220 nF
250 V
36 V,
550 mA
D6
BAV21
10
R1
510
1/2 W
C12
C11
330 µF 330 µF R23
63 V
63 V 20 kΩ
D7
BYW29-200
C7
2.2 nF
630 V
R15
200 kΩ
12
R27
10 Ω
1/10 W
C15
100 nF
50 V
R22
1 kΩ
1/10 W
CY1
470 pF
250 VAC
PI-6875-052213
图 8. DER-350:隔离式可控硅调光的高功率因数、90-132 VAC、20 W / 36 V / 550 mA LED驱动器的电路原理图
6
版本D 10/13
www.powerint.com
LYT4211-4218/4311-4318
反馈
由于LED照明的功耗非常低,整灯吸收的电流要小于调光器内可
偏置绕组电压与输出电压成比例(由偏置绕组与次级绕组之间
控硅的维持电流。这样会因为可控硅导通不一致而产生不良情
的匝数比设定)。这样不需要次级侧反馈元件就可以对输出电
况,比如调光范围受限和/或闪烁。由于LED灯的阻抗相对较
压进行监测。电阻R18将偏置电压转换为电流,馈入U1的反馈
大,因此在可控硅导通时,浪涌电流会对输入电容进行充电,
引脚。U1中的内部引擎综合反馈引脚电流、电压监测引脚电流
产生很严重的振铃。这同样会造成类似不良情况,因为振荡会
及漏极电流信息,在1.5:1的输出电压变化范围内(LED灯串电
使可控硅电流降至零并关断。
压变化为±25%)以固定输入线电压提供恒定输出电流。
要克服这些问题,需增加两个电路 – SCR有源衰减电路和R-C无
为限制空载下的输出电压,D8、C15、R22、VR4、R27、C14
源泄放电路。这些电路的缺点是会增大功耗,进而降低电源的
及Q2共同形成一个输出过压保护电路。如果断开输出负载的连
效率。对于非调光应用,可以省略这些元件。
接,偏置电压将升高,直至VR4导通,这样会使Q2导通并减小流
入反馈引脚的电流。当该电流低于10 mA时,器件进入自动重启
动模式,开关被禁止300 ms,使输出电压(和偏置电压)下降。
输出整流
变压器次级绕组由D7进行整流,由电容C11和C12进行滤波。
选择超快TO-220二极管用以提高效率,所选取的C11和C12的
总值可使LED峰峰纹波电流等于平均值的30%。如果需要更低纹
波的设计,可提高输出电容值。
R23用作小的假负载,可在关断时对输出电容内的残留电荷进行
放电。
SCR有源衰减电路由元件R6、C3、Q1和R8构成。该电路可以
在可控硅导通时限制流入C4并对其充电的浪涌电流,实现方式
是在可控硅导通的前约1 ms内将R8串联。在大约1 ms后,Q1导
通并旁通R8。这样可使R8的功耗保持在低水平,在限流时可以
使用更大的值。电阻R6和C3在可控硅导通后延迟Q1导通。二极
管D9阻止电容C4中的电荷在可控硅导通后出现回流,这有助于
提高对调光器,特别是高功率调光器的兼容性。
无源泄放电路由R1和C1构成。这有助于使输入电流始终大于可
控硅的维持电流,而与驱动器等效电阻对应的输入电流将在每
个AC半周期内增大。
可控硅相位调光控制兼容性
对于用低成本的可控硅前沿相控调光器提供输出调光的要求,
我们需要在设计时进行全面权衡。
7
www.powerint.com
版本D 10/13
LYT4211-4218/4311-4318
修改后的DER-350:20 W高功率因数LED驱动器(适用于
•
非调光应用和增强型线电压调整)
图9所示为基于LYTSwitch-4系列器件中的LYT4317设计的一款
对于最大输出功率列
•
反射输出电压(VOR)为65 V
•
反馈引脚电流取值165 µA
•
旁路引脚电容取值4.7 µF (LYT4x11 = 4.7 µF)
高功率因数LED驱动器的电路图。该驱动器可以36 V电压、0.55 A
恒流驱动LED灯串,非常适合高流明PAR灯替换应用。该设计可
注意,输入电压高于85 VAC时,不会改变LYTSwitch-4器件的功
在90 VAC至132 VAC的低压输入电压范围内工作,适用于非调
率输出能力。
光应用。在输出电流随输入电压的变化方面,非调光应用拥有
比调光应用更小的变化幅度。要注意的是,虽然没有指定为调
光设计,但如果最终用户在设计中使用了相控调光器,也不会
对电路造成任何损坏。
器件选择
可以通过对比要求的输出功率与表1中的功率值来选择器件。
对于发热量高的设计,比如白炽灯替换灯,LYTSwitch-4器件的周
围环境温度不是过高,就是散热空间非常有限,此时应使用最
针对非调光配置进行修改
小输出功率列。最小功率可通过一个47 µF旁路引脚电容来选
该设计可经过简单配置后用于非调光应用,具体方法是去除用
取,这样可获得一个更小的器件电流限值,从而降低导通损耗。
于SCR有源衰减电路(R6、R8、C3和Q1)、阻断二极管D9和
对于敞开式设计或具有一定散热空间的设计,可参照最大输出
R-C泄放电路(R1、C1)变化的元件,并将参考电阻R14替换
功率列。最大输出功率可通过一个4.7 µF旁路引脚电容来选取,
为24.9 kW。(参见图9)
但LYT4x11除外,因为该器件只有一个功率设置。在所有情况下,
为了获得最佳输出电流容差,都应将器件温度保持在100 °C以下。
主要应用指南
最大输入电容
功率表
数据手册中的功率表(表1)代表了以下条件下的最小及最大实
际连续输出功率:
为了实现高功率因数,用于EMI滤波器和经整流AC去耦(大容
量电容)的电容值必须受到限制。最大值与设计的输出功率成
函数关系,随输出功率的下降而减小。对于大部分设计,如果
使用100 nF大容量电容,应将总电容限制在200 nF以内。与陶
•
效率为80%
•
器件周围环境温度为70 °C
瓷电容相比,建议使用薄膜电容,因为后者在使用前沿相控调
•
散热能力足以使器件温度保持在100 °C以下
光器的情况下可以降低音频噪声。在EMI滤波器中,电容起始值
对于最小输出功率列
取10 nF,然后增大该值,直到具有足够的EMI裕量。
•
•
反射输出电压(VOR)为120 V
•
反馈引脚电流取值135 µA
•
旁路引脚电容取值47 µF
C13
R26 100 pF
30 Ω 200 V
R24
47 kΩ
1/8 W
D2
DFLU1400
R9
510 kΩ
1/8 W
BR1
MB6S
600 V
FL1
1
FL2
D6
BAV21
10
D3
US1J
11
R10
2 MΩ
1%
L2
1 mH
L3
5 mH
T1
RM8
LYTSwitch-4
U1
LYT4317E
RV1
140 VAC
V
CONTROL
S
L
90 - 132
VAC
N
D5
BAV16
R17
3 kΩ
1/10 W
R
R18
165 kΩ
1%
1/16 W
BP
FB
R14
24.9 kΩ
1%
1/16 W C8
47 µF
16 V
36 V,
550 mA
Q2
MMBT3904
C14
10 nF
50 V
RTN
C9
56 µF
50 V
C5
100 nF
50 V
R19
20 kΩ
1/8 W
D4
US1D
C4
C6
100 nF 2.2 µF
250 V 250 V
D
F1
5A
R20
39 Ω
1/8 W
D8
BAV21
VR4
MAZS3300ML
33 V
R2
L1 47 kΩ
1 mH 1/8 W
R25
47 kΩ
1/8 W
C2
100 nF
250 V
C11
C12
330 µF 330 µF R23
63 V
63 V 20 kΩ
D7
BYW29-200
C7
2.2 nF
630 V
R15
200 kΩ
12
R27
10 Ω
1/10 W
C15
100 nF
50 V
R22
1 kΩ
1/10 W
CY1
470 pF
250 VAC
PI-6875a-052213
图 9. RD-350修改版电路原理图:非调光隔离式高功率因数、90-132 VAC、20 W / 36 V LED驱动器的电路原理图
8
版本D 10/13
www.powerint.com
LYT4211-4218/4311-4318
参考引脚电阻值的选取
输入电压峰值检测电路
LYTSwitch-4产品系列包括相位控制调光器件LYT4311-4318和
LYTSwitch-4器件使用峰值输入电压来调节功率输出量。建议采
非调光器件LYT4211-4218。非调光器件使用一个24.9 kΩ ±1%
用1 mF至4.7 mF的电容值,以降低输入线电压纹波和获得最高的
参考引脚电阻,以便(随着AC输入电压的变化)获得最佳的
功率因数(>0.9),较小的值是可以接受的,但会导致PF降低和输
输出电流容差。调光器件(如LYT4311-4318)使用一个49.9 kΩ
入线电流失真度增大。
±1%参考引脚电阻来获得最宽的调光范围。
相控调光器的工作方式
电压监测引脚电阻网络的选择
调光器开关通过不导通(消隐)一部分AC电压正弦波来控制白
在使用LYT4311-4318时,为获得最宽的AC相位角调光范围,
炽灯的亮度。这样可降低施加到灯泡的RMS电压,从而降低亮
应使用一个2 MΩ(对于日本的100 VAC输入,则为1.7 MΩ)电
度。这称为自然调光,对LYTSwitch-4 LYT4311-4318器件进行调
阻使其连接到输入电压峰值检测电路。确保该电阻的电压额定
光配置后,器件可以随着RMS输入电压的下降而减小LED电流,
值大于峰值输入电压。必要时,可使用多个串联电阻。
达到自然调光的目的。根据这一特点,可以特意降低电压调整性
初级箝位和输出反射电压VOR
初级箝位电路可用来限制峰值漏源极电压。齐纳二极管箝位要求
使用最少的元件和最小的占板空间,可达到最高效率。RCD箝位
能,以增大调光范围并尽量接近模拟白炽灯的工作方式。使用
一个49.9 kW参考引脚电阻即可选择自然调光模式工作。
前沿相控调光器
也是可以接受的,但在启动和输出短路期间应仔细检验峰值漏
对于用低成本的可控硅前沿相控调光器提供无闪烁输出调光的
极电压,因为箝位电压会随着峰值漏极电流发生大幅变化。
要求,我们需要在设计时进行全面权衡。
为实现最高效率,所选箝位电压至少应为输出反射电压V OR 的
由于LED照明的功耗非常低,整灯吸收的电流要小于调光器内可
1.5倍,以缩短漏电尖峰传导时间。这不仅能确保箝位电路有效
控硅的维持电流。这样会产生调光范围受限和/或闪烁等不良
工作,还可将最大漏极电压维持在FET的额定击穿电压
情况。由于LED灯的阻抗相对较大,因此在可控硅导通时,浪涌
之下。RCD(或RCDZ)箝位的箝位电压容差比齐纳二极管箝位
更精确。RCD箝位比齐纳二极管箝位更具成本效益,但要求设
计更为严密,以确保最大漏极电压不会超过功率FET的击穿
电压。这些VOR限值是基于内部FET的BVDSS额定值设置的,大部
分设计的V OR值通常都介于60 V和100 V之间,能够达到最佳的
PFC和调整性能。
串联漏极二极管
电流会对输入电容进行充电,产生很严重的振铃。这同样会造
成类似不良情况,因为振荡会使可控硅电流降至零并关断。
要克服这些问题,需增加两个电路 – 有源衰减电路和无源泄放
电路。这些电路的缺点是会增大功耗,进而降低电源的效率。
因此对于非调光应用,可以省略这些元件。
图10a显示的是前沿可控硅调光器输入端的输入电压及电流,
可以将一个超快速恢复二极管或肖特基二极管与漏极串联,防
图10b显示的是经整流的总线电压。在本例中,可控硅以90度
止反向电流流入器件。电压额定值必须大于输出反射电压VOR。
角导通。
PI-5983-060810
350
0.35
Voltage
Current
250
0.25
0.15
150
0.05
50
-50
0.5
50
100
150
200
250
300
350
400
-0.05
-150
-0.15
-250
-0.25
-350
-0.35
Line Current (Through Dimmer) (A)
Line Voltage (at Dimmer Input) (V)
电流额定值应超过平均初级电流的两倍,其峰值额定值等于所
选LYTSwitch-4器件的最大漏极电流。
Conduction Angle (°)
图 10a. 前沿可控硅调光器在在90°下的理想输入电压和电流波形
9
www.powerint.com
版本D 10/13
LYT4211-4218/4311-4318
250
0.25
200
0.2
150
0.15
100
0.1
50
0.05
0
0
0
50
100
150
200
250
300
350
Voltage
Current
250
0.25
0.15
150
0.05
50
-50
0.35
0
50
100
150
200
250
300
350
-0.05
-150
-0.15
-250
-0.25
-350
-0.35
400
Dimmer Output Current (A)
0.3
PI-5986-060810
350
Dimmer Output Voltage (V)
Rectified Input Voltage (V)
Voltage
Current
300
0.35
Rectified Input Current (A)
PI-5984-060810
350
Conduction Angle (°)
Conduction Angle (°)
图 10b. 可控硅调光器输出整流后形成的波形
图 12. 后沿可控硅调光器在90SDgr导通角下的理想调光器输出电压和电流波形
图11显示的整流后总线电压及电流则不太理想,因为可控硅过
先添加一个泄放电路。在经整流总线(图8中的C1和R1)上添
早关断并重启动。
加一个0.44 µF电容和510 W 1 W电阻(元件串联)。如果可取得
令人满意的工作性能,将电容值减至最小(达到可接受的性
如果可控硅在半周期结束之前就异常关断,或者其他半AC周期
能),以降低损耗和提高效率。
具有不同的导通角,那么LED灯就会因为输出电流的变化而出现
闪烁。在设计中添加一个泄放和衰减电路就可以解决此问题。
如果泄放电路不能维持可控硅的导通,则应添加一个有源衰减
电路(如图8所示)。该电路由元件R6、C3、Q1以及R8共同组
调光器的表现因制造商和额定功率而异,例如,由于驱动电路和
成。该电路可以在可控硅导通时限制流入C4并对其充电的浪涌
可控硅维持电流规格不同,300 W调光器所要求的衰减作用和泄
电流,实现方式是在可控硅导通的前1 ms内将R8串联。在大约
放功耗要小于600 W和1000 W调光器。用同一调光器对多个并联
1 ms后,Q1导通并将R8短路。这样可使R8的功耗保持在低水平,
灯调光时,由于并联灯的电容增大,会产生更多的振荡。因此,
在限流时可以使用更大的值。通过增大R6的值来增加Q1导通之
在测试调光器工作情况时,应检验大量的调光器、不同的输入电
前的延迟时间,可以提高调光器的兼容性,但会造成R8功耗
压,并分别检验单个驱动器和多个驱动器并联的情况。
增大。在进行这些调整时,注意监测电源输入端的AC输入电流
及电压。增加延迟,直到可控硅工作正常,但应使延迟尽可能
Rectified Input Voltage (V)
Voltage
Current
300
0.35
0.3
250
0.25
200
0.2
150
0.15
100
0.1
50
0.05
0
0
0
50
100
150
200
250
Conduction Angle (°)
300
350
400
地短,以免影响电源效率。
Rectified Input Current (A)
PI-5985-060810
350
一般来说,泄放电路和衰减电路中的功耗越大,能与驱动器配
合工作的调光器类型就越多。
后沿相控调光器
图11显示的是采用后沿调光器的电源输入端的输入电压及电
流。在本例中,调光器以90度角导通。许多此类调光器使用背
靠背连接的功率FET,而不是可控硅来控制负载。这可以避免可
控硅的维持电流问题,并且由于导通在过零点开始,还可以减小
高电流浪涌和电流振荡。通常,此类调光器不需要衰减和泄放
电路。
图 11. 导通不稳定的相位角调光器示例
10
版本D 10/13
www.powerint.com
LYT4211-4218/4311-4318
布局注意事项
使用前沿调光器时的音频噪声考虑因素
通常由输入电容、EMI滤波电感和变压器进行调光时,便会产生
噪声。输入电容和电感在每个AC半周期都会遇到高di/dt和dv/dt,
这是由于可控硅导通时浪涌电流流入并对输入电容进行
充电。选择薄膜电容而不是陶瓷电容、减小电容值以及选择外
形短且宽的电感,就可以使噪声得到降低。
初级侧连接
源极引脚和供电回路的地线要单点连接(Kelvin)到输入滤波电容
的负端。使浪涌电流从偏置绕组直接返回输入滤波电容,增强
了浪涌的承受力。旁路引脚电容应靠近旁路引脚放置,并尽可
能近地连接到源极引脚。源极引脚连线上不应有主功率FET的开
变压器也可以产生噪声,但如果不使用加长型磁芯(机械谐振
频率高),就可以降低噪声。例如,在相同的磁通密度下,
RM磁芯所产生的噪声要比EE磁芯少。减小磁芯磁通密度也可以
降低噪声。通常情况下,将最大磁通密度(BM)减至1500高斯可
关电流流过。所有连接到源极引脚的反馈引脚元件都应遵循与
旁路引脚电容相同的规则。重要的是,主功率FET的开关电流应
以尽可能短的路径返回大容量电容。高电流的长路径会产生大
量的传导及辐射噪声。
消除任何噪声,但这要与给定输出功率所需的更大磁芯尺寸进
次级侧连接
行平衡。
输出整流管与输出滤波电容应尽可能地接近。变压器的输出回
路引脚与输出滤波电容返回侧之间的连线应比较短。
散热及使用寿命考虑因素
照明应用对驱动器提出了较高的散热挑战。在许多情况下,LED
负载功耗大小决定了驱动器的工作环境温度,因此,散热评估
应根据最终外壳中的驱动器进行。温度对驱动器和LED的使用寿
命有直接的影响。温度每升高10 °C,元件寿命就会缩短1/2。
因此,必须正确散热并检验所有器件的工作温度。
Input EMI Filter
LYT4317E
Bullk
Capacitor
BYPASS Pin
Capacitor Clamp Transformer Output
Diode
Output
Capacitor
REFERENCE Pin
Resistor
FEEDBACK Pin
Resistor
VOLTAGE MONITOR Pin
Resistor
Output
Capacitors
PI-6904-072313
图 13. DER-35 20 W布局范例,顶面丝印/底层
11
www.powerint.com
版本D 10/13
LYT4211-4218/4311-4318
快速设计校验
最大漏极电压
确认峰值VDS在包括启动和故障条件在内的所有工作条件下都不
超过670 V。
最大漏极电流
测量包括启动和故障条件在内的所有工作条件下的峰值漏极电
流。查找变压器饱和时的信号(通常在最高工作环境温度下出
现)。确认峰值电流小于数据手册中规定的绝对最大额定值。
热检测
在最大输出功率、最小和最大输入电压及最高环境温度条
件下,检验LYTSwitch-4、变压器、输出二极管、输出电容和
漏极箝位元件是否超过温度指标。
12
版本D 10/13
www.powerint.com
LYT4211-4218/4311-4318
绝对最大额定值(1,4)
漏极引脚峰值电流(5): LYT4x11..........................................1.37 A
LYT4x12......................................... 2.08 A
LYT4x13 .........................................2.72 A
LYT4x14......................................... 4.08 A
LYT4x15 ........................................ 5.44 A
LYT4x16 ........................................ 6.88 A
LYT4x17.......................................... 7.73 A
LYT4x18 ........................................ 9.00 A
漏极引脚电压 ......................................................... -0.3到670 V
旁路引脚电压 .............................................................. -0.3到9 V
旁路引脚电压 ................................................................ 100 mA
电压监测引脚电压 ................................................... -0.3到9 V(6)
反馈引脚电压 ............................................................. -0.3到9 V
参考引脚电压 ............................................................. -0.3到9 V
引线温度(3) ...................................................................... 260 °C
贮存温度 ............................................................... -65到150 °C
工作结温度(2) ........................................................... -40到150 °C
注释:
1. 所有电压都是以TA = 65 °C时的源极为参考点。
2. 通常由内部电路控制。
3. 在距壳体1/16英寸处测量,持续时间5秒。
4. 在短时间内施加器件允许的绝对最大额定值不会引起产品永久
性的损坏。但长时间用在器件允许的最大额定值时,会对产品的
可靠性造成影响。
5. 当漏极电压同时低于400 V时,可允许峰值漏极电流。
另请参见图13。
6. 在启动期间(旁路引脚开始对IC供电之前的时段),电压监测引
脚的电压可以安全无损地升高至15 V。
热阻抗
热阻:E或L封装
注释:
(qJA) ....................................................105 °C/W(1)
1. 无须常设散热片。
(qJC) .................................................... 2 °C/W
2. 在器件本身后部的散热片上测量得到。
(2)
参数
符号
条件
源极 = 0 V;TJ = -20 °C到125 °C
(除非另有说明)
最小值
典型值
最大值
124
132
140
单位
控制功能
开关频率
频率抖动调制速率
fOSC
平均
TJ = 65 °C
TJ = 65 °C
fM
ICH1
2.6
见注释B
-4.1
-3.4
-2.7
VBP = 0 V,
LYT4x12
-7.3
-6.1
-4.9
TJ = 65 °C
LYT4x13-4x17
-12
-9.5
-7.0
LYT4x18
-13.3
-10.8
-8.3
LYT4x11
-0.81
-0.62
-0.43
VBP = 5 V,
LYT4x12
-3.1
-2.4
-1.7
TJ = 65 °C
LYT4x13-4x17
-5.6
-4.35
-3.1
LYT4x18
-6.75
-5.5
-4.25
VBP
0 °C < TJ < 100 °C
旁路引脚电压迟滞
VBP(H)
0 °C < TJ < 100 °C
旁路引脚分流电压
VBP(SHUNT)
旁路引脚电压
软启动时间
0.7
见注释A、B
充电电流温漂
tSOFT
IBP = 4 mA
0 °C < TJ < 100 °C
TJ = 65 °C
VBP = 5.9 V
5.75
5.95
6.4
55
76
mA
%/°C
6.15
0.85
6.1
kHz
kHz
LYT4x11
旁路引脚充电电流
ICH2
5.4
抖动的峰-峰值
V
V
6.6
V
ms
13
www.powerint.com
版本D 10/13
LYT4211-4218/4311-4318
参数
符号
条件
源极 = 0 V;TJ = -20 °C到125 °C
(除非另有说明)
最小值
典型值
最大值
0.5
0.8
1.2
单位
控制功能(续上)
ICD2
漏极供电电流
ICD1
0 °C < TJ < 100 °C
FET未开关
0 °C < TJ < 100 °C
FET开关,频率fOSC
mA
1
2.5
4
115
123
131
电压监测引脚
输入过压阈值
IOV
电压监测引脚电压
VV
电压监测引脚短路电流
IV(SC)
TJ = 65 °C
RR = 24.9 kW
RR = 49.9 kW
阈值
6
迟滞
0 °C < TJ < 100 °C
IV < IOV
VV = 5 V
TJ = 65 °C
2.75
3.0
3.25
V
165
185
205
mA
VV(REM)
TJ = 65 °C
IFB(DCMAXR)
0 °C < TJ < 100 °C
跳周期阈值
IFB(SKIP)
0 °C < TJ < 100 °C
210
最大占空比
DCMAX
IFB(DCMAXR) < IFB < IFB(SKIP)
0 °C < TJ < 100 °C
90
远程ON/OFF阈值
mA
0.5
V
反馈引脚
最大占空比开始的
反馈引脚电流
反馈引脚电流
反馈引脚电压
反馈引脚短路电流
占空比降低
VFB
IFB = 150 mA
0 °C < TJ < 100 °C
90
mA
mA
99.9
%
2.1
2.3
2.56
V
400
480
mA
IFB(SC)
VFB = 5 V
TJ = 65 °C
320
DC10
IFB = IFB(AR),TJ = 65 °C,见注释B
17
DC40
IFB = 40 mA,TJ = 65 °C
34
DC60
IFB = 60 mA,TJ = 65 °C
55
%
自动重启动
自动重启动导通时间
tAR
自动重启动占空比
DCAR
SOA开关最短“导通”时间
tON(SOA)
自动重启动期间的
反馈引脚电流
IFB(AR)
TJ = 65 °C
VBP = 5.9 V
TJ = 65 °C
见注释B
55
76
ms
25
%
TJ = 65 °C
见注释B
0 °C < TJ < 100 °C
6.5
0.875
ms
10
mA
14
版本D 10/13
www.powerint.com
LYT4211-4218/4311-4318
参数
符号
条件
源极 = 0 V;TJ = -20 °C到125 °C
(除非另有说明)
最小值
典型值
最大值
单位
1.223
1.245
1.273
V
48.69
49.94
51.19
mA
参考引脚
参考引脚电压
VR
参考引脚电流
IR
RR = 24.9 kW
0 °C < TJ < 100 °C
电流限流/电路保护
满功率
电流限流点
(CBP = 4.7 mF)
减功率
电流限流点
(CBP = 47 mF)
最小导通时间脉冲
di/dt = 174 mA/ms
LYT4x12
1.00
1.17
di/dt = 174 mA/ms
LYT4x13
1.24
1.44
ILIMIT(F)
di/dt = 225 mA/ms
LYT4x14
1.46
1.70
TJ = 65 °C
di/dt = 320 mA/ms
LYT4x15
1.76
2.04
di/dt = 350 mA/ms
LYT4x16
2.43
2.83
di/dt = 426 mA/ms
LYT4x17
3.26
3.79
di/dt = 133 mA/ms
LYT4x11
0.74
0.86
di/dt = 195 mA/ms
LYT4x12
0.81
0.95
di/dt = 192 mA/ms
LYT4x13
1.00
1.16
ILIMIT(R)
di/dt = 240 mA/ms
LYT4x14
1.19
1.38
TJ = 65 °C
di/dt = 335 mA/ms
LYT4x15
1.43
1.66
di/dt = 380 mA/ms
LYT4x16
1.76
2.05
di/dt = 483 mA/ms
LYT4x17
2.35
2.73
di/dt = 930 mA/ms
LYT4x18
4.90
5.70
tLEB + tIL(D)
前沿消隐时间
tLEB
流限延迟
tIL(D)
TJ = 65 °C
TJ = 65 °C
见注释B
TJ = 65 °C
见注释B
热关断迟滞
见注释B
阈值电压
VBP(RESET)
0 °C < TJ < 100 °C
500
150
135
142
ns
500
ns
ns
150
3.30
°C
°C
75
2.25
A
700
150
见注释B
热关断温度
旁路引脚通电复位
300
A
4.25
V
15
www.powerint.com
版本D 10/13
LYT4211-4218/4311-4318
参数
符号
条件
源极 = 0 V;TJ = -20 °C到125 °C
(除非另有说明)
最小值
典型值
最大值
单位
输出
导通电阻
关断状态漏极漏电流
击穿电压
RDS(ON)
LYT4x11
TJ = 65 °C
11.5
13.2
ID = 100 mA
TJ = 100 °C
13.5
15.5
LYT4x12
TJ = 65 °C
6.9
8.0
ID = 100 mA
TJ = 100 °C
8.4
9.7
LYT4x13
TJ = 65 °C
5.3
6.0
ID = 150 mA
TJ = 100 °C
6.3
7.3
LYT4x14
TJ = 65 °C
3.4
3.9
ID = 150 mA
TJ = 100 °C
3.9
4.5
LYT4x15
TJ = 65 °C
2.5
2.9
ID = 200 mA
TJ = 100 °C
3.0
3.4
LYT4x16
TJ = 65 °C
1.9
2.2
ID = 250 mA
TJ = 100 °C
2.3
2.7
LYT4x17
TJ = 65 °C
1.7
2.0
ID = 350 mA
TJ = 100 °C
2.0
2.4
LYT4x18
TJ = 65 °C
1.3
1.5
ID = 600 mA
TJ = 100 °C
1.6
1.8
W
IDSS
VBP = 6.4 V
VDS = 560 V
TJ = 100 °C
BVDSS
VBP = 6.4 V
TJ = 65 °C
670
V
TJ < 100 °C
36
V
最低漏极供电电压
50
mA
上升时间
tR
在典型反激式转换器应用中测量
100
ns
下降时间
tF
见注释B
50
ns
注释:
A. 对带有负号的技术指标,负温度系数随温度增加其数值增加,正温度系数随温度增加其数值减少。
B. 由特性保证。生产时未经测试。
16
版本D 10/13
www.powerint.com
LYT4211-4218/4311-4318
Power (mW)
Scaling Factors:
LYT4x11 0.18
LYT4x12 0.28
LYT4x13 0.38
LYT4x14 0.56
LYT4x15 0.75
LYT4x16 1.00
LYT4x17 1.16
LYT4x18 1.55
1000
100
10
1
100
200
300
400
500
300
PI-6715-072313
DRAIN Capacitance (pF)
10000
Scaling Factors:
LYT4x11 0.18
LYT4x12 0.28
LYT4x13 0.38
LYT4x14 0.56
LYT4x15 0.75
LYT4x16 1.00
LYT4x17 1.16
LYT4x18 1.55
200
100
0
600
0
DRAIN Pin Voltage (V)
3
Scaling Factors:
LYT4x11 0.18
LYT4x12 0.28
LYT4x13 0.38
LYT4x14 0.56
LYT4x15 0.75
LYT4x16 1.00
LYT4x17 1.16
LYT4x18 1.55
2
1
LYT4x28 TCASE = 25 °C
LYT4x28 TCASE = 100 °C
0
0
2
4
6
8 10 12 14 16 18 20
DRAIN Voltage (V)
图 16. 漏极电流相对漏极电压的变化
1.2
PI-6909-110512
PI-6717-071012
图 15. 功率相对漏极电压的变化
DRAIN Current
(Normalized to Absolute Maximum Rating)
DRAIN Current (A)
4
100 200 300 400 500 600 700
DRAIN Voltage (V)
图 14. 漏极电容相对漏极引脚电压的变化
5
PI-6716-071012
典型性能特性
1
0.8
0.6
0.4
0.2
0
0
100 200 300 400 500 600 700 800
DRAIN Voltage (V)
图 17. 最大允许的漏极电流相对漏极电压的变化
17
www.powerint.com
版本D 10/13
LYT4211-4218/4311-4318
eSIP-7C (E Package)
C
2
0.403 (10.24)
0.397 (10.08)
A
0.264 (6.70)
Ref.
0.081 (2.06)
0.077 (1.96)
B
Detail A
2
0.290 (7.37)
Ref.
0.519 (13.18)
Ref.
0.325 (8.25)
0.320 (8.13)
Pin #1
I.D.
0.140 (3.56)
0.120 (3.05)
3
0.207 (5.26)
0.187 (4.75)
0.016 (0.41)
Ref.
3
0.047 (1.19)
0.070 (1.78) Ref.
0.050 (1.27)
0.198 (5.04) Ref.
0.016 (0.41) 6×
0.011 (0.28)
0.020 M 0.51 M C
FRONT VIEW
0.118 (3.00)
SIDE VIEW
4
0.033 (0.84) 6×
0.028 (0.71)
0.010 M 0.25 M C A B
0.100 (2.54)
BACK VIEW
0.100 (2.54)
10° Ref.
All Around
0.021 (0.53)
0.019 (0.48)
0.050 (1.27)
0.020 (0.50)
0.060 (1.52)
Ref.
0.050 (1.27)
PIN 1
0.378 (9.60)
Ref.
0.048 (1.22)
0.046 (1.17)
0.019 (0.48) Ref.
0.059 (1.50)
0.155 (3.93)
0.023 (0.58)
END VIEW
PIN 7
0.027 (0.70)
0.059 (1.50)
Notes:
1. Dimensioning and tolerancing per ASME Y14.5M-1994.
2. Dimensions noted are determined at the outermost
extremes of the plastic body exclusive of mold flash,
tie bar burrs, gate burrs, and interlead flash, but including
any mismatch between the top and bottom of the plastic
body. Maximum mold protrusion is 0.007 [0.18] per side.
DETAIL A
0.100 (2.54)
0.100 (2.54)
MOUNTING HOLE PATTERN
(not to scale)
3. Dimensions noted are inclusive of plating thickness.
4. Does not include inter-lead flash or protrusions.
5. Controlling dimensions in inches (mm).
PI-4917-061510
18
版本D 10/13
www.powerint.com
LYT4211-4218/4311-4318
eSIP-7F (L Package)
C
2
0.403 (10.24)
0.397 (10.08)
A
0.081 (2.06)
0.077 (1.96)
0.264 (6.70) Ref.
B
Detail A
2
0.325 (8.25)
0.320 (8.13)
0.290 (7.37)
Ref.
3
0.016 (0.41) 6×
0.011 (0.28)
0.020 M 0.51 M C
1
7
0.084 (2.14)
Pin 1 I.D.
0.070 (1.78) Ref.
BOTTOM VIEW
SIDE VIEW
0.019 (0.48) Ref.
0.378 (9.60)
Ref.
1
3
4
0.033 (0.84) 6×
0.028 (0.71)
0.010 M 0.25 M C A B
TOP VIEW
Exposed pad hidden
0.060 (1.52) Ref.
7
0.089 (2.26)
0.079 (2.01)
0.100 (2.54)
0.129 (3.28)
0.122 (3.08)
7
0.173 (4.40)
0.163 (4.15)
0.047 (1.19) Ref.
0.050 (1.27)
1
0.198 (5.04) Ref.
0.490 (12.45) Ref.
Exposed pad up
0.021 (0.53)
0.019 (0.48)
0.020 (0.50)
0.023 (0.58)
0.048 (1.22)
0.046 (1.17)
0.027 (0.70)
END VIEW
DETAIL A (Not drawn to scale)
Notes:
1. Dimensioning and tolerancing per ASME
Y14.5M-1994.
2. Dimensions noted are determined at the
outermost extremes of the plastic body
exclusive of mold flash, tie bar burrs, gate
burrs, and interlead flash, but including
any mismatch between the top and bottom
of the plastic body. Maximum mold
protrusion is 0.007 [0.18] per side.
3. Dimensions noted are inclusive of plating
thickness.
4. Does not include inter-lead flash or
protrusions.
5. Controlling dimensions in inches (mm).
PI-5204-061510
元件订购信息
• LYTSwitch-4产品系列
• 4序列号
• PFC/调光
2
PFC无调光
3
PFC调光
• 电压范围
1
低压输入
• 器件规格尺寸
• 封装信息
LYT 4 2 1 3 E
E
eSIP-7C
L
eSIP-7F
19
www.powerint.com
版本D 10/13
修订版本
A
注释
日期
初始版本。
11/12
B
修正了第13和14页最小值和典型值列的参数表值。
B
更新了第13、14和15页的参数ICH1、ICH2、ICD1、DCAR、ILIMIT(F)和ILIMIT(R)
02/13
02/20/13
C
更新了图1、3a、3b、3c、3d、8、9及13。
06/13
D
在“绝对最大额定值”部分增加了注释6。
10/13
有关最新产品信息,请访问:www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES
NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
Patent Information
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations.
A complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at http://www.powerint.com/ip.htm.
Life Support Policy
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii)
whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant
injury or death to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or effectiveness.
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,
HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc.
Other trademarks are property of their respective companies. ©2013, Power Integrations, Inc.
全球销售支持网络
全球总部
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: [email protected]
中国(上海)
Rm 1601/1610, Tower 1,
Kerry Everbright City
No. 218 Tianmu Road West,
Shanghai, P.R.C. 200070
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: [email protected]
中国(深圳)
3rd Floor, Block A,
Zhongtou International Business
Center, No. 1061, Xiang Mei Rd,
FuTian District, ShenZhen,
China, 518040
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: [email protected]
德国
Lindwurmstrasse 114
80337 Munich
Germany
Phone: +49-895-527-39110
Fax: +49-895-527-39200
e-mail: [email protected]
印度
#1, 14th Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail: [email protected]
意大利
Via Milanese 20, 3rd. Fl.
20099 Sesto San Giovanni (MI)
Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail: [email protected]
日本
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama,
Kohoku-ku
Yokohama-shi Kanagwan
222-0033 Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
台湾
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail: [email protected]
欧洲总部
1st Floor, St. James’s House
韩国
East Street, Farnham
RM 602, 6FL
Surrey GU9 7TJ
Korea City Air Terminal B/D, 159-6 United Kingdom
Samsung-Dong, Kangnam-Gu,
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
Seoul, 135-728, Korea
e-mail: [email protected]
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected] 技术支持热线
全球 +1-408-414-9660
新加坡
51 Newton Road
技术支持传真
#19-01/05 Goldhill Plaza
全球 +1-408-414-9760
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail: [email protected]
LYT4211-4218/4311-4318
™
LYTSwitch-4
High Power LED Driver IC Family
Single-Stage Accurate Primary-Side Constant Current (CC) Controller with
PFC for Low-Line Applications, TRIAC Dimming and Non-Dimming Options
Optimized for Different Applications and Power Levels
Part Number
Input Voltage Range
TRIAC Dimmable
LYT4211-LYT4218
LYT4311-LYT4318
85-132 VAC
85-132 VAC
No
Yes
Output Power Table
Product
Minimum Output Power Maximum Output Power
LYT4x11E/L
LYT4x12E/L
2.5 W
2.5 W
12 W
15 W
LYT4x13E/L
3.8 W
18 W
LYT4x14E/L
4.5 W
22 W
LYT4x15E/L
5.5 W
25 W
LYT4x16E/L
6.8 W
35 W
LYT4x17E/L
8.0 W
50 W
LYT4x18E/L
18 W
78 W
Click Here
To read about
LYTSwitch-4 Low-Line
LYT4221-4228/4321-4328
™
LYTSwitch-4
High Power LED Driver IC Family
Single-Stage Accurate Primary-Side Constant Current (CC) Controller with
PFC for High-Line Applications with TRIAC Dimming and Non-Dimming Options
Optimized for Different Applications and Power Levels
Part Number
Input Voltage Range
TRIAC Dimmable
LYT4221-LYT4228
LYT4321-LYT4328
160-300 VAC
160-300 VAC
No
Yes
Output Power Table
Product
Minimum Output Power Maximum Output Power
LYT4x21E
LYT4x22E
6W
6W
12 W
15 W
LYT4x23E
8W
18 W
LYT4x24E
9W
22 W
LYT4x25E
11 W
25 W
LYT4x26E
14 W
35 W
LYT4x27E
19 W
50 W
LYT4x28E
33 W
78 W
Click Here
To read about
LYTSwitch-4 High-Line
This page intentionally left blank
LYT4211-4218/4311-4318
™
LYTSwitch-4
High Power LED Driver IC Family
Single-Stage Accurate Primary-Side Constant Current (CC) Controller with
PFC for Low-Line Applications, TRIAC Dimming and Non-Dimming Options
Product Highlights
•
•
•
•
•
•
•
Better than ±5% CC regulation
TRIAC dimmable to less than 5% output
Fast start-up
• <250 ms at full brightness
• <1s at 10% brightness
High power factor >0.9
Easily meets EN61000-3-2
• Less than 10% THD in optimized designs
Up to 92% efficient
132 kHz switching frequency for small magnetics
High Performance, Combined Driver, Controller, Switch
The LYTSwitch-4 family enables off-line LED drivers with high
power factor which easily meet international requirements for THD
and harmonics. Output current is tightly regulated with better
than ±5% CC tolerance1. Efficiency of up to 92% is easily
achieved in typical applications.
Supports a Wide Selection of TRIAC Dimmers
The LYTSwitch-4 family provides excellent turn-on characteristics
for leading-edge and trailing-edge TRIAC dimming applications.
This results in drivers with a wide dimming range and fast
start-up, even when turning on from a low conduction angle –
large dimming ratio and low “pop-on” current.
Low Solution Cost and Long Lifetime
LYTSwitch-4 ICs are highly integrated and employ a primary-side
control technique that eliminates the optoisolator and reduces
component count. This allows the use of low-cost single-sided
printed circuit boards. Combining PFC and CC functions into a
single-stage also helps reduce cost and increase efficiency. The
132 kHz switching frequency permits the use of small, low-cost
magnetics.
LED drivers using the LYTSwitch-4 family do not use primaryside aluminum electrolytic bulk capacitors. This means greatly
extended driver lifetime, especially in bulb and other high
temperature applications.
eSIP-7C (E Package)
Figure 2.
eSIP-7F (L Package)
AC
IN
V
D
LYTSwitch-4
CONTROL
S
R
BP
FB
PI-6800-050913
Figure 1.
Typical Schematic.
Optimized for Different Applications and Power Levels
Part Number
Input Voltage Range
TRIAC Dimmable
LYT4211-LYT4218
85-132 VAC
No
LYT4311-LYT4318
85-132 VAC
Yes
Output Power Table1,2
Product 6
Minimum Output Power 3 Maximum Output Power 4
LYT4x11E/L5
2.5 W
12 W
LYT4x12E/L
2.5 W
15 W
LYT4x13E/L
3.8 W
18 W
LYT4x14E/L
4.5 W
22 W
LYT4x15E/L
5.5 W
25 W
LYT4x16E/L
6.8 W
35 W
LYT4x17E/L
8.0 W
50 W
LYT4x18E/L
18 W
78 W
Table 1. Output Power Table.
Notes:
1. Performance for typical design. See Application Note.
2. Continuous power in an open-frame design with adequate heat sinking; device
local ambient of 70 °C. Power level calculated assuming a typical LED string
voltage and efficiency >80%.
3. Minimum output power requires CBP = 47 µF.
4. Maximum output power requires CBP = 4.7 µF.
5. LYT4311 CBP = 47 µF, LYT4211 CBP = 4.7 µF.
6. Package: eSIP-7C, eSIP-7F (see Figure 2).
Package Options.
www.powerint.com October 2013
This Product is Covered by Patents and/or Pending Patent Applications.
LYT4211-4218/4311-4318
Topology
Isolation
Efficiency
Cost
THD
Output Voltage
Yes
No
No
No
88%
92%
89%
90%
High
Low
Middle
Low
Best
Good
Best
Best
Any
Limited
Any
High-Voltage
Isolated Flyback
Buck
Tapped-Buck
Buck-Boost
Table 2. Performance of Different Topologies in a Typical Non-Dimmable 10 W Low-Line Design.
Typical Circuit Schematic
Key Features
Flyback
AC
IN
LYTSwitch-4
V
D
CONTROL
S
R
BP
FB
PI-6800-050913
Figure 3a. Typical Isolated Flyback Schematic.
Benefits
• Provides isolated output
• Supports widest range of output voltages
• Very good THD performance
Limitations
• Flyback transformer
• Overall efficiency reduced by parasitic capacitance
and inductance in the transformer
• Larger PCB area to meet isolation requirements
• Requires additional components (primary clamp and bias)
• Higher RMS switch and winding currents increases losses
and lowers efficiency
Buck
AC
IN
LYTSwitch-4
V
D
CONTROL
S
R
BP
FB
PI-6841-111813
Benefits
• Highest efficiency
• Lowest component count – small size
• Simple low-cost power inductor
• Low drain source voltage stress
• Best EMI/lowest component count for filter
Limitations
• Single input line voltage range
• Output voltage <0.6 × VIN(AC) × 1.41
• Output voltage for low THD designs
• Non-isolated
Figure 3b. Typical Buck Schematic.
Tapped Buck
AC
IN
Benefits
• Ideal for low output voltage designs (<20 V)
• High efficiency
• Low component count
• Simple low-cost tapped inductor
Limitations
• Designs best suited for single input line voltage
• Requires additional components (primary clamp)
• Non-isolated
LYTSwitch-4
V
D
CONTROL
S
R
BP
FB
PI-6842-111813
Figure 3c. Typical Tapped Buck Schematic.
Buck-Boost
Benefits
• Ideal for non-isolated high output voltage designs
• High efficiency
• Low component count
• Simple common low-cost power inductor can be used
• Lowest THD
Limitations
• Maximum VOUT is limited by MOSFET breakdown voltage
• Single input line voltage range
• Non-isolated
AC
IN
LYTSwitch-4
V
D
CONTROL
S
R
BP
FB
PI-6859-111813
Figure 3d. Typical Buck-Boost Schematic.
2
Rev. D 10/13
www.powerint.com
LYT4211-4218/4311-4318
DRAIN (D)
5.9 V
REGULATOR
BYPASS (BP)
BYPASS
CAPACITOR
SELECT
FAULT
PRESENT
AUTO-RESTART
COUNTER
BYPASS PIN
UNDERVOLTAGE
1V
VOLTAGE
MONITOR (V)
STOP
LOGIC
JITTER
CLOCK
OSCILLATOR
LINE
SENSE
-
LEB
OCP
+
IV
FEEDBACK (FB)
VBG
PFC/CC
CONTROL
IFB
CURRENT LIMIT
COMPARATOR
-
ILIM
VSENSE
MI
FBOFF
DCMAX
IS
REFERENCE
BLOCK
REFERENCE (R)
SenseFet
FBOFF
DCMAX
OV
FEEDBACK
SENSE
Gate
Driver
Comparator
+
3-VT
5.9 V
5.0 V
-
MI
HYSTERETIC
THERMAL
SHUTDOWN
+
ILIM
SOFT-START
TIMER
VBG
6.4 V
PI-6843-071112
SOURCE (S)
Figure 4. Functional Block Diagram.
Pin Functional Description
DRAIN (D) Pin:
This pin is the power FET drain connection. It also provides
internal operating current for both start-up and steady-state
operation.
SOURCE (S) Pin:
This pin is the power FET source connection. It is also the
ground reference for the BYPASS, FEEDBACK, REFERENCE
and VOLTAGE MONITOR pins.
BYPASS (BP) Pin:
This is the connection point for an external bypass capacitor for
the internally generated 5.9 V supply. This pin also provides
output power selection through choice of the BYPASS pin
capacitor value.
FEEDBACK (FB) Pin:
The FEEDBACK pin is used for output voltage feedback. The
current into the FEEDBACK pin is directly proportional to the
output voltage. The FEEDBACK pin also includes circuitry to
protect against open load and overload output conditions.
REFERENCE (R) Pin:
This pin is connected to an external precision resistor and is
used to configure for dimming (LYT4311-4318) and non-TRIAC
dimming (LYT4211-4218) modes of operation.
VOLTAGE MONITOR (V) Pin:
This pin interfaces with an external input line peak detector,
consisting of a rectifier, filter capacitor and resistors. The
applied current is used to control stop logic for overvoltage (OV),
provide feed-forward to control the output current and the
remote ON/OFF function.
Exposed Pad
(Backside) Internally
Connected to
SOURCE Pin
E Package (eSIP-7C)
(Top View)
L Package (eSIP-7F)
7D
5S
4 BP
3 FB
2V
1R
Exposed Pad
(backside) Internally
Connected to
SOURCE Pin (see
eSIP-7C Package
Drawing)
1 3 5
R FB S
7
Lead Bend Outward 2 4
V BP D
from Drawing
(Refer to eSIP-7F Package
Outline Drawing)
PI-5432-082411
Figure 5. Pin Configuration.
3
www.powerint.com
Rev. D 10/13
LYT4211-4218/4311-4318
Functional Description
A LYTSwitch-4 device monolithically combines a controller and
high-voltage power FET into one package. The controller
provides both high power factor and constant current output in
a single-stage. The LYTSwitch-4 controller consists of an
oscillator, feedback (sense and logic) circuit, 5.9 V regulator,
hysteretic over-temperature protection, frequency jittering,
cycle-by-cycle current limit, auto-restart, inductance correction,
power factor and constant current control.
FEEDBACK Pin Current Control Characteristics
The figure shown below illustrates the operating boundaries of
the FEEDBACK pin current. Above IFB(SKIP) switching is disabled
and below IFB(AR) the device enters into auto-restart.
IFB(SKIP)
Skip-Cycle
IFB(DCMAXR)
Soft-Start
The controller includes a soft-start timing feature which inhibits
the auto-restart protection feature for the soft-start period (tSOFT )
to distinguish start-up into a fault (short-circuit) from a large
output capacitor. At start-up the LYTSwitch-4 clamps the
maximum duty cycle to reduce the output power. The total
soft-start period is tSOFT.
Soft-Start and
CC Fold-Back
Region
IFB(AR)
Auto-Restart
DC10
DCMAX
Maximum Duty Cycle
PI-5433-060410
Figure 6.
BYPASS Pin Capacitor Power Gain Selection
LYTSwitch-4 devices have the capability to tailor the internal
gain to either full or a reduced output power setting. This allows
selection of a larger device to minimize dissipation for both
thermal and efficiency reasons. The power gain is selected with
the value of the BYPASS pin capacitor. The full power setting is
selected with a 4.7 mF capacitor and the reduced power setting
(for higher efficiency) is selected with a 47 mF capacitor. The
BYPASS pin capacitor sets both the internal power gain as well
as the over-current protection (OCP) threshold. Unlike the
larger devices, the LYT4x11 power gain is not programmable.
Use a 47 mF capacitor for the LYT4x11.
Switching Frequency
The switching frequency is 132 kHz during normal operation.
To further reduce the EMI level, the switching frequency is
jittered (frequency modulated) by approximately 2.6 kHz.
During start-up the frequency is 66 kHz to reduce start-up time
when the AC input is phase angle dimmed. Jitter is disabled in
deep dimming.
CC Control
Region
IFB
non-dimming or PWM dimming applications with LYT4211-4218,
the external resistor should be a 24.9 kW ±1%. For phase angle
AC dimming with LYT4311-4318, the external resistor should be
a 49.9 kW ±1%. One percent resistors are recommended as
the resistor tolerance directly affects the output tolerance.
Other resistor values should not be used.
FEEDBACK Pin Current Characteristic.
The FEEDBACK pin current is also used to clamp the maximum
duty cycle to limit the available output power for overload and
open-loop conditions. This duty cycle reduction characteristic
also promotes a monotonic output current start-up characteristic
and helps preventing over-shoot.
REFERENCE Pin
The REFERENCE pin is tied to ground (SOURCE) via an external
resistor. The value selected sets the internal references,
determining the operating mode for dimming (LYT4311-4318)
and non-dimming (LYT4211-4218) operation and the line
overvoltage thresholds of the VOLTAGE MONITOR pin. For
Remote ON/OFF and EcoSmart™
The VOLTAGE MONITOR pin has a 1 V threshold comparator
connected at its input. This voltage threshold is used for
remote ON/OFF control. When a signal is received at the
VOLTAGE MONITOR pin to disable the output (VOLTAGE
MONITOR pin tied to ground through an optocoupler phototransistor) the LYTSwitch-4 will complete its current switching
cycle before the internal power FET is forced off.
The remote ON/OFF feature can also be used as an eco-mode
or power switch to turn off the LYTSwitch-4 and keep it in a
very low power consumption state for indefinite long periods.
When the LYTSwitch-4 is remotely turned on after entering this
mode, it will initiate a normal start-up sequence with soft-start
the next time the BYPASS pin reaches 5.9 V. In the worst case,
the delay from remote on to start-up can be equal to the full
discharge/charge cycle time of the BYPASS pin. This reduced
consumption remote off mode can eliminate expensive and
unreliable in-line mechanical switches.
4
Rev. D 10/13
www.powerint.com
LYT4211-4218/4311-4318
V
D
CONTROL
S
completed. Special consideration must be made to appropriately
size the output capacitor to ensure that after the soft-start
period (tSOFT ) the FEEDBACK pin current is above the IFB(AR)
threshold to ensure successful power-supply start-up. After the
soft-start time period, auto-restart is activated only when the
FEEDBACK pin current falls below IFB(AR).
R
BP
FB
PI-5435-052510
Figure 7. Remote ON/OFF VOLTAGE MONITOR Pin Control.
5.9 V Regulator/Shunt Voltage Clamp
The internal 5.9 V regulator charges the bypass capacitor
connected to the BYPASS pin to 5.9 V by drawing a current
from the voltage on the DRAIN pin whenever the power FET is
off. The BYPASS pin is the internal supply voltage node. When
the power FET is on, the device operates from the energy stored
in the bypass capacitor. Extremely low power consumption of the
internal circuitry allows LYTSwitch-4 to operate continuously from
current it takes from the DRAIN pin. A bypass capacitor value
of 47 or 4.7 mF is sufficient for both high frequency decoupling
and energy storage. In addition, there is a 6.4 V shunt regulator
clamping the BYPASS pin at 6.4 V when current is provided to
the BYPASS pin through an external resistor. This facilitates
powering of LYTSwitch-4 externally through a bias winding to
increase operating efficiency. It is recommended that the
BYPASS pin is supplied current from the bias winding for
normal operation.
Auto-Restart
In the event of an open-loop fault (open FEEDBACK pin resistor
or broken path to feedback winding), output short-circuits or an
overload condition the controller enters into the auto-restart
mode. The controller annunciates both short-circuit and
open-loop conditions once the FEEDBACK pin current falls
below the IFB(AR) threshold after the soft-start period. To minimize
the power dissipation under this fault condition the shutdown/
auto-restart circuit turns the power supply on (same as the
soft-start period) and off at an auto-restart duty cycle of
typically DCAR for as long as the fault condition persists. If the
fault is removed during the auto-restart off-time, the power
supply will remain in auto-restart until the full off-time count is
Over-Current Protection
The current limit circuit senses the current in the power FET.
When this current exceeds the internal threshold (ILIMIT), the power
FET is turned off for the remainder of that cycle. A leading edge
blanking circuit inhibits the current limit comparator for a short
time (tLEB) after the power FET is turned on. This leading edge
blanking time has been set so that current spikes caused by
capacitance and rectifier reverse recovery will not cause
premature termination of the power FET conduction.
Line Overvoltage Protection
This device includes overvoltage detection to limit the maximum
operating voltage detected through the VOLTAGE MONITOR pin.
An external peak detector consisting of a diode and capacitor is
required to provide input line peak voltage to the VOLTAGE
MONITOR pin through a resistor.
The resistor sets line overvoltage (OV) shutdown threshold which,
once exceeded, forces the LYTSwitch-4 to stop switching. Once
the line voltage returns to normal, the device resumes normal
operation. A small amount of hysteresis is provided on the OV
threshold to prevent noise-generated toggling. When the power
FET is off, the rectified DC high voltage surge capability is
increased to the voltage rating of the power FET (670 V), due to the
absence of the reflected voltage and leakage spikes on the drain.
Hysteretic Thermal Shutdown
The thermal shutdown circuitry senses the controller die
temperature. The threshold is set at 142 °C typical with a 75 °C
hysteresis. When the die temperature rises above this threshold
(142 °C) the power FET is disabled and remains disabled until
the die temperature falls by 75 °C, at which point the power FET
is re-enabled.
Safe Operating Area (SOA) Protection
The device also features a safe operating area (SOA) protection
mode which disables FET switching for 40 cycles in the event
the peak switch current reaches the ILIMIT threshold and the switch
on-time is less than tON(SOA). This protection mode protects the
device under short-circuited LED conditions and at start-up during
the soft-start period when auto-restart protection is inhibited.
The SOA protection mode remains active in normal operation.
5
www.powerint.com
Rev. D 10/13
LYT4211-4218/4311-4318
Application Example
20 W TRIAC Dimmable High Power Factor LED Driver
Design Example (DER-350)
peak drain voltage of U1 below the 725 V rating of the internal
power FET. Bridge rectifier BR1 rectifies the AC line voltage.
EMI filtering is provided by L1-L3, C1, C4, R2, R24 and R25
together with the safety rated Y class capacitor (CY1) that bridges
the safety isolation barrier between primary and secondary.
Resistor R2, R24 and R25 act to damp any resonances formed
between L1, L2, L3, C1 and the AC line impedance. A small
bulk capacitor (C4) is required to provide a low impedance
source for the primary switching current. The maximum value
of C2 and C4 is limited in order to maintain a power factor of
greater than 0.9.
The circuit schematic in Figure 8 shows a TRIAC dimmable high
power factor LED driver based on LYT4317E from the LYTSwitch-4
family of devices. The design is configurable for non-dimmable
only applications by simple component value changes. It was
optimized to drive an LED string at a voltage of 36 V with a
constant current of 0.7 A ideal for Lumens PAR lamp retro-fit
applications. The design operates over an input voltage range
of 90 VAC to 132 VAC.
LYTSwitch-4 Primary
To provide peak line voltage information to U1 the incoming
rectified AC peak charges C6 via D2. This is then fed into the
VOLTAGE MONITOR pin of U1 as a current via R10. This
sensed current is also used by the device to set the line input
overvoltage protection threshold. Resistor R9 provides a
discharge path for C6 with a time constant much longer than
that of the rectified AC to prevent generation of line frequency
ripple.
The key goals of this design were compatibility with standard
leading edge TRIAC AC dimmers, very wide dimming range
(1000:1, 550 mA:0.55 mA), high efficiency (>85%) and high
power factor (>0.9). The design is fully protected from faults
such as no-load (open load), overvoltage and output shortcircuit or overload conditions and over temperature.
Circuit Description
The LYTSwitch-4 device (U1- LYT4317E) integrates the power
FET, controller and start-up functions into a single package
reducing the component count versus typical implementations.
Configured as part of an isolated continuous conduction mode
flyback converter, U1 provides high power factor via its internal
control algorithm together with the small input capacitance of
the design. Continuous conduction mode operation results in
reduced primary peak and RMS current. This both reduces
EMI noise, allowing simpler, smaller EMI filtering components
and improves efficiency. Output current regulation is maintained
without the need for secondary-side sensing which eliminates
current sense resistors and improves efficiency.
The VOLTAGE MONITOR pin current and the FEEDBACK pin
current are used internally to control the average output LED
current. For TRIAC phase-dimming applications a 49.9 kW
resistor (R14) is used on the REFERENCE pin and 2 MW (R10)
on the VOLTAGE MONITOR pin to provide a linear relationship
between input voltage and the output current and maximizing
the dimming range.
Diode D3, R15 and C7 clamp the drain voltage to a safe level
due to the effects of leakage inductance. Diode D4 is
necessary to prevent reverse current from flowing through U1
for the period of the rectified AC input voltage that the voltage
across C4 falls to below the reflected output voltage (VOR).
Input Stage
Fuse F1 provides protection from component failures while RV1
provides a clamp during differential line surges, keeping the
C13
R26 100 pF
30 Ω 200 V
D9
DFLU1400-7
R24
47 kΩ
1/8 W
BR1
MB6S
600 V
D2
DFLU1400
R9
510 kΩ
1/8 W
FL1
1
FL2
D3
US1J
R2
L1 47 kΩ
1 mH 1/8 W
R6
360 kΩ
L3
5 mH
L2
1 mH
T1
RM8
LYTSwitch-4
U1
LYT4317E
RV1
140 VAC
L
90 - 132
VAC
Q1
X0202MA2BL2
N
C3
470 nF
50 V
R8
100 Ω
1W
D5
BAV16
R17
3 kΩ
1/10 W
V
CONTROL
S
R
R18
165 kΩ
1%
1/16 W
BP
FB
R14
49.9 kΩ
1%
1/16 W C8
47 µF
16 V
Q2
MMBT3904
C14
10 nF
50 V
RTN
C9
56 µF
50 V
C5
100 nF
50 V
R19
20 kΩ
1/8 W
D4
US1D
C4
C6
100 nF 2.2 µF
250 V 250 V
D
F1
5A
R20
39 Ω
1/8 W
D8
BAV21
VR4
MAZS3300ML
33 V
C2
100 nF
250 V
R25
47 kΩ
1/8 W
11
R10
2 MΩ
1%
C1
220 nF
250 V
36 V,
550 mA
D6
BAV21
10
R1
510
1/2 W
C11
C12
330 µF 330 µF R23
63 V
63 V 20 kΩ
D7
BYW29-200
C7
2.2 nF
630 V
R15
200 kΩ
12
R27
10 Ω
1/10 W
C15
100 nF
50 V
R22
1 kΩ
1/10 W
CY1
470 pF
250 VAC
PI-6875-052213
Figure 8.
DER-350 Schematic of an Isolated, TRIAC Dimmable, High Power Factor, 90-132 VAC, 20 W / 36 V / 550 mA LED Driver.
6
Rev. D 10/13
www.powerint.com
LYT4211-4218/4311-4318
Diode D6, C5, C9, R19 and R20 create the primary bias supply
from an auxiliary winding on the transformer. Capacitor C8
provides local decoupling for the BYPASS pin of U1 which is the
supply pin for the internal controller. During start-up C8 is
charged to ~6 V from an internal high-voltage current source
tied to the device DRAIN pin. This allows the part to start
switching at which point the operating supply current is provided
from the bias supply via R17. Capacitor C8 also selects the
output power mode (47 mF for reduced power was selected to
reduce dissipation in U1 and increase efficiency for this design).
Feedback
The bias winding voltage is proportional to the output voltage
(set by the turns ratio between the bias and secondary
windings). This allows the output voltage to be monitored
without secondary-side feedback components. Resistor R18
converts the bias voltage into a current which is fed into the
FEEDBACK pin of U1. The internal engine within U1 combines
the FEEDBACK pin current, the VOLTAGE MONITOR pin current
and drain current information to provide a constant output
current over a 1.5:1 output voltage variation (LED string voltage
variation of ±25%) at a fixed line input voltage.
To limit the output voltage at no-load an output overvoltage
protection circuit is set by D8, C15, R22, VR4, R27, C14 and Q2.
Should the output load be disconnected then the bias voltage
will increase until VR4 conducts, turning on Q2 and reducing
the current into the FEEDBACK pin. When this current drops
below 10 mA the part enters auto-restart and switching is
disabled for 300 ms allowing time for the output and bias
voltages to fall.
Output Rectification
The transformer secondary winding is rectified by D7 and
filtered by C11 and C12. An ultrafast TO-220 diode was
selected for efficiency and the combined value of C11 and C12
were selected to give peak-to-peak LED ripple current equal to
30% of the mean value. For designs where lower ripple is
desirable the output capacitance value can be increased.
TRIAC Phase Dimming Control Compatibility
The requirement to provide output dimming with low-cost,
TRIAC-based, leading edge phase dimmers introduces a
number of trade-offs in the design.
Due to the much lower power consumed by LED based lighting
the current drawn by the overall lamp is below the holding
current of the TRIAC within the dimmer. This can cause
undesirable behaviors such as limited dimming range and/or
flickering as the TRIAC fires inconsistently. The relatively large
impedance the LED lamp presents to the line allows significant
ringing to occur due to the inrush current charging the input
capacitance when the TRIAC turns on. This too can cause
similar undesirable behavior as the ringing may cause the
TRIAC current to fall to zero and turn off.
To overcome these issues simple two circuits, the SCR active
damper and R-C passive bleeder, are incorporated. The
drawback of these circuits is increased dissipation and
therefore reduced efficiency of the supply. For non-dimming
applications these components can simply be omitted.
The SCR active damper consists of components R6, C3, and
Q1 in conjunction with R8. This circuit limits the inrush current
that flows to charge C4 when the TRIAC turns on by placing R8
in series for the first ~1 ms of the TRIAC conduction. After
approximately 1 ms, Q1 turns on and bypasses R8. This keeps
the power dissipation on R8 low and allows a larger value
during current limiting. Resistor R6 and C3 provide the delay
on Q1 turn on after the TRIAC conducts. Diode D9 blocks the
charge in capacitor C4 from flowing back after the TRIAC turns
on which helps in dimming compatibility especially with high
power dimmers.
The passive bleeder circuit is comprised of R1 and C1. This
helps keep the input current above the TRIAC holding current
while the input current corresponding to the effective driver
resistance increases during each AC half-cycle.
A small pre-load is provided by R23 which discharges residual
charge in output capacitors when turned off.
7
www.powerint.com
Rev. D 10/13
LYT4211-4218/4311-4318
Modified DER-350 20 W High Power Factor LED Driver
for Non-Dimmable and Enhanced Line Regulation
•
The circuit schematic in Figure 9 shows a high power factor
LED driver based on a LYT4317 from the LYTSwitch-4 family of
devices. It was optimized to drive an LED string at a voltage of
36 V with a constant current of 0.55 A, ideal for high lumen PAR
lamp retro-fit applications. The design operates over the
low-line input voltage range of 90 VAC to 132 VAC and is
non-dimming application. A non-dimming application has
tighter output current variation with changes in the line voltage
than a dimming application. It’s key to note that, although not
specified for dimming, no circuit damage will result if the end
user does operate the design with a phase controlled dimmer.
Modification for Non-Dimmable Configuration
The design is configurable for non-dimmable application by
simply removing the component for SCR active damper (R6,
R8, C3, and Q1), blocking diode D9 and R-C bleeder (R1, C1)
changes and replacing the reference resistor R14 with 24.9 kW.
(See Figure 9)
Key Application Considerations
Power Table
The data sheet power table (Table 1) represents the minimum
and maximum practical continuous output power based on the
following conditions:
•
•
•
•
Note that input line voltages above 85 VAC do not change the
power delivery capability of LYTSwitch-4 devices.
Device Selection
Select the device size by comparing the required output power
to the values in Table 1. For thermally challenging designs, e.g.,
incandescent lamp replacement, where either the ambient
temperature local to the LYTSwitch-4 device is high and/or
there is minimal space for heat sinking use the minimum output
power column. This is selected by using a 47 µF BYPASS pin
capacitor and results in a lower device current limit and therefore
lower conduction losses. For open frame design or designs
where space is available for heat sinking then refer to the
maximum output power column. This is selected by using a
4.7 µF BYPASS pin capacitor for all but the LYT4x11 which has
only one power setting. In all cases in order to obtain the best
output current tolerance maintain the device temperature below
100 °C
Maximum Input Capacitance
To achieve high power factor, the capacitance used in both the
EMI filter and for decoupling the rectified AC (bulk capacitor)
must be limited in value. The maximum value is a function of
the output power of the design and reduces as the output
power reduces. For the majority of designs limit the total
capacitance to less than 200 nF with a bulk capacitor value of
100 nF. Film capacitors are recommended compared to
ceramic types as they minimize audible noise with operating
with leading edge phase dimmers. Start with a value of 10 nF
for the capacitance in the EMI filter and increase in value until
there is sufficient EMI margin.
Efficiency of 80%
Device local ambient of 70 °C
Sufficient heat sinking to keep the device temperature below
100 °C
For minimum output power column
• Reflected output voltage (VOR) of 120 V
• FEEDBACK pin current of 135 µA
• BYPASS pin capacitor value of 47 µF
C13
R26 100 pF
30 Ω 200 V
R24
47 kΩ
1/8 W
D2
DFLU1400
R9
510 kΩ
1/8 W
BR1
MB6S
600 V
For maximum output power column
Reflected output voltage (VOR) of 65 V
• FEEDBACK pin current of 165 µA
• BYPASS pin capacitor value of 4.7 µF (LYT4x11 = 4.7 µF)
•
FL1
1
FL2
D6
BAV21
10
D3
US1J
11
R10
2 MΩ
1%
L2
1 mH
L3
5 mH
T1
RM8
LYTSwitch-4
U1
LYT4317E
RV1
140 VAC
V
CONTROL
S
L
90 - 132
VAC
N
D5
BAV16
R17
3 kΩ
1/10 W
R
R18
165 kΩ
1%
1/16 W
BP
FB
R14
24.9 kΩ
1%
1/16 W C8
47 µF
16 V
36 V,
550 mA
Q2
MMBT3904
C14
10 nF
50 V
RTN
C9
56 µF
50 V
C5
100 nF
50 V
R19
20 kΩ
1/8 W
D4
US1D
C4
C6
100 nF 2.2 µF
250 V 250 V
D
F1
5A
R20
39 Ω
1/8 W
D8
BAV21
VR4
MAZS3300ML
33 V
R2
L1 47 kΩ
1 mH 1/8 W
R25
47 kΩ
1/8 W
C2
100 nF
250 V
C11
C12
330 µF 330 µF R23
63 V
63 V 20 kΩ
D7
BYW29-200
C7
2.2 nF
630 V
R15
200 kΩ
12
R27
10 Ω
1/10 W
C15
100 nF
50 V
R22
1 kΩ
1/10 W
CY1
470 pF
250 VAC
PI-6875a-052213
Figure 9. Modified Schematic of RD-350 for Non-Dimmable, Isolated, High Power Factor, 90-132 VAC, 20 W / 36 V LED Driver.
8
Rev. D 10/13
www.powerint.com
LYT4211-4218/4311-4318
Primary Clamp and Output Reflected Voltage VOR
A primary clamp is necessary to limit the peak drain to source
voltage. A Zener clamp requires the fewest components and
board space and gives the highest efficiency. RCD clamps are
also acceptable however the peak drain voltage should be
carefully verified during start-up and output short-circuits as the
clamping voltage varies with significantly with the peak drain
current.
For the highest efficiency, the clamping voltage should be
selected to be at least 1.5 times the output reflected voltage,
VOR, as this keeps the leakage spike conduction time short.
This will ensure efficient operation of the clamp circuit and will
also keep the maximum drain voltage below the rated
breakdown voltage of the FET. An RCD (or RCDZ) clamp
provides tighter clamp voltage tolerance than a Zener clamp.
The RCD clamp is more cost effective than the Zener clamp but
requires more careful design to ensure that the maximum drain
voltage does not exceed the power FET breakdown voltage.
These VOR limits are based on the BVDSS rating of the internal
FET, a VOR of 60 V to 100 V is typical for most designs, giving
the best PFC and regulation performance.
Series Drain Diode
An ultrafast or Schottky diode in series with the drain is
necessary to prevent reverse current flowing through the
device. The voltage rating must exceed the output reflected
voltage, VOR. The current rating should exceed two times the
average primary current and have a peak rating equal to the
maximum drain current of the selected LYTSwitch-4 device.
Line Voltage Peak Detector Circuit
LYTSwitch-4 devices use the peak line voltage to regulate the
power delivery to the output. A capacitor value of 1 mF to 4.7 mF
is recommended to minimize line ripple and give the highest
power factor (>0.9), smaller values are acceptable but result in
lower PF and higher line current distortion.
Leading Edge Phase Controlled Dimmers
The requirement to provide flicker-free output dimming with lowcost, TRIAC-based, leading edge phase dimmers introduces a
number of trade-offs in the design.
Due to the much lower power consumed by LED based lighting
the current drawn by the overall lamp is below the holding
current of the TRIAC within the dimmer. This causes
undesirable behaviors such as limited dimming range and/or
flickering. The relatively large impedance the LED lamp presents
to the line allows significant ringing to occur due to the inrush
current charging the input capacitance when the TRIAC turns
on. This too can cause similar undesirable behavior as the
ringing may cause the TRIAC current to fall to zero and turn off.
To overcome these issues two circuits, the active damper and
passive bleeder, are incorporated. The drawback of these
circuits is increased dissipation and therefore reduced efficiency
of the supply so for non-dimming applications these components
can simply be omitted.
Figure 10a shows the line voltage and current at the input of a
leading edge TRIAC dimmer with Figure 10b showing the
resultant rectified bus voltage. In this example, the TRIAC
conducts at 90 degrees.
PI-5983-060810
350
0.35
Voltage
Current
250
0.25
150
0.15
50
0.05
-50 0.5
50
100
150
200
250
300
350
400
-0.05
-150
-0.15
-250
-0.25
-350
-0.35
Line Current (Through Dimmer) (A)
VOLTAGE MONITOR Pin Resistance Network Selection
For widest AC phase angle dimming range with LYT4311-4318,
use a 2 MΩ (1.7 MΩ for 100 VAC (Japan)) resistor connected to
the line voltage peak detector circuit. Make sure that the
resistor’s voltage rating is sufficient for the peak line voltage. If
necessary use multiple series connected resistors.
Operation with Phase Controlled Dimmers
Dimmer switches control incandescent lamp brightness by not
conducting (blanking) for a portion of the AC voltage sine wave.
This reduces the RMS voltage applied to the lamp thus reducing
the brightness. This is called natural dimming and the LYTSwitch-4
LYT4311-4318 devices when configured for dimming utilize
natural dimming by reducing the LED current as the RMS line
voltage decreases. By this nature, line regulation performance is
purposely decreased to increase the dimming range and more
closely mimic the operation of an incandescent lamp. Using a
49.9 kW REFERENCE pin resistance selects natural dimming
mode operation.
Line Voltage (at Dimmer Input) (V)
REFERENCE Pin Resistance Value Selection
The LYTSwitch-4 family contains phase dimming devices,
LYT4311-4318, and non-dimming devices, LYT4211-4218. The
non-dimmable devices use a 24.9 kΩ ±1% REFERENCE pin
resistor for best output current tolerance (over AC input voltage
changes). The dimmable devices (i.e. LYT4311-4318) use 49.9
kΩ ±1% to achieve the widest dimming range.
Conduction Angle (°)
Figure 10a.Ideal Input Voltage and Current Waveform for a Leading Edge
TRIAC Dimmer at 90°.
9
www.powerint.com
Rev. D 10/13
LYT4211-4218/4311-4318
250
0.25
200
0.2
150
0.15
100
0.1
50
0.05
0
0
0
50
100
150
200
250
300
350
400
Figure 10b.Resultant Waveforms Following Rectification of TRIAC Dimmer Output.
Figure 11 shows undesired rectified bus voltage and current
with the TRIAC turning off prematurely and restarting.
If the TRIAC is turning off before the end of the half-cycle
erratically or alternate half AC cycles have different conduction
angles then flicker will be observed in the LED light due to
variations in the output current. This can be solved by including
a bleeder and damper circuit.
Dimmers will behave differently based on manufacturer and
power rating, for example a 300 W dimmer requires less
dampening and requires less power loss in the bleeder than a
600 W or 1000 W dimmer due to different drive circuits and
TRIAC holding current specifications. Multiple lamps in parallel
driven from the same dimmer can introduce more ringing due to
the increased capacitance of parallel units. Therefore, when
testing dimmer operation verify on a number of models,
different line voltages and with both a single driver and multiple
drivers in parallel.
Rectified Input Voltage (V)
Voltage
Current
300
0.35
0.3
250
0.25
200
0.2
150
0.15
100
0.1
50
0.05
0
0
0
50
100
150
200
250
300
350
Conduction Angle (°)
400
Rectified Input Current (A)
PI-5985-060810
0.15
150
0.05
50
-50
0.25
0
50
100
150
200
250
300
350
-0.05
-150
-0.15
-250
-0.25
-350
-0.35
Conduction Angle (°)
Conduction Angle (°)
350
Voltage
Current
250
0.35
Figure 12. Ideal Dimmer Output Voltage and Current Waveforms for a Trailing Edge Dimmer at 90° Conduction Angle.
Start by adding a bleeder circuit. Add a 0.44 µF capacitor and
510 W 1 W resistor (components in series) across the rectified
bus (C1 and R1 in Figure 8). If the results in satisfactory operation
reduce the capacitor value to the smallest that result in acceptable
performance to reduce losses and increase efficiency.
If the bleeder circuit does not maintain conduction in the TRIAC,
then add an active damper as shown in Figure 12. This consists
of components R6, C3, and Q1 in conjunction with R8. This
circuit limits the inrush current that flows to charge C4 when the
TRIAC turns on by placing R8 in series for the first 1 ms of the
TRIAC conduction. After approximately 1 ms, Q1 turns on and
shorts R8. This keeps the power dissipation on R8 low and
allows a larger value to be used during current limiting.
Increasing the delay before Q1 turns on by increasing the value
of resistor R6 will improve dimmer compatibility but cause more
power to be dissipated across R8. Monitor the AC line current
and voltage at the input of the power supply as you make the
adjustments. Increase the delay until the TRIAC operates
properly but keep the delay as short as possible for efficiency.
As a general rule the greater the power dissipated in the bleeder
and damper circuits, the more types of dimmers will work with
the driver.
Trailing Edge Phase Controlled Dimmers
Figure 11 shows the line voltage and current at the input of the
power supply with a trailing edge dimmer. In this example, the
dimmer conducts at 90 degrees. Many of these dimmers use
back-to-back connected power FETs rather than a TRIAC to
control the load. This eliminates the holding current issue of
TRIACs and since the conduction begins at the zero crossing,
high current surges and line ringing are minimized. Typically these
types of dimmers do not require damping and bleeder circuits.
Figure 11. Example of Phase Angle Dimmer Showing Erratic Firing.
10
Rev. D 10/13
Dimmer Output Current (A)
0.3
PI-5986-060810
350
Dimmer Output Voltage (V)
Rectified Input Voltage (V)
Voltage
Current
300
0.35
Rectified Input Current (A)
PI-5984-060810
350
www.powerint.com
LYT4211-4218/4311-4318
Audible Noise Considerations for Use with
Leading Edge Dimmers
Noise created when dimming is typically created by the input
capacitors, EMI filter inductors and the transformer. The input
capacitors and inductors experience high di/dt and dv/dt every
AC half-cycle as the TRIAC fires and an inrush current flows to
charge the input capacitance. Noise can be minimized by
selecting film vs. ceramic capacitors, minimizing the capacitor
value and selecting inductors that are physically short and wide.
The transformer may also create noise which can be minimized
by avoiding cores with long narrow legs (high mechanical
resonant frequency). For example, RM cores produce less
audible noise than EE cores for the same flux density. Reducing
the core flux density will also reduce the noise. Reducing the
maximum flux density (BM) to 1500 Gauss usually eliminates
any audible noise but must be balanced with the increased core
size needed for a given output power.
Thermal and Lifetime Considerations
Lighting applications present thermal challenges to the driver.
In many cases the LED load dissipation determines the working
ambient temperature experienced by the drive so thermal
evaluation should be performed with the driver inside the final
enclosure. Temperature has a direct impact on driver and LED
Input EMI Filter
LYT4317E
Bullk
Capacitor
lifetime. For every 10 °C rise in temperature, component life is
reduced by a factor of 2. Therefore it is important to properly
heat sink and to verify the operating temperatures of all devices.
Layout Considerations
Primary-Side Connections
Use a single point (Kelvin) connection at the negative terminal of
the input filter capacitor for the SOURCE pin and bias returns.
This improves surge capabilities by returning surge currents
from the bias winding directly to the input filter capacitor. The
BYPASS pin capacitor should be located as close to the
BYPASS pin and connected as close to the SOURCE pin as
possible. The SOURCE pin trace should not be shared with the
main power FET switching currents. All FEEDBACK pin
components that connect to the SOURCE pin should follow the
same rules as the BYPASS pin capacitor. It is critical that the
main power FET switching currents return to the bulk capacitor
with the shortest path as possible. Long high current paths
create excessive conducted and radiated noise.
Secondary-Side Connections
The output rectifier and output filter capacitor should be as
close as possible. The transformer’s output return pin should
have a short trace to the return side of the output filter capacitor.
BYPASS Pin
Capacitor Clamp Transformer Output
Diode
Output
Capacitor
REFERENCE Pin
Resistor
FEEDBACK Pin
Resistor
VOLTAGE MONITOR Pin
Resistor
Output
Capacitors
PI-6904-072313
Figure 13. DER-350 20 W Layout Example, Top Silk / Bottom Layer.
11
www.powerint.com
Rev. D 10/13
LYT4211-4218/4311-4318
Quick Design Checklist
Maximum Drain Voltage
Verify that the peak VDS does not exceed 670 V under all
operating conditions including start-up and fault conditions.
Maximum Drain Current
Measure the peak drain current under all operation conditions
including start-up and fault conditions. Look for signs of
transformer saturation (usually occurs at highest operating
ambient temperatures). Verify that the peak current is less than
the stated Absolute Maximum Rating in the data sheet.
Thermal Check
At maximum output power, both minimum and maximum line
voltage and ambient temperature; verify that temperature
specifications are not exceeded for the LYTSwitch-4,
transformer, output diodes, output capacitors and drain clamp
components.
12
Rev. D 10/13
www.powerint.com
LYT4211-4218/4311-4318
Absolute Maximum Ratings(1,4)
DRAIN Pin Peak Current(5): LYT4x11..................................1.37 A
LYT4x12..................................2.08 A
LYT4x13..................................2.72 A
LYT4x14................................. 4.08 A
LYT4x15................................. 5.44 A
LYT4x16................................. 6.88 A
LYT4x17.................................. 7.73 A
LYT4x18................................. 9.00 A
DRAIN Pin Voltage ……………………….................. -0.3 to 670 V
BYPASS Pin Voltage.................................................. -0.3 to 9 V
BYPASS Pin Current ………………………....................... 100 mA
VOLTAGE MONITOR Pin Voltage.............................. -0.3 to 9 V(6)
FEEDBACK Pin Voltage ……..................................... -0.3 to 9 V
REFERENCE Pin Voltage .......................................... -0.3 to 9 V
Lead Temperature(3) .........................................................260 °C
Storage Temperature ………………….................... -65 to 150 °C
Operating Junction Temperature(2)..........................-40 to 150 °C
Notes:
1. All voltages referenced to SOURCE, TA = 65 °C.
2. Normally limited by internal circuitry.
3. 1/16 in. from case for 5 seconds.
4. Absolute Maximum Ratings specified may be applied, one
at a time without causing permanent damage to the
product. Exposure to Absolute Maximum Ratings for
extended periods of time may affect product reliability.
5. Peak DRAIN current is allowed while the DRAIN voltage is
simultaneously less than 400 V. See also Figure 13.
6. During start-up (the period before the BYPASS pin begins powering the IC) the VOLTAGE MONITOR pin voltage can safely rise to 15 V without damage.
Thermal Resistance
Thermal Resistance: E or L Package
(qJA) ....................................................105 °C/W(1)
(qJC)..................................................... 2 °C/W(2)
Parameter
Symbol
Notes:
1. Free standing with no heat sink.
2. Measured at back surface tab.
Conditions
SOURCE = 0 V; TJ = -20 °C to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
124
132
140
Units
Control Functions
Switching Frequency
Frequency Jitter
Modulation Rate
fOSC
TJ = 65 °C
Peak-Peak Jitter
VBP = 0 V,
TJ = 65 °C
Charging Current
Temperature Drift
BYPASS Pin Voltage
BYPASS Pin
Voltage Hysteresis
BYPASS Pin
Shunt Voltage
Soft-Start Time
VBP = 5 V,
TJ = 65 °C
2.6
-4.1
-3.4
-2.7
LYT4x12
-7.3
-6.1
-4.9
LYT4x13-4x17
-12
-9.5
-7.0
LYT4x18
-13.3
-10.8
-8.3
LYT4x11
-0.81
-0.62
-0.43
LYT4x12
-3.1
-2.4
-1.7
LYT4x13-4x17
-5.6
-4.35
-3.1
LYT4x18
-6.75
-5.5
-4.25
See Note A, B
0.7
VBP
0 °C < TJ < 100 °C
5.75
5.95
VBP(H)
0 °C < TJ < 100 °C
VBP(SHUNT)
IBP = 4 mA
0 °C < TJ < 100 °C
6.1
6.4
tSOFT
TJ = 65 °C
VBP = 5.9 V
55
76
kHz
kHz
LYT4x11
BYPASS Pin
Charge Current
ICH2
5.4
TJ = 65 °C
See Note B
fM
ICH1
Average
mA
%/°C
6.15
0.85
V
V
6.6
V
ms
13
www.powerint.com
Rev. D 10/13
LYT4211-4218/4311-4318
Parameter
Symbol
Conditions
SOURCE = 0 V; TJ = -20 °C to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
ICD2
0 °C < TJ < 100 °C
FET Not Switching
0.5
0.8
1.2
ICD1
0 °C < TJ < 100 °C
FET Switching at fOSC
1
2.5
4
115
123
131
Units
Control Functions (cont.)
Drain Supply Current
mA
VOLTAGE MONITOR Pin
TJ = 65 °C
RR = 24.9 kW
RR = 49.9 kW
Threshold
Line Overvoltage
Threshold
IOV
VOLTAGE MONITOR
Pin Voltage
VV
0 °C < TJ < 100 °C
IV < IOV
2.75
3.0
3.25
V
IV(SC)
VV = 5 V
TJ = 65 °C
165
185
205
mA
VV(REM)
TJ = 65 °C
0.5
FEEDBACK Pin Current
at Onset of Maximum
Duty Cycle
IFB(DCMAXR)
0 °C < TJ < 100 °C
FEEDBACK Pin Current
Skip Cycle Threshold
IFB(SKIP)
0 °C < TJ < 100 °C
210
Maximum Duty Cycle
DCMAX
IFB(DCMAXR) < IFB < IFB(SKIP)
0 °C < TJ < 100 °C
90
VFB
IFB = 150 mA
0 °C < TJ < 100 °C
2.1
IFB(SC)
VFB = 5 V
TJ = 65 °C
320
DC10
IFB = IFB(AR), TJ = 65 °C, See Note B
17
DC40
IFB = 40 mA, TJ = 65 °C
34
DC60
IFB = 60 mA, TJ = 65 °C
55
tAR
TJ = 65 °C
VBP = 5.9 V
Auto-Restart
Duty Cycle
DCAR
TJ = 65 °C
See Note B
SOA Minimum Switch
ON-Time
tON(SOA)
TJ = 65 °C
See Note B
IFB(AR)
0 °C < TJ < 100 °C
VOLTAGE MONITOR Pin
Short-Circuit Current
Remote ON/OFF
Threshold
Hysteresis
6
mA
V
FEEDBACK Pin
FEEDBACK Pin Voltage
FEEDBACK Pin
Short-Circuit Current
Duty Cycle Reduction
90
mA
mA
99.9
%
2.3
2.56
V
400
480
mA
%
Auto-Restart
Auto-Restart ON-Time
FEEDBACK Pin Current
During Auto-Restart
55
76
ms
25
%
6.5
0.875
ms
10
mA
14
Rev. D 10/13
www.powerint.com
LYT4211-4218/4311-4318
Parameter
Symbol
Conditions
SOURCE = 0 V; TJ = -20 °C to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
Units
1.223
1.245
1.273
V
48.69
49.94
51.19
mA
REFERENCE Pin
REFERENCE Pin
Voltage
VR
REFERENCE Pin
Current
IR
RR = 24.9 kW
0 °C < TJ < 100 °C
Current Limit/Circuit Protection
Full Power
Current Limit
(CBP = 4.7 mF)
Reduced Power
Current Limit
(CBP = 47 mF)
Minimum ON-Time
Pulse
di/dt = 174 mA/ms
LYT4x12
1.00
1.17
di/dt = 174 mA/ms
LYT4x13
1.24
1.44
ILIMIT(F)
di/dt = 225 mA/ms
LYT4x14
1.46
1.70
TJ = 65 °C
di/dt = 320 mA/ms
LYT4x15
1.76
2.04
di/dt = 350 mA/ms
LYT4x16
2.43
2.83
di/dt = 426 mA/ms
LYT4x17
3.26
3.79
di/dt = 133 mA/ms
LYT4x11
0.74
0.86
di/dt = 195 mA/ms
LYT4x12
0.81
0.95
di/dt = 192 mA/ms
LYT4x13
1.00
1.16
ILIMIT(R)
di/dt = 240 mA/ms
LYT4x14
1.19
1.38
TJ = 65 °C
di/dt = 335 mA/ms
LYT4x15
1.43
1.66
di/dt = 380 mA/ms
LYT4x16
1.76
2.05
di/dt = 483 mA/ms
LYT4x17
2.35
2.73
di/dt = 930 mA/ms
LYT4x18
4.90
5.70
tLEB + tIL(D)
TJ = 65 °C
300
Leading Edge
Blanking Time
tLEB
TJ = 65 °C
See Note B
150
Current Limit Delay
tIL(D)
TJ = 65 °C
See Note B
Thermal Shutdown
Temperature
See Note B
Thermal Shutdown
Hysteresis
See Note B
BYPASS Pin Power-Up
Reset Threshold
Voltage
VBP(RESET)
0 °C < TJ < 100 °C
500
142
ns
500
ns
ns
150
3.30
°C
°C
75
2.25
A
700
150
135
A
4.25
V
15
www.powerint.com
Rev. D 10/13
LYT4211-4218/4311-4318
Parameter
Symbol
Conditions
SOURCE = 0 V; TJ = -20 °C to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
TJ = 65 °C
11.5
13.2
TJ = 100 °C
13.5
15.5
TJ = 65 °C
6.9
8.0
TJ = 100 °C
8.4
9.7
TJ = 65 °C
5.3
6.0
TJ = 100 °C
6.3
7.3
TJ = 65 °C
3.4
3.9
TJ = 100 °C
3.9
4.5
TJ = 65 °C
2.5
2.9
TJ = 100 °C
3.0
3.4
TJ = 65 °C
1.9
2.2
TJ = 100 °C
2.3
2.7
TJ = 65 °C
1.7
2.0
TJ = 100 °C
2.0
2.4
TJ = 65 °C
1.3
1.5
TJ = 100 °C
1.6
1.8
Units
Output
LYT4x11
ID = 100 mA
LYT4x12
ID = 100 mA
LYT4x13
ID = 150 mA
ON-State Resistance
RDS(ON)
LYT4x14
ID = 150 mA
LYT4x15
ID = 200 mA
LYT4x16
ID = 250 mA
LYT4x17
ID = 350 mA
LYT4x18
ID = 600 mA
OFF-State Drain
Leakage Current
Breakdown Voltage
W
IDSS
VBP = 6.4 V
VDS = 560 V
TJ = 100 °C
BVDSS
VBP = 6.4 V
TJ = 65 °C
670
V
TJ < 100 °C
36
V
Minimum Drain
Supply Voltage
Rise Time
tR
Fall Time
tF
Measured in a Typical Flyback
See Note B
50
mA
100
ns
50
ns
NOTES:
A. For specifications with negative values, a negative temperature coefficient corresponds to an increase in magnitude with increasing
temperature and a positive temperature coefficient corresponds to a decrease in magnitude with increasing temperature.
B. Guaranteed by characterization. Not tested in production.
16
Rev. D 10/13
www.powerint.com
LYT4211-4218/4311-4318
Power (mW)
Scaling Factors:
LYT4x11 0.18
LYT4x12 0.28
LYT4x13 0.38
LYT4x14 0.56
LYT4x15 0.75
LYT4x16 1.00
LYT4x17 1.16
LYT4x18 1.55
1000
100
10
1
100
200
300
400
500
300
PI-6715-072313
DRAIN Capacitance (pF)
10000
Scaling Factors:
LYT4x11 0.18
LYT4x12 0.28
LYT4x13 0.38
LYT4x14 0.56
LYT4x15 0.75
LYT4x16 1.00
LYT4x17 1.16
LYT4x18 1.55
200
100
0
600
0
DRAIN Pin Voltage (V)
3
Scaling Factors:
LYT4x11 0.18
LYT4x12 0.28
LYT4x13 0.38
LYT4x14 0.56
LYT4x15 0.75
LYT4x16 1.00
LYT4x17 1.16
LYT4x18 1.55
2
1
LYT4x28 TCASE = 25 °C
LYT4x28 TCASE = 100 °C
0
0
2
4
6
8 10 12 14 16 18 20
DRAIN Voltage (V)
Figure 16. Drain Current vs. Drain Voltage.
1.2
PI-6909-110512
PI-6717-071012
Figure 15. Power vs. Drain Voltage.
DRAIN Current
(Normalized to Absolute Maximum Rating)
DRAIN Current (A)
4
100 200 300 400 500 600 700
DRAIN Voltage (V)
Figure 14. Drain Capacitance vs. Drain Pin Voltage.
5
PI-6716-071012
Typical Performance Characteristics
1
0.8
0.6
0.4
0.2
0
0
100 200 300 400 500 600 700 800
DRAIN Voltage (V)
Figure 17. Maximum Allowable Drain Current vs. Drain Voltage.
17
www.powerint.com
Rev. D 10/13
LYT4211-4218/4311-4318
eSIP-7C (E Package)
C
2
0.403 (10.24)
0.397 (10.08)
A
0.264 (6.70)
Ref.
0.081 (2.06)
0.077 (1.96)
B
Detail A
2
0.290 (7.37)
Ref.
0.519 (13.18)
Ref.
0.325 (8.25)
0.320 (8.13)
Pin #1
I.D.
0.140 (3.56)
0.120 (3.05)
3
0.207 (5.26)
0.187 (4.75)
0.016 (0.41)
Ref.
3
0.047 (1.19)
0.070 (1.78) Ref.
0.050 (1.27)
0.198 (5.04) Ref.
0.016 (0.41) 6×
0.011 (0.28)
0.020 M 0.51 M C
FRONT VIEW
0.118 (3.00)
SIDE VIEW
4
0.033 (0.84) 6×
0.028 (0.71)
0.010 M 0.25 M C A B
0.100 (2.54)
BACK VIEW
0.100 (2.54)
10° Ref.
All Around
0.021 (0.53)
0.019 (0.48)
0.050 (1.27)
0.020 (0.50)
0.060 (1.52)
Ref.
0.050 (1.27)
PIN 1
0.378 (9.60)
Ref.
0.048 (1.22)
0.046 (1.17)
0.019 (0.48) Ref.
0.059 (1.50)
0.155 (3.93)
0.023 (0.58)
END VIEW
PIN 7
0.027 (0.70)
0.059 (1.50)
Notes:
1. Dimensioning and tolerancing per ASME Y14.5M-1994.
2. Dimensions noted are determined at the outermost
extremes of the plastic body exclusive of mold flash,
tie bar burrs, gate burrs, and interlead flash, but including
any mismatch between the top and bottom of the plastic
body. Maximum mold protrusion is 0.007 [0.18] per side.
DETAIL A
0.100 (2.54)
0.100 (2.54)
MOUNTING HOLE PATTERN
(not to scale)
3. Dimensions noted are inclusive of plating thickness.
4. Does not include inter-lead flash or protrusions.
5. Controlling dimensions in inches (mm).
PI-4917-061510
18
Rev. D 10/13
www.powerint.com
LYT4211-4218/4311-4318
eSIP-7F (L Package)
C
2
0.403 (10.24)
0.397 (10.08)
A
0.081 (2.06)
0.077 (1.96)
0.264 (6.70) Ref.
B
Detail A
2
0.325 (8.25)
0.320 (8.13)
0.290 (7.37)
Ref.
3
0.016 (0.41) 6×
0.011 (0.28)
0.020 M 0.51 M C
1
7
0.084 (2.14)
Pin 1 I.D.
0.070 (1.78) Ref.
BOTTOM VIEW
SIDE VIEW
0.019 (0.48) Ref.
0.378 (9.60)
Ref.
1
3
4
0.033 (0.84) 6×
0.028 (0.71)
0.010 M 0.25 M C A B
TOP VIEW
Exposed pad hidden
0.060 (1.52) Ref.
7
0.089 (2.26)
0.079 (2.01)
0.100 (2.54)
0.129 (3.28)
0.122 (3.08)
7
0.173 (4.40)
0.163 (4.15)
0.047 (1.19) Ref.
0.050 (1.27)
1
0.198 (5.04) Ref.
0.490 (12.45) Ref.
Exposed pad up
0.021 (0.53)
0.019 (0.48)
0.020 (0.50)
0.023 (0.58)
0.048 (1.22)
0.046 (1.17)
0.027 (0.70)
END VIEW
DETAIL A (Not drawn to scale)
Notes:
1. Dimensioning and tolerancing per ASME
Y14.5M-1994.
2. Dimensions noted are determined at the
outermost extremes of the plastic body
exclusive of mold flash, tie bar burrs, gate
burrs, and interlead flash, but including
any mismatch between the top and bottom
of the plastic body. Maximum mold
protrusion is 0.007 [0.18] per side.
3. Dimensions noted are inclusive of plating
thickness.
4. Does not include inter-lead flash or
protrusions.
5. Controlling dimensions in inches (mm).
PI-5204-061510
Part Ordering Information
• LYTSwitch-4 Product Family
• 4 Series Number
• PFC/Dimming
2
PFC No Dimming
3
PFC Dimming
• Voltage Range
1
Low-Line
• Device Size
• Package Identifier
LYT 4 2 1 3 E
E
eSIP-7C
L
eSIP-7F
19
www.powerint.com
Rev. D 10/13
Revision
Notes
Date
A
Initial Release.
11/12
B
Corrected Min and Typ parameter table values on pages 13 and 14.
B
Updated parameters ICH1, ICH2, ICD1, DCAR, ILIMIT(F), ILIMIT(R), on pages 13, 14 and 15.
C
Updated figures 1, 3a, 3b, 3c, 3d, 8, 9 and 13.
06/13
D
Added Note 6 to Absolute Maximum Ratings section.
10/13
02/13
02/20/13
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES
NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
Patent Information
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at http://www.powerint.com/ip.htm.
Life Support Policy
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant
injury or death to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or effectiveness.
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,
HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc.
Other trademarks are property of their respective companies. ©2014, Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
World Headquarters
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: [email protected]
China (Shanghai)
Rm 2410, Charity Plaza, No. 88
North Caoxi Road
Shanghai, PRC 200030
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: [email protected]
China (ShenZhen)
3rd Floor, Block A,
Zhongtou International Business
Center, No. 1061, Xiang Mei Rd,
FuTian District, ShenZhen,
China, 518040
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: [email protected]
Germany
Lindwurmstrasse 114
80337 Munich
Germany
Phone: +49-895-527-39110
Fax: +49-895-527-39200
e-mail: [email protected]
India
#1, 14th Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail: [email protected]
Italy
Via Milanese 20, 3rd. Fl.
20099 Sesto San Giovanni (MI)
Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail: [email protected]
Japan
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama,
Kohoku-ku
Yokohama-shi Kanagwan
222-0033 Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
Korea
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
Taiwan
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail: [email protected]
Europe HQ
First Floor, Unit 15, Meadway
Court, Rutherford Close,
Stevenage, Herts. SG1 2EF
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail: [email protected]
Applications Hotline
World Wide +1-408-414-9660
Singapore
51 Newton Road
Applications Fax
#19-01/05 Goldhill Plaza
World Wide +1-408-414-9760
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail: [email protected]
LYT4221-4228/4321-4328
™
LYTSwitch-4
High Power LED Driver IC Family
Single-Stage Accurate Primary-Side Constant Current (CC) Controller with
PFC for High-Line Applications with TRIAC Dimming and Non-Dimming Options
Product Highlights
•
•
•
•
•
•
•
Better than ±5% CC regulation
TRIAC dimmable to less than 5% output
Fast start-up
• <250 ms at full brightness
• <1s at 10% brightness
High power factor >0.9
Easily meets EN61000-3-2
• Less than 10% THD in optimized designs
Up to 92% efficient
132 kHz switching frequency for small magnetics
High Performance, Combined Driver, Controller, Switch
The LYTSwitch family enables off-line LED drivers with high
power factor which easily meet international requirements for
THD and harmonics. Output current is tightly regulated with
better than ±5% CC tolerance1. Efficiency of up to 92% is easily
achieved in typical applications.
Supports a Wide Selection of TRIAC Dimmers
The LYTSwitch family provides excellent turn-on characteristics
for leading-edge and trailing-edge TRIAC dimming applications.
This results in drivers with a wide dimming range and fast
start-up, even when turning on from a low conduction angle –
large dimming ratio and low “pop-on” current.
Low Solution Cost and Long Lifetime
LYTSwitch ICs are highly integrated and employ a primary-side
control technique that eliminates the optoisolator and reduces
component count. This allows the use of low-cost single-sided
printed circuit boards. Combining PFC and CC functions into a
single-stage also helps reduce cost and increase efficiency.
The 132 kHz switching frequency permits the use of small,
low-cost magnetics.
LED drivers using the LYTSwitch family do not use primary-side
aluminum electrolytic bulk capacitors. This means greatly
extended driver lifetime, especially in bulb and other high
temperature applications.
eSIP-7C (E Package)
Figure 2.
AC
IN
V
D
LYTSwitch-4
CONTROL
S
R
BP
FB
PI-6800-050913
Figure 1.
Typical Schematic.
Optimized for Different Applications and Power Levels
Part Number
Input Voltage Range
TRIAC Dimmable
LYT4221-LYT4228
160-300 VAC
No
LYT4321-LYT4328
160-300 VAC
Yes
Output Power Table1,2
Product 6
Minimum Output Power 3 Maximum Output Power 4
LYT4x21E5
6W
12 W
LYT4x22E
6W
15 W
LYT4x23E
8W
18 W
LYT4x24E
9W
22 W
LYT4x25E
11 W
25 W
LYT4x26E
14 W
35 W
LYT4x27E
19 W
50 W
LYT4x28E
33 W
78 W
Table 1. Output Power Table.
Notes:
1. Performance for typical design. See Application Note.
2. Continuous power in an open frame design with adequate heat sinking; device
local ambient of 70 °C. Power level calculated assuming a typical LED string
voltage and efficiency >80%.
3. Minimum output power requires CBP = 47 µF.
4. Maximum output power requires CBP = 4.7 µF.
5. LYT4321 CBP = 47 µF, LYT4221 CBP = 4.7 µF.
6. Package: eSIP-7C (see Figure 2).
Package Options.
www.powerint.com March 2014
This Product is Covered by Patents and/or Pending Patent Applications.
LYT4221-4228/4321-4328
Topology
Isolation
Efficiency
Cost
THD
Output Voltage
Yes
No
No
No
88%
92%
89%
90%
High
Low
Middle
Low
Best
Good
Best
Best
Any
Limited
Any
High-Voltage
Isolated Flyback
Buck
Tapped Buck
Buck-Boost
Table 2. Performance of Different Topologies in a Typical Non-Dimmable 10 W High-Line Design.
Typical Circuit Schematic
Key Features
Flyback
AC
IN
LYTSwitch-4
V
D
CONTROL
S
R
BP
FB
PI-6800-050913
Figure 3a. Typical Isolated Flyback Schematic.
Benefits
• Provides isolated output
• Supports widest range of output voltages
• Very good THD performance
Limitations
• Flyback transformer
• Overall efficiency reduced by parasitic capacitance
and inductance in the transformer
• Larger PCB area to meet isolation requirements
• Requires additional components (primary clamp and bias)
• Higher RMS switch and winding currents increases losses
and lowers efficiency
Buck
AC
IN
LYTSwitch-4
V
D
CONTROL
S
R
BP
FB
PI-6841-111813
Benefits
• Highest efficiency
• Lowest component count – small size
• Simple low-cost power inductor
• Low drain source voltage stress
• Best EMI/lowest component count for filter
Limitations
• Single input line voltage range
• Output voltage <0.6 × VIN(AC) × 1.41
• Output voltage for low THD designs
• Non-isolated
Figure 3b. Typical Buck Schematic.
Tapped Buck
AC
IN
Benefits
• Ideal for low output voltage designs (<20 V)
• High efficiency
• Low component count
• Simple low-cost tapped inductor
Limitations
• Designs best suited for single input line voltage
• Requires additional components (primary clamp)
• Non-isolated
LYTSwitch-4
V
D
CONTROL
S
R
BP
FB
PI-6842-111813
Figure 3c. Typical Tapped Buck Schematic.
Buck-Boost
Benefits
• Ideal for non-isolated high output voltage designs
• High efficiency
• Low component count
• Simple common low-cost power inductor can be used
• Lowest THD
Limitations
• Maximum VOUT is limited by MOSFET breakdown voltage
• Single input line voltage range
• Non-isolated
AC
IN
LYTSwitch-4
V
D
CONTROL
S
R
BP
FB
PI-6859-111813
Figure 3d. Typical Buck-Boost Schematic.
2
Rev. B 03/14
www.powerint.com
LYT4221-4228/4321-4328
DRAIN (D)
5.9 V
REGULATOR
BYPASS (BP)
BYPASS
CAPACITOR
SELECT
FAULT
PRESENT
AUTO-RESTART
COUNTER
BYPASS PIN
UNDERVOLTAGE
1V
VOLTAGE
MONITOR (V)
STOP
LOGIC
JITTER
CLOCK
OSCILLATOR
LINE
SENSE
-
LEB
OCP
+
IV
FEEDBACK (FB)
VBG
PFC/CC
CONTROL
IFB
CURRENT LIMIT
COMPARATOR
-
ILIM
VSENSE
MI
FBOFF
DCMAX
IS
REFERENCE
BLOCK
REFERENCE (R)
SenseFet
FBOFF
DCMAX
OV
FEEDBACK
SENSE
Gate
Driver
Comparator
+
3-VT
5.9 V
5.0 V
-
MI
HYSTERETIC
THERMAL
SHUTDOWN
+
ILIM
SOFT-START
TIMER
VBG
6.4 V
PI-6843-071112
SOURCE (S)
Figure 4. Functional Block Diagram.
Pin Functional Description
DRAIN (D) Pin:
This pin is the power FET drain connection. It also provides
internal operating current for both start-up and steady-state
operation.
SOURCE (S) Pin:
This pin is the power FET source connection. It is also the
ground reference for the BYPASS, FEEDBACK, REFERENCE
and VOLTAGE MONITOR pins.
BYPASS (BP) Pin:
This is the connection point for an external bypass capacitor for
the internally generated 5.9 V supply. This pin also provides
output power selection through choice of the BYPASS pin
capacitor value.
Exposed Pad
(Backside) Internally
Connected to
SOURCE Pin (see
eSIP-7C Package
Drawing)
7D
REFERENCE (R) Pin:
This pin is connected to an external precision resistor and is
configured to use only 24.9 kW for non-dimming and dimming.
E Package (eSIP-7C)
(Top View)
5S
4 BP
3 FB
2V
1R
FEEDBACK (FB) Pin:
The FEEDBACK pin is used for output voltage feedback. The
current into the FEEDBACK pin is directly proportional to the
output voltage. The FEEDBACK pin also includes circuitry to
protect against open load and overload output conditions.
VOLTAGE MONITOR (V) Pin:
This pin interfaces with an external input line peak detector,
consisting of a rectifier, filter capacitor and resistors. The
applied current is used to control stop logic for overvoltage (OV),
provide feed-forward to control the output current and the
remote ON/OFF function.
PI-7076-062513
Figure 5. Pin Configuration.
3
www.powerint.com
Rev. B 03/14
LYT4221-4228/4321-4328
Functional Description
A LYTSwitch device monolithically combines a controller and
high-voltage power FET into one package. The controller
provides both high power factor and constant current output in
a single-stage. The LYTSwitch controller consists of an oscillator,
feedback (sense and logic) circuit, 5.9 V regulator, hysteretic
over-temperature protection, frequency jittering, cycle-by-cycle
current limit, auto-restart, inductance correction, power factor
and constant current control.
FEEDBACK Pin Current Control Characteristics
The figure shown below illustrates the operating boundaries of
the FEEDBACK pin current. Above IFB(SKIP) switching is disabled
and below IFB(AR) the device enters into auto-restart.
IFB(SKIP)
Skip-Cycle
CC Control
Region
IFB
Remote ON/OFF and EcoSmart™
The VOLTAGE MONITOR pin has a 1 V threshold comparator
connected at its input. This voltage threshold is used for
remote ON/OFF control. When a signal is received at the
VOLTAGE MONITOR pin to disable the output (VOLTAGE
MONITOR pin tied to ground through an optocoupler phototransistor) the LYTSwitch will complete its current switching
cycle before the internal power FET is forced off.
Soft-Start
Region
Auto-Restart
DC10
DCMAX
Maximum Duty Cycle
PI-6978-040213
Figure 6.
Switching Frequency
The switching frequency is 132 kHz during normal operation.
To further reduce the EMI level, the switching frequency is
jittered (frequency modulated) by approximately 5.4 kHz.
During start-up the frequency is 66 kHz to reduce start-up time
when the AC input is phase angle dimmed. Jitter is disabled in
deep dimming.
Soft-Start
The controller includes a soft-start timing feature which inhibits
the auto-restart protection feature for the soft-start period (tSOFT )
to distinguish start-up into a fault (short-circuit) from a large
output capacitor. At start-up the LYTSwitch clamps the
maximum duty cycle to reduce the output power. The total
soft-start period is tSOFT.
IFB(DCMAXR)
IFB(AR)
BYPASS Pin Capacitor Power Gain Selection
LYTSwitch devices have the capability to tailor the internal gain
to either full or a reduced output power setting. This allows
selection of a larger device to minimize dissipation for both
thermal and efficiency reasons. The power gain is selected with
the value of the BYPASS pin capacitor. The full power setting is
selected with a 4.7 mF capacitor and the reduced power setting
(for higher efficiency) is selected with a 47 mF capacitor. The
BYPASS pin capacitor sets both the internal power gain as well
as the over-current protection (OCP) threshold. Unlike the
larger devices, the LYT4x21 power gain is not programmable.
Use a 47 mF capacitor for the LYT4x21.
FEEDBACK Pin Current Characteristic.
The FEEDBACK pin current is also used to clamp the maximum
duty cycle to limit the available output power for overload and
open-loop conditions. This duty cycle reduction characteristic
also promotes a monotonic output current start-up characteristic
and helps preventing over-shoot.
The remote ON/OFF feature can also be used as an eco-mode
or power switch to turn off the LYTSwitch and keep it in a very
low power consumption state for indefinite long periods. When
the LYTSwitch is remotely turned on after entering this mode, it
will initiate a normal start-up sequence with soft-start the next
time the BYPASS pin reaches 5.9 V. In the worst case, the
delay from remote on to start-up can be equal to the full
discharge/charge cycle time of the BYPASS pin. This reduced
consumption remote off mode can eliminate expensive and
unreliable in-line mechanical switches.
REFERENCE Pin
The REFERENCE pin is tied to ground (SOURCE) via an external
resistor. The value selected sets the internal references and it
should be 24.9 kΩ ±1%. One percent resistors are recommended
as the resistor tolerance directly affects the output tolerance.
Other resistor values should not be used.
4
Rev. B 03/14
www.powerint.com
LYT4221-4228/4321-4328
V
D
CONTROL
S
completed. Special consideration must be made to appropriately
size the output capacitor to ensure that after the soft-start
period (tSOFT ) the FEEDBACK pin current is above the IFB(AR)
threshold to ensure successful power-supply start-up. After the
soft-start time period, auto-restart is activated only when the
FEEDBACK pin current falls below IFB(AR).
R
BP
FB
PI-5435-052510
Figure 7. Remote ON/OFF VOLTAGE MONITOR Pin Control.
5.9 V Regulator/Shunt Voltage Clamp
The internal 5.9 V regulator charges the bypass capacitor
connected to the BYPASS pin to 5.9 V by drawing a current
from the voltage on the DRAIN pin whenever the power FET is
off. The BYPASS pin is the internal supply voltage node. When
the power FET is on, the device operates from the energy stored
in the bypass capacitor. Extremely low power consumption of the
internal circuitry allows LYTSwitch to operate continuously from
current it takes from the DRAIN pin. A bypass capacitor value
of 47 or 4.7 mF is sufficient for both high frequency decoupling
and energy storage. In addition, there is a 6.4 V shunt regulator
clamping the BYPASS pin at 6.4 V when current is provided to
the BYPASS pin through an external resistor. This facilitates
powering of LYTSwitch externally through a bias winding to
increase operating efficiency. It is recommended that the
BYPASS pin is supplied current from the bias winding for
normal operation.
Auto-Restart
In the event of an open-loop fault (open FEEDBACK pin resistor
or broken path to feedback winding), output short-circuits or an
overload condition the controller enters into the auto-restart
mode. The controller annunciates both short-circuit and
open-loop conditions once the FEEDBACK pin current falls
below the IFB(AR) threshold after the soft-start period. To minimize
the power dissipation under this fault condition the shutdown/
auto-restart circuit turns the power supply on (same as the
soft-start period) and off at an auto-restart duty cycle of
typically DCAR for as long as the fault condition persists. If the
fault is removed during the auto-restart off-time, the power
supply will remain in auto-restart until the full off-time count is
Over-Current Protection
The current limit circuit senses the current in the power FET.
When this current exceeds the internal threshold (ILIMIT), the power
FET is turned off for the remainder of that cycle. A leading edge
blanking circuit inhibits the current limit comparator for a short
time (tLEB) after the power FET is turned on. This leading edge
blanking time has been set so that current spikes caused by
capacitance and rectifier reverse recovery will not cause
premature termination of the power FET conduction.
Line Overvoltage Protection
This device includes overvoltage detection to limit the maximum
operating voltage detected through the VOLTAGE MONITOR pin.
An external peak detector consisting of a diode and capacitor is
required to provide input line peak voltage to the VOLTAGE
MONITOR pin through a resistor.
The resistor sets line overvoltage (OV) shutdown threshold which,
once exceeded, forces the LYTSwitch to stop switching. Once
the line voltage returns to normal, the device resumes normal
operation. A small amount of hysteresis is provided on the OV
threshold to prevent noise-generated toggling. When the power
FET is off, the rectified DC high voltage surge capability is
increased to the voltage rating of the power FET (725 V), due to the
absence of the reflected voltage and leakage spikes on the drain.
Hysteretic Thermal Shutdown
The thermal shutdown circuitry senses the controller die
temperature. The threshold is set at 142 °C typical with a 75 °C
hysteresis. When the die temperature rises above this threshold
(142 °C) the power FET is disabled and remains disabled until
the die temperature falls by 75 °C, at which point the power FET
is re-enabled.
Safe Operating Area (SOA) Protection
The device also features a safe operating area (SOA) protection
mode which disables FET switching for 40 cycles in the event
the peak switch current reaches the ILIMIT threshold and the switch
on-time is less than tON(SOA). This protection mode protects the
device under short-circuited LED conditions and at start-up during
the soft-start period when auto-restart protection is inhibited.
The SOA protection mode remains active in normal operation.
5
www.powerint.com
Rev. B 03/14
LYT4221-4228/4321-4328
Application Example
The circuit schematic in Figure 8 shows a TRIAC dimmable high
power factor LED driver based on LYT4324E from the LYTSwitch-4
high-line family of devices. The design is configurable for nondimmable only applications by simply changing the device to a
non-dimmable LYTSwitch-4 and removing the damper and
bleeder circuit. It was optimized to drive an LED string at a
voltage of 36 V with a constant current of 0.550 A ideal for high
Lumens PAR lamp retro-fit applications. The design operates
over an input voltage range of 185 VAC to 265 VAC.
The key goals of this design were compatibility with standard
leading edge TRIAC AC dimmers, very wide dimming range,
high efficiency (>85%) and high power factor (>0.9). The design
is fully protected from faults such as no-load (open-load), overvoltage and output short-circuit or overload conditions and
over-temperature.
Circuit Description
The LYTSwitch-4 high-line device (U1-LYT4324E) integrates the
power FET, controller and start-up functions into a single package
reducing the component count versus typical implementations.
Configured as part of an isolated continuous conduction mode
flyback converter, U1 provides high power factor via its internal
control algorithm together with the small input capacitance of
the design. Continuous conduction mode operation results in
reduced primary peak and RMS current. This both reduces
EMI noise, allowing simpler, smaller EMI filtering components
and improves efficiency. Output current regulation is maintained
without the need for secondary-side sensing which eliminates
current sense resistors and improves efficiency.
Input Stage
Fuse F1 provides protection from component failures while RV1
provides a clamp during differential line surges, keeping the
peak drain voltage of U1 below the device absolute maximum
rating of the internal power FET. Bridge rectifier BR1 rectifies
the AC line voltage. EMI filtering is provided by L1, L2, C4, C5,
R3 and R12 together with the safety rated Y class capacitor
(CY1) that bridges the safety isolation barrier between primary
and secondary. Resistor R3 and R12 damp any resonances
formed between L1, L2, C4 and the AC line impedance. A small
bulk capacitor (C5) is required to provide a low impedance path
for the primary switching current. The maximum value of C4
and C5 is limited in order to maintain a power factor of greater
than 0.9.
LYTSwitch-4 High-Line Primary
To provide peak line voltage information to U1 the incoming
rectified AC peak charges C6 via D2. This is then fed into the
VOLTAGE MONITOR pin of U1 as a current via R14 and R15.
This sensed current is also used by the device to set the line
input overvoltage protection threshold. Resistor R13 provides a
discharge path for C6 with a time constant much longer than that
of the rectified AC to minimize generation of line frequency ripple.
The VOLTAGE MONITOR pin current and the FEEDBACK pin
current are used internally to control the average output LED
current. For TRIAC phase-dimming or non-dimming applications
the same value of resistance 24.9 kW is used on the REFERENCE
pin resistor (R18) and 4 MW (R14 + R15) on the VOLTAGE MONITOR
pin to provide a linear relationship between input voltage and
the output current and maximizing the dimming range.
C13
R25 100 pF
30 Ω 200 V
R13
510 kΩ
1/8 W
R7
162 kΩ
1%
R4
1 MΩ
1
4
R3
12 kΩ
1/8 W
L1
RM5
D1
BAV21
C1
220 nF
400 V
R2
R1
510 Ω 510 Ω
1%
1%
L
TP1
190 - 265
VAC
R6
2.4 MΩ
N
TP2
Q2
MMBT3906
Q1
MMBT3906
R27
R28
510 Ω 510 Ω
1%
1%
F1
5A
C2
47 pF
1 kV
C4
120 nF
400 V
4
1
L2 2
5 mH
VR1
1N5245B-T
15 V
R10
15 Ω
R9
30.1 kΩ
1%
3
C3
22 nF
50 V
C5
220 nF
400 V
TP3
RTN
R22
39 Ω
1/8 W
C11
D6
BAV21 100 nF
50 V
R21
20 kΩ
1/8 W
TP4
C9
56 µF
50 V
T1
RM7/1
R19
6.2 kΩ
V
CONTROL
S
R12
47 kΩ
C15
C14
36 V,
330 µF 330 µF R26
63 V 7.5 kΩ 550 mA
63 V
D4
US1D
C6
2.2 µF
400 V
D
R11
240 Ω
2W
FL2
8
LYTSwitch-4
U1
LYT4324E
Q3
IRFU320PBF
3
7
D3
US1J
R15
2 MΩ
1%
R5
1 MΩ
2
FL1
6
R14
2 MΩ
1%
R8
162 kΩ
1%
RV1
250 VAC
1
D8
BYW29-200
C7
2.2 nF
630 V
R
BP
D5
BAV16WS-7-F
BR1
B10S-G
1000 V
D2
DFLU1400-7
VR4
SMAJ200A-13-F
200 V
FB
R18
24.9 kΩ
1%
1/16 W
C8
100 µF
10 V
D7
BAV21WS-7-F
R20
133 kΩ
1%
1/8 W
VR2
MMSZ5256BS-7-F
33 V
20 W TRIAC Dimmable High Power Factor LED Driver
Design Example (DER-396)
Q4
MMBT3904LT1G
C10
10 nF
50 V
R23
10 Ω
1/10 W
C12
100 nF
50 V
R24
1 kΩ
1/10 W
CY1
470 pF
250 VAC
PI-7088-072913
Figure 8. DER-396 Schematic of an Isolated, TRIAC Dimmable, High Power Factor, 185 – 265 VAC, 20 W / 36 V LED Driver.
6
Rev. B 03/14
www.powerint.com
LYT4221-4228/4321-4328
Diode D3, VR4 and C7 clamp the drain voltage to a safe level
due to the effects of leakage inductance. Diode D4 is
necessary to prevent reverse current from flowing through U1
for the period of the rectified AC input voltage that the voltage
across C5 falls to below the reflected output voltage (VOR).
Diode D6, C9, C11, R21 and R22 create the primary bias supply
from an auxiliary winding on the transformer. Capacitor C8
provides local decoupling for the BYPASS pin of U1 which is the
supply pin for the internal controller. During start-up C8 is
charged to ~6 V from an internal high-voltage current source
tied to the device DRAIN pin. This allows the part to start
switching at which point the operating supply current is provided
from the bias supply via R19 and D5. Capacitor C8 also selects
the output power mode (47 mF for reduced power was selected
to reduce dissipation in U1 and increase efficiency).
Feedback
The bias winding voltage is proportional to the output voltage
(set by the turn ratio between the bias and secondary windings).
This allows the output voltage to be monitored without secondaryside feedback components. Resistor R20 converts the bias
voltage into a current which is fed into the FEEDBACK pin of U1.
The internal engine within LYTSwitch-4 (U1) combines the
FEEDBACK pin current, the VOLTAGE MONITOR pin current
and drain current information to provide a constant output
current over up to 1.5 : 1 output voltage variation (LED string
voltage variation of ±25%) at a fixed line input voltage.
To limit the output voltage at no-load an output overvoltage
protection circuit is set by D7, C12, R24, VR2, R23, C10 and Q4.
Should the output load be disconnected the bias voltage will
increase until VR2 conducts, biasing Q4 to turn on via R23 and
pulling down current going into the FEEDBACK pin. When the
feedback current drops below 10 mA the part enters autorestart and the switching of the MOSFET is disabled for 600 ms,
allowing time for the output and bias voltages to fall.
Output Rectification
The transformer secondary winding is rectified by D8 and
filtered by C14 and C15. An ultrafast TO-220 diode was
selected for efficiency and the combined value of C11 and C12
were selected to give peak-to-peak LED ripple current equal to
30% of the mean value. For designs where lower ripple is
desirable the output capacitance value can be increased. A
small pre-load is provided by R26 which discharges residual
charge in output capacitors when turned off.
TRIAC Phase Dimming Control Compatibility
The requirement to provide output dimming with low cost,
TRIAC-based, leading edge phase dimmers introduces a
number of trade-offs in the design.
Due to the much lower power consumed by LED based lighting
the current drawn by the overall lamp is below the holding
current and/or latching of the TRIAC within the dimmer. This
can cause undesirable behaviors such as limited dimming
range and/or flickering as the TRIAC fires inconsistently. The
relatively large impedance the LED lamp presents to the line
allows significant ringing to occur due to the inrush current
charging the input capacitance when the TRIAC turns on. This
too can cause similar undesirable behavior as the ringing may
cause the TRIAC current to fall to zero and turn off.
To overcome these issues two simple circuits, the MOSFET
active damper and RC passive bleeder were employed.
Employing these circuits however comes without penalty, since
their purpose is to satisfy the holding and latching current of a
TRIAC by providing some low impedance path for the TRIAC
current to flow continuously during the turn-on phase will
introduce additional dissipation and therefore reduced system
efficiency of the supply. For non-dimming applications these
circuits can simply be omitted (see Figure 9).
Power Integrations proprietary active damper circuit is used in
this design for achieving high efficiency, good dimmer
compatibility and line surge protection.
MOSFET Q3 is always on during non-dimming (no TRIAC
connected) operation. It bypasses the loss across the damper
resistor (R11) via the low RDS(ON) of the MOSFET Q3 thereby
maintaining high system efficiency. The gate of Q3 is biased
through the divider of R4, R5, and R6 and filtered by C13.
While Q3 is always on during non-dimming operation, MOSFET
Q3 operates differently during dimming. When the TRIAC turns
on at the beginning of every AC half-line cycle MOSFET Q3 is
off initially allowing the resistor (R11) to damp the current ringing
due to inrush of current induced by the input bulk capacitance
and EMI filter impedance. After approximately 1 ms Q3 turns
on and bypasses R11. The effect is increased compatibility with
different types of dimmers.
During differential line surge occurrence where a high dv/dt is
detected through the RC high-pass filter R7, R8 and C2.
Transistor Q2 will turn off Q3 and a voltage proportional to the
input current that will develop across the damper resistor will be
subtracted from the input thus limiting the voltage stress on the
DRAIN pin of U1.
Resistor R9 bleeds the charge from C2 and ensures Q2 is off
during normal operation.
The passive bleeder circuit is comprised of R1, R2, R27, R28
and C1. This network helps keep the input current above the
TRIAC holding current while the input current corresponding to
the effective driver resistance increases during each AC half-cycle.
7
www.powerint.com
Rev. B 03/14
LYT4221-4228/4321-4328
Modified DER-396 20 W High Power Factor LED Driver
for Non-Dimmable and Enhanced Line Regulation
•
•
•
The circuit schematic in Figure 9 shows a high power factor
LED driver based on a LYT4224E from the LYTSwitch-4 nondimming high-line family of devices. It was optimized to drive
an LED string at a voltage of 36 V with a constant current of
0.55 A, ideal for high lumens PAR lamp retro-fit applications.
The design operates over the high-line input voltage range of
185 VAC to 265 VAC and is non-dimming application. A nondimming application has tighter output current variation with
changes in the line voltage than a dimming application. It’s key
to note that, although not specified for dimming, no circuit
damage will result if the end user does operate the design with
a phase controlled dimmer.
•
•
Efficiency of 85%
Device local ambient of 70 °C
Sufficient heat sinking to keep the device temperature
below 100 °C
For minimum output power column
• Reflected output voltage (VOR) of 135 V
• FEEDBACK pin current of 135 mA
• BYPASS pin capacitor value of 47 mF
For maximum output power column
• Reflected output voltage (VOR) of 90 V
• FEEDBACK pin current of 165 mA
• BYPASS pin capacitor value of 4.7 mF
• (LYT4x21 = 4.7 mF)
Note that input line voltages above 185 VAC do not change the
power delivery capability of LYTSwitch-4 high-line devices.
Modification for Non-Dimmable Configuration
The DER-396 is configurable for non-dimmable application by
simply removing the components of the MOSFET active damper
(R4, R5, R6, R7, R8, R9, R10, R11, D1, Q1, Q2, C3, and VR1)
and passive R-C bleeder (R1, R2, R27, R28 and C1) and replacing
the IC U1 to LYT4224E, non-dimmable device LYTSwitch-4 nondimming high-line family. For non-dimmable application audible
noise is not critical so L1 and L2 can be replaced with a regular
off-the-shelf dog bone inductor for cost reduction (See Figure 9).
Device Selection
Select the device size by comparing the required output power
to the values in Table 1. For thermally challenging designs, e.g.,
incandescent lamp replacement, where either the ambient
temperature local to the LYTSwitch-4 high-line device is high
and/or there is minimal space for heat sinking use the minimum
output power column. This is selected by using a 47 mF BYPASS
pin capacitor and results in a lower device current limit and
therefore lower conduction losses. For open frame design or
designs where space is available for heat sinking then refer to the
maximum output power column. This is selected by using a
4.7 mF BYPASS pin capacitor for all but the LYT4x21 which has only
one power setting. In all cases in order to obtain the best output
current tolerance maintain the device temperature below 100 °C.
Key Application Considerations
Power Table
The data sheet power table (Table 1) represents the minimum
and maximum practical continuous output power based on the
following assumed conditions:
C13
R25 100 pF
30 Ω 200 V
VR4
SMAJ200A-13-F
200 V
D3
US1J
8
R19
6.2 kΩ
L
TP1
190 - 265
VAC
V
CONTROL
S
R12
47 kΩ
1/8 W
N
TP2
TP4
C9
56 µF
50 V
D4
US1D
C6
2.2 µF
400 V
D
F1
5A
C11
D6
BAV21 100 nF
50 V
R21
20 kΩ
1/8 W
T1
RM7/1
LYTSwitch-4
U1
LYT4224E
L3
1.5 mH
TP3
RTN
R22
39 Ω
1/8 W
R
BP
FB
R18
24.9 kΩ
1%
1/16 W
C8
47 µF
16 V
R20
133 kΩ
1%
1/8 W
D7
BAV21WS-7-F
VR2
MMSZ5256BS-7-F
33 V
L1
1.5 mH
C5
220 nF
400 V
C15
C14
36 V,
330 µF 330 µF R26
63 V 7.5 kΩ 550 mA
63 V
FL2
6
D5
BAV16WS-7-F
R3
12 kΩ
1/8 W
R29
12 kΩ
1/8 W
7
R15
2 MΩ
1%
C4
120 nF
400 V
FL1
D8
BYW29-200
C7
2.2 nF
630 V
R14
2 MΩ
1%
BR1
B10S-G
1000 V
RV1
250 VAC
D2
DFLU1400-7
R13
510 kΩ
1/8 W
1
Q4
MMBT3904LT1G
C10
10 nF
50 V
R23
10 Ω
1/10 W
C12
100 nF
50 V
R24
1 kΩ
1/10 W
L2
1.5 mH
CY1
470 pF
250 VAC
PI-7089-102313
Figure 9. Modified Schematic of DER-396 for Non-Dimmable, Isolated, High Power Factor, 185-265 VAC, 20 W / 36 V LED Driver.
8
Rev. B 03/14
www.powerint.com
LYT4221-4228/4321-4328
Maximum Input Capacitance
To achieve high power factor, the capacitance used in both the
EMI filter and for decoupling the rectified AC (bulk capacitor)
must be limited in value. The maximum value is a function of
the output power of the design and reduces as the output
power reduces. For the majority of designs limit the total
capacitance to less than 220 nF with a bulk capacitor value of
100 nF. Film capacitors are recommended compared to
ceramic types as they minimize audible noise with operating
with leading edge phase dimmers. Start with a value of 10 nF
for the capacitance in the EMI filter and increase in value until
there is sufficient EMI margin.
REFERENCE Pin Resistance Value Selection
The LYTSwitch-4 high-line family contains phase dimming
devices, LYT4321-4328, and non-dimming devices, LYT42214228. Both the non-dimmable devices and dimmable devices
use 24.9 kW ±1% REFERENCE pin resistor for best output
current tolerance (over AC input voltage changes).
VOLTAGE MONITOR Pin Resistance Network Selection
For widest AC phase angle dimming range with LYT4321-4328,
use a 4 MW resistor connected to the line voltage peak detector
circuit. Make sure that the resistor’s voltage rating is sufficient
for the peak line voltage. If necessary use multiple series
connected resistors.
Primary Clamp and Output Reflected Voltage VOR
A primary clamp is necessary to limit the peak drain to source
voltage. A Zener clamp requires the fewest components and
board space and gives the highest efficiency. RCD clamps are
also acceptable however the peak drain voltage should be carefully verified during start-up and output short-circuits as the
clamping voltage varies with significantly with the peak drain
current.
For the highest efficiency, the clamping voltage should be
selected to be at least 1.5 times the output reflected voltage,
VOR, as this keeps the leakage spike conduction time short.
When using a Zener clamp in a universal input or high-line only
application, a VOR of less than 135 V is recommended to allow
for the absolute tolerances and temperature variations of the
Zener. This will ensure efficient operation of the clamp circuit
and will also keep the maximum drain voltage below the rated
breakdown voltage of the FET. An RCD (or RCDZ) clamp
provides tighter clamp voltage tolerance than a Zener clamp.
The RCD clamp is more cost-effective than the Zener clamp but
requires more careful design to ensure that the maximum drain
voltage does not exceed the power FET breakdown voltage.
These VOR limits are based on the BVDSS rating of the internal
FET, a VOR of 90 V to 120 V is typical for most designs, giving
the best PFC and regulation performance.
Series Drain Diode
An ultrafast or Schottky diode in series with the drain is
necessary to prevent reverse current flowing through the device.
The voltage rating must exceed the output reflected voltage,
VOR. The current rating should exceed two times the average
primary current and have a peak rating equal to the maximum
drain current of the selected LYTSwitch-4 high-line device.
Line Voltage Peak Detector Circuit
LYTSwitch-4 high-line devices use the peak line voltage to
regulate the power delivery to the output. A capacitor value of
1 mF to 4.7 mF is recommended to minimize line ripple and give
the highest power factor (>0.9), smaller values are acceptable
but result in lower PF and higher line current distortion.
Operation with Phase Controlled Dimmers
Dimmer switches control incandescent lamp brightness by not
conducting (blanking) for a portion of the AC voltage sine wave.
This reduces the RMS voltage applied to the lamp thus reducing
the brightness. This is called natural dimming and the LYTSwitch-4
high-line LYT4321-4328 devices when configured for dimming
utilize natural dimming by reducing the LED current as the RMS
line voltage decreases. By this nature, line regulation performance
is purposely decreased to increase the dimming range and
more closely mimic the operation of an incandescent lamp.
Leading Edge Phase Controlled Dimmers
The requirement to provide flicker-free output dimming with lowcost, TRIAC-based, leading edge phase dimmers introduces a
number of trade-offs in the design.
Due to the much lower power consumed by LED based lighting
the current drawn by the overall lamp is below the holding
current of the TRIAC within the dimmer. This causes undesirable
behaviors such as limited dimming range and/or flickering. The
relatively large impedance the LED lamp presents to the line
allows significant ringing to occur due to the inrush current
charging the input capacitance when the TRIAC turns on. This
too can cause similar undesirable behavior as the ringing may
cause the TRIAC current to fall to zero and turn off.
To overcome these issues two circuits, the active damper and
passive bleeder, are incorporated. The drawback of these
circuits is increased dissipation and therefore reduced efficiency
of the supply so for non-dimming applications these components
can simply be omitted.
Figure 10(a) shows the line voltage and current at the input of a
leading edge TRIAC dimmer with Figure 10(b) showing the
resultant rectified bus voltage. In this example, the TRIAC
conducts at 90 degrees.
Figure 11 shows undesired rectified bus voltage and current
with the TRIAC turning off prematurely and restarting.
If the TRIAC is turning off before the end of the half-cycle
erratically or alternate half AC cycles have different conduction
angles then flicker will be observed in the LED light due to
variations in the output current. This can be solved by including
a bleeder and damper circuit.
Dimmers will behave differently based on manufacturer and
power rating, for example a 300 W dimmer requires less
dampening and requires less power loss in the bleeder than a
600 W or 1000 W dimmer due to different drive circuits and
TRIAC holding current specifications. Line voltage also has a
significant impact as at high-line for a given output power the
9
www.powerint.com
Rev. B 03/14
250
0.25
150
0.15
50
0.05
50
100
150
200
250
300
350
400
-0.05
-150
-0.15
-250
-0.25
-350
-0.35
300
200
0.2
150
0.15
100
0.1
50
0.05
0.35
0.3
250
0.25
200
0.2
150
0.15
100
0.1
50
0.05
0
0
200
250
100
150
200
250
300
350
400
300
350
PI-5986-060810
350
400
Conduction Angle (°)
Figure 10b.Resultant Waveforms Following Rectification of TRIAC Dimmer Output.
input current and therefore TRIAC current is lower but the peak
inrush current when the input capacitance charges is higher
creating more ringing. Finally multiple lamps in parallel driven from
the same dimmer can introduce more ringing due to the increased
capacitance of parallel units. Therefore, when testing dimmer
operation verify on a number of models, different line voltages
and with both a single driver and multiple drivers in parallel.
Start by adding a bleeder circuit. Add a 0.44 mF capacitor and
510 W 1 W resistor (components in series) across the rectified
bus (C1 and R1, R2, R27, R28 in Figure 8). If the results in
satisfactory operation reduce the capacitor value to the smallest
that result in acceptable performance to reduce losses and
increase efficiency.
If the bleeder circuit does not maintain conduction in the TRIAC,
then add an active damper as shown in Figure 8. This circuit
limits the inrush current that flows to charge C4 and C5 when
the TRIAC turns on by placing the damper resistor (R11, R29) in
series for the first 1 ms of the TRIAC conduction. After approximately 1 ms, Q3 turns on and shorts the damper resistor. This
keeps the power dissipation on the damper resistor low and
allows a larger value to be used during current limiting. Increasing
the delay before Q3 turns on by increasing the value of capacitor
Dimmer Output Voltage (V)
Rectified Input Voltage (V)
Voltage
Current
150
50
Figure 11. Example of Phase Angle Dimmer Showing Erratic Firing.
Rectified Input Current (A)
PI-5984-060810
100
0
0
Conduction Angle (°)
350
50
0.3
0.25
0
Figure 10a.Ideal Input Voltage and Current Waveforms for a Leading Edge
TRIAC Dimmer at 90° Conduction Angle.
0
0.35
250
Conduction Angle (°)
300
Voltage
Current
Voltage
Current
250
0.35
0.25
150
0.15
50
0.05
-50 0
50
100
150
200
250
300
350
-0.05
-150
-0.15
-250
-0.25
-350
-0.35
Conduction Angle (°)
Figure 12. Ideal Dimmer Output Voltage and Current Waveforms for a Trailing Edge Dimmer at 90° Conduction Angle.
C3 will improve dimmer compatibility but cause more power to
be dissipated across the damper resistor. Monitor the AC line
current and voltage at the input of the power supply as you
make the adjustments. Increase the delay until the TRIAC
operates properly but keep the delay as short as possible for
efficiency.
As a general rule the greater the power dissipated in the bleeder
and damper circuits, the more types of dimmers will work with
the driver.
Trailing Edge Phase Controlled Dimmers
Figure 12 shows the line voltage and current at the input of the
power supply with a trailing edge dimmer. In this example, the
dimmer conducts at 90 degrees. Many of these dimmers use
back-to-back connected power FETs rather than a TRIAC to
control the load. This eliminates the holding current issue of
TRIACs and since the conduction begins at the zero crossing, high
current surges and line ringing are minimized. These types of
dimmers do not require damping circuits but do require a
bleeder. However the bleeder ensures that the AC voltage
across the dimmer falls to a low enough level for the dimmer to
correctly detect zero crossing. This is used internally by the
dimmer for timing.
10
Rev. B 03/14
www.powerint.com
Dimmer Output Current (A)
-50 0.5
PI-5985-060810
350
Rectified Input Current (A)
Voltage
Current
0.35
Rectified Input Voltage (V)
PI-5983-060810
350
Line Current (Through Dimmer) (A)
Line Voltage (at Dimmer Input) (V)
LYT4221-4228/4321-4328
LYT4221-4228/4321-4328
Audible Noise Considerations for Use with
Leading Edge Dimmers
Noise created when dimming is typically created by the input
capacitors, EMI filter inductors and the transformer. The input
capacitors and inductors experience high di/dt and dv/dt every
AC half-cycle as the TRIAC fires and an inrush current flows to
charge the input capacitance. Noise can be minimized by
selecting film vs. ceramic capacitors, minimizing the capacitor
value and selecting inductors that are physically short and wide.
The transformer may also create noise which can be minimized
by avoiding cores with long narrow legs (high mechanical
resonant frequency). For example, RM cores produce less
audible noise than EE cores for the same flux density. Reducing
the core flux density will also reduce the noise. Reducing the
maximum flux density (BM) to 1500 Gauss usually eliminates
any audible noise but must be balanced with the increased core
size needed for a given output power.
Thermal and Lifetime Considerations
Lighting applications present thermal challenges to the driver.
In many cases the LED load dissipation determines the working
ambient temperature experienced by the drive so thermal
evaluation should be performed with the driver inside the final
enclosure. Temperature has a direct impact on driver and LED
Input EMI Filter
LYT4224E
Bullk
Capacitor
lifetime. For every 10 °C rise in temperature, component life is
reduced by a factor of 2. Therefore it is important to properly
heat sink and to verify the operating temperatures of all devices.
Layout Considerations
Primary-Side Connections
Use a single point (Kelvin) connection at the negative terminal of
the input filter capacitor for the SOURCE pin and bias returns.
This improves surge capabilities by returning surge currents
from the bias winding directly to the input filter capacitor. The
BYPASS pin capacitor should be located as close to the BYPASS
pin and connected as close to the SOURCE pin as possible.
The SOURCE pin trace should not be shared with the main
power FET switching currents. All FEEDBACK pin components
that connect to the SOURCE pin should follow the same rules
as the BYPASS pin capacitor. It is critical that the main power
FET switching currents return to the bulk capacitor with the
shortest path as possible. Long high current paths create
excessive conducted and radiated noise.
Secondary-Side Connections
The output rectifier and output filter capacitor should be as
close as possible. The transformer’s output return pin should
have a short trace to the return side of the output filter capacitor.
BYPASS Pin
Capacitor Clamp Transformer Output
Diode
Output
Capacitor
REFERENCE Pin
Resistor
FEEDBACK Pin
Resistor
VOLTAGE MONITOR Pin
Resistor
Output
Capacitors
PI-7096-102313
Figure 13. DER-396 20 W Layout Example, Top Silkscreen / Bottom Layer.
11
www.powerint.com
Rev. B 03/14
LYT4221-4228/4321-4328
Quick Design Checklist
Maximum Drain Voltage
Verify that the peak VDS does not exceed the device absolute
maximum rating under all operating conditions including
start-up and fault conditions.
Maximum Drain Current
Measure the peak drain current under all operation conditions
including start-up and fault conditions. Look for signs of
transformer saturation (usually occurs at highest operating
ambient temperatures). Verify that the peak current is less than
the stated Absolute Maximum Rating in the data sheet.
Thermal Check
At maximum output power, both minimum and maximum line
voltage and ambient temperature; verify that temperature
specifications are not exceeded for the LYTSwitch-4 high-line,
transformer, output diodes, output capacitors and drain clamp
components.
12
Rev. B 03/14
www.powerint.com
LYT4221-4228/4321-4328
Absolute Maximum Ratings(1,4)
DRAIN Pin Peak Current(5): LYT4x21..................................1.37 A
LYT4x22..................................2.08 A
LYT4x23..................................2.72 A
LYT4x24................................. 4.08 A
LYT4x25................................. 5.44 A
LYT4x26................................. 6.88 A
LYT4x27..................................7.33 A
LYT4x28....................................9.0 A
DRAIN Pin Voltage ……………………….................. -0.3 to 725 V
BYPASS Pin Voltage.................................................. -0.3 to 9 V
BYPASS Pin Current ………………………....................... 100 mA
VOLTAGE MONITOR Pin Voltage.............................. -0.3 to 9 V(6)
FEEDBACK Pin Voltage ……...................................... -0.3 to 9 V
REFERENCE Pin Voltage .......................................... -0.3 to 9 V
Lead Temperature(3) .........................................................260 °C
Storage Temperature ………………….................... -65 to 150 °C
Operating Junction Temperature(2)..........................-40 to 150 °C
Notes:
1. All voltages referenced to SOURCE, TA = 65 °C.
2. Normally limited by internal circuitry.
3. 1/16 in. from case for 5 seconds.
4. Absolute Maximum Ratings specified may be applied, one
at a time without causing permanent damage to the
product. Exposure to Absolute Maximum Ratings for
extended periods of time may affect product reliability.
5. Peak DRAIN current is allowed while the DRAIN voltage is
simultaneously less than 400 V. See also Figure 10.
6. During start-up (the period before the BYPASS pin begins powering the IC) the VOLTAGE MONITOR pin voltage can safely rise to 15 V without damage.
Thermal Resistance
Thermal Resistance: E Package
(qJA) ....................................................105 °C/W(1)
(qJC)..................................................... 2 °C/W(2)
Parameter
Symbol
Notes:
1. Free standing with no heat sink.
2. Measured at back surface tab.
Conditions
SOURCE = 0 V; TJ = -20 °C to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
124
132
140
Units
Control Functions
Switching Frequency
Frequency Jitter
Modulation Rate
fOSC
TJ = 65 °C
Peak-Peak Jitter
5.4
TJ = 65 °C
See Note B
fM
ICH1
Average
VBP = 0 V,
TJ = 65 °C
2.6
ICH2
VBP = 5 V,
TJ = 65 °C
-4.1
-3.4
-2.7
LYT4x22
-7.3
-6.1
-4.9
LYT4x23-4x27
-12
-9.5
-7.0
-11.8
LYT4x21
-0.90
-0.56
-0.28
LYT4x22
-3.1
-2.4
-1.7
LYT4x23-4x26
-5.7
-4.35
-3.1
LYT4x27
-6.8
-4.35
-3.1
LYT4x28
Charging Current
Temperature Drift
BYPASS Pin Voltage
BYPASS Pin
Voltage Hysteresis
BYPASS Pin
Shunt Voltage
kHz
LYT4x21
LYT4x28
BYPASS Pin
Charge Current
0 °C < TJ < 100 °C
VBP(H)
0 °C < TJ < 100 °C
VBP(SHUNT)
IBP = 4 mA
0 °C < TJ < 100 °C
mA
-6.4
See Note A, B
VBP
kHz
0.7
5.75
5.95
%/°C
6.15
0.85
6.1
6.4
V
V
6.6
V
13
www.powerint.com
Rev. B 03/14
LYT4221-4228/4321-4328
Parameter
Symbol
Conditions
SOURCE = 0 V; TJ = -20 °C to 125 °C
(Unless Otherwise Specified)
Min
Typ
tSOFT
TJ = 65 °C
VBP = 5.9 V
51
72
ICD2
0 °C < TJ < 100 °C
FET Not Switching
0.5
0.8
1.2
ICD1
0 °C < TJ < 100 °C
FET Switching at fOSC
1
2.5
4
105
112
119
Max
Units
Control Functions (cont.)
Soft-Start Time
Drain Supply Current
ms
mA
VOLTAGE MONITOR Pin
Threshold
Line Overvoltage
Threshold
IOV
TJ = 65 °C
RR = 24.9 kW
VOLTAGE MONITOR
Pin Voltage
VV
0 °C < TJ < 100 °C
IV < IOV
LYT4x21-4x26
3.0
3.25
3.50
LYT4x27-4x28
2.75
3.00
3.25
IV(SC)
VV = 5 V
TJ = 65 °C
LYT4x21-4x26
205
230
255
LYT4x27-4x28
150
175
200
VOLTAGE MONITOR Pin
Short-Circuit Current
Remote ON/OFF
Threshold
Hysteresis
5.5
VV(REM)
TJ = 65 °C
0.5
FEEDBACK Pin Current
at Onset of Maximum
Duty Cycle
IFB(DCMAXR)
0 °C < TJ < 100 °C
FEEDBACK Pin Current
Skip Cycle Threshold
IFB(SKIP)
0 °C < TJ < 100 °C
210
Maximum Duty Cycle
DCMAX
IFB(DCMAXR) < IFB < IFB(SKIP)
0 °C < TJ < 100 °C
85
VFB
IFB = 150 mA
0 °C < TJ < 100 °C
2.1
IFB(SC)
VFB = 5 V
TJ = 65 °C
320
DC10
IFB = IFB(AR), TJ = 65 °C, See Note B
13
DC40
IFB = 40 mA, TJ = 65 °C
34
DC60
IFB = 60 mA, TJ = 65 °C
50
tAR
TJ = 65 °C
VBP = 5.9 V
Auto-Restart
Duty Cycle
DCAR
TJ = 65 °C
See Note B
SOA Minimum Switch
ON-Time
tON(SOA)
TJ = 65 °C
See Note B
IFB(AR)
0 °C < TJ < 100 °C
mA
V
mA
V
FEEDBACK Pin
FEEDBACK Pin Voltage
FEEDBACK Pin
Short-Circuit Current
Duty Cycle Reduction
90
mA
mA
99.9
%
2.3
2.56
V
400
480
mA
%
Auto-Restart
Auto-Restart ON-Time
FEEDBACK Pin Current
During Auto-Restart
51
72
ms
12.5
%
6.5
0.875
ms
10
mA
14
Rev. B 03/14
www.powerint.com
LYT4221-4228/4321-4328
Parameter
Symbol
Conditions
SOURCE = 0 V; TJ = -20 °C to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
Units
1.223
1.245
1.273
V
48.69
49.94
51.19
mA
REFERENCE Pin
REFERENCE Pin
Voltage
VR
REFERENCE Pin
Current
IR
RR = 24.9 kW
0 °C < TJ < 100 °C
Current Limit/Circuit Protection
Full Power
Current Limit
(CBP = 4.7 mF)
Reduced Power
Current Limit
(CBP = 47 mF)
di/dt = 138 mA/ms
LYT4x22
0.79
0.92
di/dt = 145 mA/ms
LYT4x23
0.99
1.15
ILIMIT(F)
di/dt = 180 mA/ms
LYT4x24
1.18
1.38
TJ = 65 °C
di/dt = 227 mA/ms
LYT4x25
1.41
1.63
di/dt = 272 mA/ms
LYT4x26
1.89
2.19
di/dt = 375 mA/ms
LYT4x27
2.61
3.03
di/dt = 120 mA/ms
LYT4x21
0.59
0.69
di/dt = 170 mA/ms
LYT4x22
0.65
0.76
di/dt = 170 mA/ms
LYT4x23
0.8
0.93
ILIMIT(R)
di/dt = 188 mA/ms
LYT4x24
0.95
1.11
TJ = 65 °C
di/dt = 240 mA/ms
LYT4x25
1.14
1.33
di/dt = 300 mA/ms
LYT4x26
1.38
1.61
di/dt = 430 mA/ms
LYT4x27
1.88
2.18
di/dt = 790 mA/ms
LYT4x28
3.92
4.56
Minimum
ON-Time Pulse
tLEB + tIL(D)
TJ = 65 °C
270
Leading Edge
Blanking Time
tLEB
TJ = 65 °C
See Note B
110
Current Limit Delay
tIL(D)
TJ = 65 °C
See Note B
Thermal Shutdown
Temperature
See Note B
Thermal Shutdown
Hysteresis
BYPASS Pin Power-Up
Reset Threshold
Voltage
ns
375
ns
ns
LYT4x21-4x26
135
142
150
LYT4x27-4x28
147
155
163
0 °C < TJ < 100 °C
3.30
°C
°C
75
2.25
A
630
150
See Note B
VBP(RESET)
450
A
4.25
V
15
www.powerint.com
Rev. B 03/14
LYT4221-4228/4321-4328
Parameter
Symbol
Conditions
SOURCE = 0 V; TJ = -20 °C to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
TJ = 65 °C
11.5
13.2
TJ = 100 °C
13.5
15.5
TJ = 65 °C
6.9
8.0
TJ = 100 °C
8.4
9.7
TJ = 65 °C
5.3
6.0
TJ = 100 °C
6.3
7.3
TJ = 65 °C
3.4
3.9
TJ = 100 °C
3.9
4.5
TJ = 65 °C
2.5
2.9
TJ = 100 °C
3.0
3.4
TJ = 65 °C
1.9
2.2
TJ = 100 °C
2.3
2.7
TJ = 65 °C
1.8
2.0
TJ = 100 °C
2.1
2.5
TJ = 65 °C
1.3
1.5
TJ = 100 °C
1.6
1.9
Units
Output
LYT4x21
ID = 100 mA
LYT4x22
ID = 100 mA
LYT4x23
ID = 150 mA
ON-State Resistance
RDS(ON)
LYT4x24
ID = 150 mA
LYT4x25
ID = 200 mA
LYT4x26
ID = 250 mA
LYT4x27
LYT4x28
OFF-State Drain
Leakage Current
Breakdown Voltage
W
IDSS
VBP = 6.4 V
VDS = 560 V
TJ = 100 °C
BVDSS
VBP = 6.4 V
TJ = 65 °C
725
V
TJ < 100 °C
36
V
Minimum Drain
Supply Voltage
Rise Time
tR
Fall Time
tF
Measured in a Typical Flyback
See Note B
50
mA
100
ns
50
ns
NOTES:
A. For specifications with negative values, a negative temperature coefficient corresponds to an increase in magnitude with increasing
temperature and a positive temperature coefficient corresponds to a decrease in magnitude with increasing temperature.
B. Guaranteed by characterization. Not tested in production.
Note: The parameter values and limits specified herein are based on a limited data set. There is a small likelihood that minor changes may be required based on additional data as they become available.
16
Rev. B 03/14
www.powerint.com
LYT4221-4228/4321-4328
Power (mW)
Scaling Factors:
LYT4x21 0.18
LYT4x22 0.28
LYT4x23 0.38
LYT4x24 0.56
LYT4x25 0.75
LYT4x26 1.00
LYT4x27 1.16
LYT4x28 1.55
1000
100
10
1
100
200
300
400
500
300
PI-6965-102313
DRAIN Capacitance (pF)
10000
Scaling Factors:
LYT4x21 0.18
LYT4x22 0.28
LYT4x23 0.38
LYT4x24 0.56
LYT4x25 0.75
LYT4x26 1.00
LYT4x27 1.16
LYT4x28 1.55
200
100
0
600
0
DRAIN Pin Voltage (V)
3
Scaling Factors:
LYT4x21 0.18
LYT4x22 0.28
LYT4x23 0.38
LYT4x24 0.56
LYT4x25 0.75
LYT4x26 1.00
LYT4x27 1.16
LYT4x28 1.55
2
1
LYT42x8 TCASE = 25 °C
LYT42x8 TCASE = 100 °C
0
0
2
4
6
8 10 12 14 16 18 20
DRAIN Voltage (V)
Figure 16. Drain Current vs. Drain Voltage.
1.2
PI-6010-060410
PI-6967-102313
Figure 15. Power vs. Drain Voltage.
DRAIN Current
(Normalized to Absolute Maximum Rating)
DRAIN Current (A)
4
100 200 300 400 500 600 700
DRAIN Voltage (V)
Figure 14. Drain Capacitance vs. Drain Pin Voltage.
5
PI-6966-102313
Typical Performance Characteristics
1
0.8
0.6
0.4
0.2
0
0
100 200 300 400 500 600 700 800
DRAIN Voltage (V)
Figure 17. Maximum Allowable Drain Current vs. Drain Voltage.
17
www.powerint.com
Rev. B 03/14
LYT4221-4228/4321-4328
eSIP-7C (E Package)
C
2
0.403 (10.24)
0.397 (10.08)
A
0.264 (6.70)
Ref.
0.081 (2.06)
0.077 (1.96)
B
Detail A
2
0.290 (7.37)
Ref.
0.519 (13.18)
Ref.
0.325 (8.25)
0.320 (8.13)
Pin #1
I.D.
0.140 (3.56)
0.120 (3.05)
3
0.207 (5.26)
0.187 (4.75)
0.016 (0.41)
Ref.
3
0.047 (1.19)
0.070 (1.78) Ref.
0.050 (1.27)
0.198 (5.04) Ref.
0.016 (0.41) 6×
0.011 (0.28)
0.020 M 0.51 M C
FRONT VIEW
0.118 (3.00)
SIDE VIEW
4
0.033 (0.84) 6×
0.028 (0.71)
0.010 M 0.25 M C A B
0.100 (2.54)
BACK VIEW
0.100 (2.54)
10° Ref.
All Around
0.021 (0.53)
0.019 (0.48)
0.050 (1.27)
0.020 (0.50)
0.060 (1.52)
Ref.
0.050 (1.27)
PIN 1
0.378 (9.60)
Ref.
0.048 (1.22)
0.046 (1.17)
0.019 (0.48) Ref.
0.059 (1.50)
0.155 (3.93)
0.023 (0.58)
END VIEW
PIN 7
0.027 (0.70)
0.059 (1.50)
Notes:
1. Dimensioning and tolerancing per ASME Y14.5M-1994.
2. Dimensions noted are determined at the outermost
extremes of the plastic body exclusive of mold flash,
tie bar burrs, gate burrs, and interlead flash, but including
any mismatch between the top and bottom of the plastic
body. Maximum mold protrusion is 0.007 [0.18] per side.
DETAIL A
0.100 (2.54)
0.100 (2.54)
MOUNTING HOLE PATTERN
(not to scale)
3. Dimensions noted are inclusive of plating thickness.
4. Does not include inter-lead flash or protrusions.
5. Controlling dimensions in inches (mm).
PI-4917-061510
18
Rev. B 03/14
www.powerint.com
LYT4221-4228/4321-4328
Part Ordering Information
• LYTSwitch Product Family
• 4 Series Number
• PFC/Dimming
2
PFC No Dimming
3
PFC Dimming
• Voltage Range
2
High-Line
• Device Size
• Package Identifier
LYT 4 2 2 3 E
E
eSIP-7C
19
www.powerint.com
Rev. B 03/14
Revision
Notes
Date
A
Initial Release.
B
LYT4x27E, LYT4x28E – updated / added parameters: ICH1, ICH2, VV, IV(SC), and ILIMIT(F).
11/13
03/11/14
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES
NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
Patent Information
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at http://www.powerint.com/ip.htm.
Life Support Policy
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant
injury or death to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or effectiveness.
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,
HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc.
Other trademarks are property of their respective companies. ©2014, Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
World Headquarters
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: [email protected]
China (Shanghai)
Rm 2410, Charity Plaza, No. 88
North Caoxi Road
Shanghai, PRC 200030
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: [email protected]
China (ShenZhen)
3rd Floor, Block A,
Zhongtou International Business
Center, No. 1061, Xiang Mei Rd,
FuTian District, ShenZhen,
China, 518040
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: [email protected]
Germany
Lindwurmstrasse 114
80337 Munich
Germany
Phone: +49-895-527-39110
Fax: +49-895-527-39200
e-mail: [email protected]
India
#1, 14th Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail: [email protected]
Italy
Via Milanese 20, 3rd. Fl.
20099 Sesto San Giovanni (MI)
Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail: [email protected]
Japan
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama,
Kohoku-ku
Yokohama-shi Kanagwan
222-0033 Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
Korea
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
Taiwan
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail: [email protected]
Europe HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail: [email protected]
Applications Hotline
World Wide +1-408-414-9660
Singapore
51 Newton Road
Applications Fax
#19-01/05 Goldhill Plaza
World Wide +1-408-414-9760
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail: [email protected]
设计范例报告
标题
使用LYTSwitchTM -4 LYT4324E设计的20 W高效
率(>86%)、可控硅调光、带功率因数校正的隔离
反激式LED驱动器
规格
185 VAC – 265 VAC输入;
36 VTYPICAL,550 mA输出
应用
PAR38替换灯
作者
应用工程部
文档编号
DER-396
日期
2013年9月25日
修订版本
1.0
特色概述
•
•
•
•
•
•
•
•
•
•
单级功率因数校正(PFC)及精确恒流(CC)输出(+5%)
在230 VAC下,PF > 0.9
在230 VAC下,%A THD <20%
在不同生产环境下和过热范围内具有一致的调光性能
低成本、元件数量少、印刷电路板(PCB)占板面积小的设计
极高能效,在230 VAC输入下效率>86 %
快速启动时间(<250 ms) – 无可见延迟
干净的单向启动 – 无输出闪烁
集成的保护及可靠性能
• 空载保护,短路保护
• 更大迟滞的自动恢复热关断可同时保护元件和印刷电路板
• 在AC电压缓降期间不会造成任何损坏
满足IEC 2.5 kV振铃波、500 V差模输入浪涌和EN55015传导EMI要求
专利信息
此处介绍的产品和应用(包括产品之外的变压器结构和电路)可能包含一项或多项美国及国外专利,或正在申请的美国或国外专利。有关
Power Integrations专利的完整列表,请参见www.powerint.com。Power Integrations按照在<http://www.powerint.com/ip.htm>中所述规定,
向客户授予特定专利权利的许可。
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
目录
1
2
3
简介 ............................................................................................................................ 4
装配后的PCB板 .......................................................................................................... 5
电源规格 ..................................................................................................................... 7
3.1
电路原理图 .......................................................................................................... 8
4 电路描述 ..................................................................................................................... 9
4.1
输入级.................................................................................................................. 9
4.2
衰减电路级 .......................................................................................................... 9
4.3
LYTSwitch-4初级 ............................................................................................... 10
4.4
输出反馈 ............................................................................................................ 11
4.5
负载断开保护 ..................................................................................................... 11
4.6
过载和短路保护 ................................................................................................. 11
5 PCB布局轮廓 ............................................................................................................ 12
6 物料清单(BOM)......................................................................................................... 13
7 变压器(T1)规格 ......................................................................................................... 15
7.1
电气原理图 ........................................................................................................ 15
7.2
电气规格 ............................................................................................................ 15
7.3
材料 ................................................................................................................... 15
7.4
结构图................................................................................................................ 16
7.5
绕制 ................................................................................................................... 16
8 差模电感(L1)规格...................................................................................................... 18
8.1
结构图................................................................................................................ 18
8.2
电气规格 ............................................................................................................ 18
8.3
材料 ................................................................................................................... 18
8.4
结构图................................................................................................................ 19
8.5
绕制 ................................................................................................................... 19
9 U1散热片 .................................................................................................................. 20
9.1
U1散热片加工图 ................................................................................................ 20
9.2
U1散热片装配图 ................................................................................................ 21
9.3
散热片和U1装配图 ............................................................................................. 22
10
变压器设计表格 ..................................................................................................... 23
11
性能数据................................................................................................................ 26
11.1
带载模式效率 ................................................................................................. 27
11.2
线电压调整 ..................................................................................................... 28
11.3
功率因数 ........................................................................................................ 29
11.4 %THD ................................................................................................................ 30
11.5
谐波含量 ........................................................................................................ 31
11.6
谐波测量 ........................................................................................................ 32
11.7
调光特性 ........................................................................................................ 33
11.8
参考设计与调光器的兼容性 ............................................................................ 36
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第2页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
12
热性能 ...................................................................................................................37
13
波形 .......................................................................................................................39
13.1
漏极电压和电流,正常工作 ............................................................................39
13.2
漏极电压和电流启动特征 ................................................................................39
13.3
输出电压启动特征 ..........................................................................................40
13.4
输入与输出电压和电流的波形.........................................................................40
13.5
漏极电压和电流波形:正常工作到输出短路 ...................................................41
13.6
漏极电压和电流波形:输出短路时启动 ..........................................................42
13.7
空载工作 .........................................................................................................42
13.8
交流电循环上电 ..............................................................................................43
13.9
调光波形 .........................................................................................................44
13.10
输入浪涌波形..................................................................................................56
13.10.1
差模输入浪涌 ..........................................................................................56
13.10.2
差模振铃浪涌 ..........................................................................................56
14
输入浪涌 ................................................................................................................57
15
传导EMI.................................................................................................................58
15.1
设备 ................................................................................................................58
15.2 EMI测试设置 ......................................................................................................58
15.3 EMI测试结果 ......................................................................................................59
16
版本历史 ................................................................................................................61
重要说明:
虽然本电路板的设计满足非隔离LED驱动器安全要求,但工程原型尚未获得机构认证。
因此,必须使用隔离变压器向原型板提供AC输入,以执行所有测试。
第3页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
1 简介
本文档是一份工程报告,介绍使用LYTSwitch-4高压系列器件LYT4324E设计的一款隔
离式、高功率因数、可调光LED驱动器(电源)。
DER-396能够在185至265 VAC的输入电压范围内提供一路20 W (36 VTYPICAL)、可调光的
550 mA恒流输出。
主要设计目标是实现高效率,以提升发光效率并减小尺寸。这样可使驱动器装入BR38灯并
尽可能接近可投产设计。
LYTSwitch-4 IC可用来实现具有成本效益的低元件数LED驱动器,同时使设计满足功率因数
和谐波失真限值。LYTSwitch-4驱动器IC将PFC功能和次级输出恒流控制电路同时集成到
一个开关级中。
所使用的拓扑结构是运行于连续导通模式下的隔离反激。输出电流调整完全从初级侧实
现,因此无需使用次级反馈元件。在初级侧也无需检测外部电流,而是在IC内部进行,可
进一步降低元件成本并提高效率。内部控制器调整功率MOSFET占空比以保持输入电流为正
弦交流电,同时确保高功率因数和低谐波电流控制。
LYT4324E也可提供各种复杂的保护功能,包括环路开环或输出短路条件下自动重启动。
输入过压可提供增强的抗输入故障和浪涌能力,输出过压可保护负载应当断开的电源,
精确的迟滞热关断可确保在所有条件下平均PCB温度都处于安全范围内。
在任何LED照明装置中,驱动器的性能直接决定了最终用户对照明的感受,包括启动时
间、调光性能和驱动器之间的一致性。该设计经过优化,可确保兼容各种调光器和更宽的
调光范围。
本文档包括电源规格、电路原理图、物料清单、变压器规格文件、印刷电路板布局、设计
表格及性能数据。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第4页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
2 装配后的PCB板
Figure 1 – Populated Circuit Board (Top Side).
Figure 2 – Populated Circuit Board (Bottom Side).
第5页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
Figure 3 – Populated Circuit Board.
Dimensions: 2.68 in [68.1 mm] L x 1.32 in [33.6 mm] W x 1 in [25.4 mm] H.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第6页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
3 电源规格
下表所列为设计的最低可接受性能。实际性能可参考测量结果部分。
说明
输入
电压
频率
功率因数
%ATHD
输出
输出电压
输出电流
总输出功率
连续输出功率
效率
额定
符号
VIN
fLINE
最小值 典型值 最大值
185
47
230
50/60
0.9
265
63
单位
备注
VAC
Hz
双导线 – 无P.E.
在230 VAC下
17
VOUT
IOUT
33
522
36
550
39
577
V
mA
POUT
20
W
η
86
%
在230 VAC下
在POUT 25 oC及
230 VAC条件下测得
环境
传导EMI
满足CISPR22B/EN55015要求
输入浪涌
差模(L1-L2)
500
V
振铃波(100 kHz)
差模(L1-L2)
2.5
kV
第7页(共62页)
1.2/50 μs浪涌,IEC 1000-4-5,
串联电阻:
差模:2 Ω
2 Ω短路
串联电阻
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
3.1
25-Sep-13
电路原理图
Figure 4 – Schematic for 36 V, 550 mA Replacement Lamp.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第8页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
4 电路描述
LYTSwitch-4 (U1) 系 列 器 件 是 一 系 列 适 用 于 LED 驱 动 器 应 用 的 高 集 成 度 电 源 IC 。
LYTSwitch-4能够在单级转换拓扑结构中提供高功率因数,同时特别对LED驱动器应用中
常见的各种输入(185 VAC-265 VAC)和输出电压条件下的输出电流进行调节。
4.1
输入级
保险丝F1提供元件故障保护。需要使用一个额定值5 A的快速恢复二极管来防止在输入浪涌
下误开路。压敏电阻RV1提供箝位功能,用以限制在差模输入电压浪涌期间的最大电压。
RV1的额定电压为275 VAC,略高于最大指定工作电压(265 VAC)。LYTSwitch-4的快速反
应输入过压检测与D2和C6峰值检测电容一起提供箝位功能,用以限制在IC的功率MOSFET
上出现最大电压应力。此外,在差模输入浪涌期间(通过RC高通滤波器 - R7、R8和C2 检测到高dv/dt),Q2将关断Q3,与输入电流(在阻尼电阻R11中将增大)成正比的电压将
从输入端减去。这有助于限制出现在U1漏极的电压应力。电阻R9从C2泄放电荷,并确保
Q2在正常工作期间处于关断状态。
差模扼流圈L1是用来抑制噪声的前端EMI滤波器。电阻R3可在必要时衰减EMI滤波器的
谐振。
BR1对AC输入进行全波整流以获得良好的功率因数和低THD。
电容C4、C5和共模扼流圈L2形成位于桥式整流管后面的EMI滤波器。滤波电容受到限制,
可维持较高的功率因数。该输入π滤波器网络与LYTSwitch-4的频率调制特性相结合,可使
设计满足Class B干扰限值。电阻R12可在必要时衰减EMI滤波器的谐振,从而防止当在系
统(驱动器加外壳)中测量时EMI频谱中出现峰值。
4.2
衰减电路级
为了用低成本的可控硅前沿相控调光器提供输出调光,我们需要在设计时进行全面权衡。
由于LED照明的功耗非常低(相对于传统的白炽灯泡),灯所吸收的电流要小于调光器
内可控硅的维持电流。这样会因为可控硅触发不一致而产生某些不良情况,比如调光范围
受限和/或闪烁。由于LED灯的阻抗相对较大,因此在可控硅导通时,浪涌电流会对输入
电容进行充电,产生很严重的振荡。这同样会造成类似不良情况,因为振荡会使可控硅电
流降至零(并关断可控硅)。要克服这些问题,需增加两个电路 – 有源衰减电路和无源泄
放电路。这些电路的缺点是会增大功耗,进而降低电源的效率。对于非调光应用,可以省
略这些元件。
第9页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
有源衰减电路由元件R4、R5、R6、R10、D1、Q1、C3、VR1和Q3以及R11共同组成。
该电路可以限制可控硅导通时流入C3并对其充电的浪涌电流,实现方式是在导通前1 ms内
将R11串联。在大约1 ms后,Q3导通并将R11短路。这样可使R11的功耗保持在低水平,
在限流时可以使用更大的值。电阻R4、R5、R6和C3在可控硅导通后提供1 ms延迟。晶体
管Q1在可控硅不导通时对C3进行放电,VR1将Q3的栅极电压箝位在15 V,R10用于防止
MOSFET发生振荡。当无可控硅连接时,Q3将保持导通,从而旁通R11以提高效率。
无源RC泄放电路(C1、R1、R2、R27和R28)就位于保险丝后面,用来通过EMI电感降
低调光期间的浪涌电流,进而降低音频噪声。使用了四个泄放电阻来分割功耗(特别是调
光器处在90º导通角时),以便获得紧凑外形。这样可以使输入电流始终大于可控硅的维持
电流,而与驱动器相应的输入电流将在每个AC半周期内增大,防止每个导通角期间的起始
阶段出现可控硅的开关振荡。
4.3
LYTSwitch-4初级
变压器(T1)一端连接到DC总线,另一端连接到LYTSwitch-4 IC的漏极(D)引脚。在功率
MOSFET的导通时间内,初级绕组中的电流升高,存储的能量随后在功率MOSFET关断时
间内传送到输出。本设计选用RM7磁芯,因为它在板上占用的面积很小。由于骨架达不到
230 VAC工作条件下的6.2 mm的安全爬电距离要求,因此使用飞线将次级绕组端接到PCB
板中。
为向U1提供峰值输入电压信息,经整流AC的输入峰值经由D2对C6充电。然后电流经过
R14和R15,注入U1的电压监测(V)引脚。电阻容差将会导致不同电源之间的V引脚电流有
所差异,因此选择1%误差的电阻可以将这种变化降至最低。器件也会利用V引脚电流来设
定输入过压阈值。电阻R13为C6提供放电通路,时间常数远大于经整流AC的放电时间,以
防止V引脚电流被线电压频率所调制。
V引脚电流和反馈(FB)引脚电流在内部用来控制LED平均输出电流。可在R引脚(R18)和V引
脚上分别使用24.9 kΩ电阻和 4 MΩ (R14+R15)电阻,使输入电压和输出电流保持线性关
系,从而获得最大调光范围。
在功率MOSFET导通期间,在C5上的电压降到反射输出电压(VOR)以下时,需要使用二极
管D4来防止反向电流流经U1。在瞬态工作期间,由于漏感会带来影响,VRCD缓冲电路二
极管D3、VR4和C7将漏极电压箝位到一个安全水平。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第10页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
二极管D6、C9、C11、R21和R22构成初级偏置供电,能量来自变压器的辅助绕组。电容
C8对U1的旁路(BP)引脚进行局部去耦,该引脚是内部控制器的供电引脚。在启动期间,
C8从与漏极引脚相连的内部高压电流源被充电至约6 V。此时器件开始开关,器件的供电
电流再由偏置供电经过R19提供。二极管D5隔离BP引脚和C8,以防止启动时间由于对C9
和C11的充电而延长。
建议使用外部偏置供电(通过D5和R19),以实现最低的器件功耗、最高的效率和更佳的
调光性能。
电容C8同时用来选择输出功率模式,选择100 μF用于减功率模式,可以将器件功耗减至最
低,降低对散热片的要求。虽然47 μF是最小建议旁路电容值,但在使用SMD陶瓷电容
时,建议采用68 μF – 100 μF / X5R的值以留出电容容差。
4.4
输出反馈
偏置绕组电压用来间接地反映输出电压的高低,而无需使用次级侧反馈元件。偏置绕组上
的电压与输出电压成比例(由偏置绕组与次级绕组之间的匝数比决定)的。
电阻R20将偏置电压转换为电流,馈入U1的FB引脚。U1中的内部引擎综合FB引脚电流、
V测引脚电流和内部漏极电流信息,提供恒定的输出电流,同时保持较高的输入功率
因数。
4.5
负载断开保护
本参考设计可获得防止出现意外LED负载断开(如在生产过程中)的保护。控制器将在自
动重启动模式下工作,通过限定输出电压(通过来自电感辅助绕组的反射电压、D7整流和
C12峰值滤波进行检测)防止电路板上的输出电容被损坏。驱动器会在Q4导通(从FB引脚
吸入电流)时进入自动重启动模式,同时齐纳二极管VR2设置过压限值。
4.6
过载和短路保护
样品可通过初级流限获得过载和短路保护。在短路时,初级电流开始增大,直到达到限流
点。请参见短路波形以获得详细信息。
第11页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
5 PCB布局轮廓
Figure 5 – Top Printed Circuit Layout.
Figure 6 – Bottom Printed Circuit Layout.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第12页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
6 物料清单(BOM)
The table below is the reference design BOM.
Item
Qty
Ref Des
2
1
C1
Description
1000 V, 0.8 A, Bridge Rectifier, SMD, MBS-1,
4-SOIC
220 nF, 275 VAC, Film, X2
1
1
BR1
3
1
C2
47 pF, 1000 V, Ceramic, NPO, 0805
3
1
C3
22 nF 50 V, Ceramic, X7R, 0603
4
1
C4
120 nF, 400 V, Film
Mfg Part Number
Manufacturer
B10S-G
Comchip
LE224-M
OKAYA
VJ0805A470JXGAT5Z
Vishay
C1608X7R1H223K
TDK
ECQ-E4124KF
Panasonic
ECQ-E4224KF
Panasonic
5
1
C5
220 nF, 400 V, Film
6
1
C6
2.2 μF, 400 V, Electrolytic, (6.3 x 11)
TAB2GM2R2E110
Ltec
7
1
C7
2.2 nF, 630 V, Ceramic, X7R, 1206
C3216X7R2J222K
TDK
8
1
C8
3216X5R1C105M
TDK
9
1
C9
EKZE500ELL560MF11D
Nippon Chemi-Con
10
1
C10
100 μF, 16 V, X5R, 1206
56 μF, 50 V, Electrolytic, Very Low ESR, 140
mΩ, (6.3 x 11)
10 nF 50 V, Ceramic, X7R, 0603
C0603C103K5RACTU
Kemet
11
1
C11
100 nF, 50 V, Ceramic, X7R, 0805
CC0805KRX7R9BB104
Yageo
12
1
C12
100 nF 50 V, Ceramic, X7R, 0603
C1608X7R1H104K
TDK
13
1
C13
100 pF, 200 V, Ceramic, COG, 0805
08052A101JAT2A
AVX
14
2
C14 C15
330 μF, 63 V, Electrolytic, (10 x 20)
EKMG630ELL331MJ20S
United Chemi-con
15
1
CD95-B2GA471KYNS
TDK
16
3
250 V, 0.2 A, Fast Switching, 50 ns, SOD-323
BAV21WS-7-F
Diodes, Inc.
17
1
CY1
D1 D6
D7
D2
400 V, 1 A, DIODE SUP FAST 1A PWRDI 123
DFLU1400-7
Diodes, Inc.
18
1
D3
DIODE ULTRA FAST, SW 600 V, 1 A, SMA
US1J-13-F
Diodes, Inc.
19
1
D4
DIODE ULTRA FAST, SW, 200 V, 1 A, SMA
US1D-13-F
Diodes, Inc.
20
1
D5
BAV16WS-7-F
Diodes, Inc.
21
1
D8
BYW29-200G
On Semi
22
1
F1
75 V, 0.15 A, Switching, SOD-323
200 V, 8 A, Ultrafast Recovery, 25 ns, TO220AC
5 A, 250 V, Fast, Microfuse, Axial
23
1
L1
Custom, RM5, Vertical, 6 pins
24
1
L2
25
1
Q1
36
1
Q2
26
1
Q3
27
1
28
4
510 Ω, 5%, 1 W, Thick Film, 2512
470 pF, 250 VAC, Film, X1Y1
0263005.MXL
Littlefuse
SNX-R1688
Santronics USA
5 mH, 0.5 A, Common Mode Choke Vertical
SU9VF-05050
Tokin
PNP, Small Signal BJT, 40 V, 0.2 A, SOT-23
NPN, Small Signal BJT, GP SS, 40 V, 0.6 A,
SOT-23
400 V, 3.1 A,N-Channel, TO-251AA
MMBT3906LT1G
On Semi
MMBT4401LT1G
Diodes, Inc.
IRFU320PBF
Vishay
NPN, Small Signal BJT, 40 V, 0.2 A, SOT-23
MMBT3904LT1G
On Semi
ERJ-1TYJ511U
Panasonic
12 kΩ, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ123V
Panasonic
1 MΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ105V
Panasonic
29
1
Q4
R1 R2
R27 R28
R3
30
2
R4 R5
31
1
R6
2.4 MΩ, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ245V
Panasonic
32
1
R7
162 k, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF1623V
Panasonic
33
1
R8
162 k, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF1623V
Panasonic
34
1
R9
30.1 k, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF3012V
Panasonic
35
1
R10
15 Ω, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ150V
Panasonic
36
1
R11
240 Ω, 5%, 2 W, Metal Oxide
RSF200JB-240R
Yageo
37
1
R12
47 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ473V
Panasonic
38
1
R13
510 kΩ, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ514V
Panasonic
39
2
R14 R15
2.0 MΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF2004V
Panasonic
40
1
R17
200 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ204V
Panasonic
第13页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
Item
Qty
Ref Des
Description
Mfg Part Number
Manufacturer
41
1
R18
24.9 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF2492V
Panasonic
42
1
R19
6.2 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ622V
Panasonic
43
1
R20
133 kΩ, 1%, 1/8 W, Thick Film, 0805
ERJ-6ENF1333V
Panasonic
44
1
R21
20 kΩ, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ203V
Panasonic
45
1
R22
39 Ω, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ390V
Panasonic
46
1
R23
10 Ω, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ100V
Panasonic
47
1
R24
1 kΩ, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ102V
Panasonic
ERJ-8GEYJ300V
Panasonic
ERJ-8GEYJ752V
Panasonic
V130LA20AP
Littlefuse
SNX-R1689
Santronics USA
LYT4324E
Power Integrations
48
1
R25
30 Ω, 5%, 1/4 W, Thick Film, 1206
49
1
R26
7.5 kΩ, 5%, 1/4 W, Thick Film, 1206
50
1
RV1
51
1
T1
52
1
U1
250 V, 21 J, 7 mm, RADIAL LA
Custom, RM7/I, Vertical, 8 pins with mtg clip
CLI/P-RM7
LYTSwitch-4, eSIP-7C
53
1
VR1
15 V, 5%, 500 mW, DO-35
54
1
VR2
33 V, 5%, 200 mW, SOD-323
55
1
VR4
200 V, 400 W, SMA
1N5245B-T
Diodes, Inc.
MMSZ5257BS-7-F
Diodes, Inc.
SMAJ200A-13-F
Diodes, Inc.
Custom
Custom
CLP212SG
Aavid Thermalloy
TFT20-NT
Custom Cut
Mechanical BOM
1
1
2
1
3
6
HS1
POWER
CLIP1
Insulation
Tubing
Heat sink, Custom, Al, 3003, 0.062" Thk
Heat sink Hardware, Edge Clip 21N (4.7 lbs) 10
mm L x 7 mm W x 0.5 mm H
15 mm; PTTFE AWG #20 TW Tubing
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第14页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
7 变压器(T1)规格
7.1
电气原理图
Figure 7 – Transformer Electrical Diagram.
7.2
电气规格
Primary Inductance
Pins 1-7, all other windings open, measured at 100 kHz, 0.4 VRMS.
1 mH ±7%
Resonant Frequency
Pins 1-7, all other windings open.
1000 kHz
(Min.)
7.3
材料
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
Description
Core: RM7; 3F3.
Bobbin: Rm-7; 4/4 pin vertical.
Clip: EPCOS, KlammerRM7, Manufacture P/N: B65820B2001X.
Magnet Wire: #33 AWG, double coated.
Magnet Wire: #26 TIW, triple insulated.
Magnet Wire: #34 AWG, double coated.
Tape: 3M 1298 Polyester Film, 7.0.mm wide, 2.0 mil thick or equivalent.
Tape: 3M 1298 Polyester Film, 18.0.mm x 30.0.mm, 2.0.mil thick or equivalent.
Varnish: Dolph BC-359, or equivalent.
第15页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
7.4
25-Sep-13
结构图
Figure 8 – Transformer Build Diagram.
7.5
绕制
Winding Preparation
Note: pin-out of bobbin is designated as in picture below.
Place the bobbin item [1] on the mandrel with the pin side is on the left.
Winding direction is clockwise direction.
st
Winding 1
Start at pin 7, wind 31 turns of wire item [4] from left to right for the 1 layer
and place 1 layer of tape item [6]. Continue winding another 31 turns for the
nd
2 layer, from right to left and also place 1 layer of tape item [7]. Then wind 26
rd
turns for the 3 layer from left to right, at the last turn bring the wire back to the
left and terminate at pin 1.
Insulation
Place 1 layer of tape item [7].
Winding 2
Use wire item [5], leave ~ 25 mm floating and place a piece of small tape to
mark it as start lead FL1. Wind 32 turns of wire in 3 layers and 3 turns on the
th
4 layer on the right side of bobbin, at the last turn bring the wire back to the
left and also leave ~ 25 mm floating as end lead FL2.
Insulation
Place 1 layer of tape item [7].
Winding 3
Now wind 25 turns of wire item [6] on the left section of 4 layer from winding
2, start at pin 6 and end with pin 8.
Insulation
Place 2 layers of tape item [7] to secure windings.
th
Final Assembly
Grind core halves item [2] to get 1 mH and secure with clips item [3]
Cut short FL1 to 24 mm and FL2 to 12 mm.
Cut ground lead of clip item [3] on the left side of core halves, see picture
below.
Prepare tape item [8].
Wrap 2 layers of tape item [8] on the left side of core halves for insulation.
Varnish with item [9].
Cut pin number 2, 3 and 5.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第16页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
Figure 9 – Transformer Assembly Illustration.
第17页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
8 差模电感(L1)规格
8.1
结构图
Figure 10 – Inductor Electrical Diagram.
8.2
电气规格
Primary Inductance
8.3
Pins 1-2, all other windings open, measured at 100 kHz, 0.4 VRMS.
240 μH ±10%
材料
Item
[1]
[2]
[3]
[4]
[5]
Description
Core: RM5 (3/3); N87.
Bobbin: RM-5; 3/3 pin vertical.
Magnet Wire: #35 AWG.
Tape: 3M 1298 Polyester Film, 4.8 mm wide, 2.0 mil thick or equivalent.
Varnish: Dolph BC-359, or equivalent.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第18页(共62页)
25-Sep-13
8.4
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
结构图
Figure 11 – Inductor Build Diagram.
8.5
绕制
Winding
Preparation
Note: pin-out of bobbin is designated as in picture below.
Place the bobbin item [1] on the mandrel with the pin side is on the left.
Winding direction is clockwise direction.
Winding 1
Start at pin 2, wind 150 turns of wire item [3] continuously then terminate at pin 1.
Insulation
Place 3 layer of tape item [4].
Winding 2
Start at pin 4, wind 150 turns of wire item [3] continuously then terminate at pin 3.
Insulation
Place 2 layers of tape item [4] to secure windings.
Final Assembly
第19页(共62页)
Grind core halves item [2] to get 1 mH and secure with clips.
Varnish with item [5]. Cut pin 5 and 6.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
9 U1散热片
9.1
U1散热片加工图
Figure 12 – U1 Heat Sink Fabrication Drawing.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第20页(共62页)
25-Sep-13
9.2
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
U1散热片装配图
Figure 13 – U1 Heat Sink Assembly Drawing.
第21页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
9.3
25-Sep-13
散热片和U1装配图
Figure 14 – Heat Sink and U1 Assembly Drawing.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第22页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
10 变压器设计表格
ACDC_LYTSwitch4_HL_062013; Rev.1.0;
INPUT INFO
Copyright Power
Integrations 2013
ENTER APPLICATION VARIABLES
Dimming required
OUTPUT
YES
YES
VACMIN
185
VACMAX
fL
VO
36
VO_MAX
VO_MIN
V_OVP
IO
0.55
PO
n
VB
ENTER LYTSwitch VARIABLES
LYTSwitch
Auto
185
265
50
36
39.6
32.4
42.47
0.55
19.8
0.8
25
Current Limit Mode
ILIMITMIN
ILIMITMAX
fS
fSmin
fSmax
IV
RV
RV2
IFB
RFB1
VDS
RED
UNIT
LYTSwitch-4_HL_062013: Flyback Transformer
Design Spreadsheet
V
V
Hz
V
V
V
V
A
W
DER-396
Select 'YES' option if dimming is required.
Otherwise select 'NO'.
Minimum AC Input Voltage
Maximum AC input voltage
AC Mains Frequency
Typical output voltage of LED string at full load
Maximum expected LED string Voltage.
Minimum expected LED string Voltage.
Over-voltage protection setpoint
Typical full load LED current
Output Power
Estimated efficiency of operation
Bias Voltage
V
LYT4324
RED
0.95
1.11
132000
124000
140000
80.56727984
4
1E+12
178
123.5955056
10
A
A
Hz
Hz
Hz
uA
M-ohms
M-ohms
uA
k-ohms
V
VD
0.5
V
VDB
Key Design Parameters
0.7
V
KP
178
0.7
0.7
LP
998.2376383
VOR
92
92
Expected IO (average)
0.547777905
KP_VNOM
0.666138709
TON_MIN
1.493186757
PCLAMP
0.159394306
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
RM7
RM7
Custom Core
RM7
AE
0.45
0.45
LE
3
3
AL
2500
2500
BW
6.9
6.9
M
第23页(共62页)
0
uH
V
A
us
W
cm^2
cm
nH/T^2
mm
mm
Selected LYTSwitch
Select "RED" for reduced Current Limit mode or
"FULL" for Full current limit mode
Minimum current limit
Maximum current limit
Switching Frequency
Minimum Switching Frequency
Maximum Switching Frequency
V pin current
Upper V pin resistor
Lower V pin resistor
FB pin current (85 uA < IFB < 210 uA)
FB pin resistor
LYTSwitch on-state Drain to Source Voltage
Output Winding Diode Forward Voltage Drop (0.5
V for Schottky and 0.8 V for PN diode)
Bias Winding Diode Forward Voltage Drop
Ripple to Peak Current Ratio (For PF > 0.9, 0.4 <
KP < 0.9)
Primary Inductance
Reflected Output Voltage.
Expected Average Output Current
Expected ripple current ratio at VACNOM
Minimum on time at maximum AC input voltage
Estimated dissipation in primary clamp
Select Core Size
Enter Custom core part number (if applicable)
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to
Secondary Creepage Distance)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
L
4
4
NS
35
35
DC INPUT VOLTAGE PARAMETERS
VMIN
261.629509
VMAX
374.766594
CURRENT WAVEFORM SHAPE PARAMETERS
DMAX
0.267730208
IAVG
0.119116476
A
IP
0.826177997
A
IRMS
0.231970815
A
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP
998.2376383
LP_TOL
10
10
NP
88.21917808
NB
24.64383562
ALG
128.2649294
BM
2077.457006
BP
2791.138572
25-Sep-13
Number of Primary Layers
Number of Secondary Turns
V
V
Peak input voltage at VACMIN
Peak input voltage at VACMAX
Minimum duty cycle at peak of VACMIN
Average Primary Current
Peak Primary Current (calculated at minimum input
voltage VACMIN)
Primary RMS Current (calculated at minimum input
voltage VACMIN)
Primary Inductance
Tolerance of primary inductance
Primary Winding Number of Turns
Bias Winding Number of Turns
nH/T^2
Gapped Core Effective Inductance
Gauss
Maximum Flux Density at PO, VMIN (BM<3100)
Gauss
Peak Flux Density (BP<3700)
AC Flux Density for Core Loss Curves (0.5 X Peak
BAC
727.109952
Gauss
to Peak)
ur
1326.288091
Relative Permeability of Ungapped Core
LG
0.418255474
mm
Gap Length (Lg > 0.1 mm)
BWE
27.6
mm
Effective Bobbin Width
Maximum Primary Wire Diameter including
OD
0.312857143
mm
insulation
Estimated Total Insulation Thickness (= 2 * film
INS
0.053423557
mm
thickness)
DIA
0.259433586
mm
Bare conductor diameter
Primary Wire Gauge (Rounded to next smaller
AWG
30
AWG
standard AWG value)
CM
101.5936673
Cmils
Bare conductor effective area in circular mils
Primary Winding Current Capacity (200 < CMA <
CMA
437.9588334
Cmils/Amp
600)
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT EQUIVALENT)
Lumped parameters
ISP
2.082421254
A
Peak Secondary Current
ISRMS
0.884132667
A
Secondary RMS Current
IRIPPLE
0.692235923
A
Output Capacitor RMS Ripple Current
CMS
176.8265334
Cmils
Secondary Bare Conductor minimum circular mils
Secondary Wire Gauge (Rounded up to next larger
AWGS
27
AWG
standard AWG value)
DIAS
0.362522298
mm
Secondary Minimum Bare Conductor Diameter
Secondary Maximum Outside Diameter for Triple
ODS
0.197142857
mm
Insulated Wire
VOLTAGE STRESS PARAMETERS
Estimated Maximum Drain Voltage assuming
VDRAIN
566.5923475
V
maximum LED string voltage (Includes Effect of
Leakage Inductance)
Output Rectifier Maximum Peak Inverse Voltage
PIVS
191.1564827
V
(calculated at VOVP, excludes leakage inductance
spike)
Bias Rectifier Maximum Peak Inverse Voltage
PIVB
134.1846154
V
(calculated at VOVP, excludes leakage inductance
spike)
FINE TUNING (Enter measured values from prototype)
V pin Resistor Fine Tuning
RV1
4
M-ohms
Upper V Pin Resistor Value
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
uH
第24页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
RV2
VAC1
VAC2
IO_VAC1
IO_VAC2
RV1 (new)
RV2 (new)
1E+12
115
230
0.55
0.55
4.000604137
20911.63067
M-ohms
V
V
A
A
M-ohms
M-ohms
V_OV
319.5673531
V
V_UV
66.34665276
V
FB pin resistor Fine Tuning
RFB1
133
RFB2
VB1
VB2
IO1
IO2
RFB1 (new)
RFB2(new)
Input Current Harmonic Analysis
133
1E+12
22.46520548
27.53479452
0.55
0.55
133
1E+12
k-ohms
k-ohms
V
V
A
A
k-ohms
k-ohms
Harmonic
Max Current
(mA)
Limit (mA)
3rd Harmonic
20.69736113
1666.17
5th Harmonic
9.233940611
931.095
7th Harmonic
5.592928806
490.05
9th Harmonic
3.956638292
245.025
11th Harmonic
2.979917621
171.5175
13th Harmonic
2.264929473
145.103805
15th Harmonic
1.69769565
125.74683
THD
23.53869833
%
Lower V Pin Resistor Value
Test Input Voltage Condition1
Test Input Voltage Condition2
Measured Output Current at VAC1
Measured Output Current at VAC2
New RV1
New RV2
Typical AC input voltage at which OV shutdown will
be triggered
Typical AC input voltage beyond which power
supply can startup
Upper FB Pin Resistor Value
Lower FB Pin Resistor Value
Test Bias Voltage Condition1
Test Bias Voltage Condition2
Measured Output Current at Vb1
Measured Output Current at Vb2
New RFB1
New RFB2
1st Harmonic
PASS. 3rd Harmonic current content is lower than
the limit
PASS. 5th Harmonic current content is lower than
the limit
PASS. 7th Harmonic current content is lower than
the limit
PASS. 9th Harmonic current content is lower than
the limit
PASS. 11th Harmonic current content is lower than
the limit
PASS. 13th Harmonic current content is lower than
the limit
PASS. 15th Harmonic current content is lower than
the limit
Estimated total Harmonic Distortion (THD)
Table 1 – Sample Spreadsheet Calculation.
第25页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
11 性能数据
All measurements performed at 25 ºC room temperature, 60 Hz input frequency unless
otherwise specified.
Input
VAC Freq
(VRMS) (Hz)
VIN
(VRMS)
Input Measurement
IIN
PIN
PF
(mARMS) (W)
%ATHD
LED Load Measurement
VOUT
IOUT
POUT
(VDC)
(mADC)
(W)
Efficiency
(%)
185
50
184.85
140.39
24.969
0.962
15.62
39.1500
547.700
21.540
86.27
200
50
199.85
131.37
24.997
0.952
16.49
39.1100
549.800
21.610
86.45
220
50
219.90
121.59
25.016
0.936
17.59
39.0800
551.000
21.620
86.42
230
50
229.85
117.51
25.020
0.926
17.91
39.0500
551.000
21.610
86.37
240
50
239.88
113.83
25.028
0.917
18.01
39.0300
551.000
21.590
86.26
265
50
264.92
106.00
24.935
0.888
18.04
38.9900
547.000
21.410
85.86
185
50
184.84
130.63
23.130
0.958
15.76
35.9000
552.000
19.910
86.08
200
50
199.85
122.72
23.227
0.947
16.46
35.8900
555.000
20.030
86.24
220
50
219.91
114.31
23.363
0.929
17.27
35.8900
558.000
20.150
86.25
230
50
229.85
110.76
23.412
0.920
17.44
35.8900
559.000
20.170
86.15
240
50
239.88
107.35
23.399
0.909
17.55
35.8800
558.000
20.130
86.03
265
50
264.92
100.60
23.399
0.878
17.49
35.8600
556.000
20.030
85.60
185
50
184.85
122.49
21.580
0.953
16.09
33.2300
555.000
18.570
86.05
200
50
199.86
115.48
21.724
0.941
16.6
33.2100
560.000
18.720
86.17
220
50
219.91
107.91
21.887
0.922
17.17
33.1900
564.000
18.850
86.12
230
50
229.85
104.54
21.898
0.911
17.31
33.1700
564.000
18.840
86.04
240
50
239.89
101.58
21.922
0.900
17.27
33.1400
565.000
18.830
85.90
265
50
264.93
95.77
21.991
0.867
17.11
33.1200
564.000
18.790
85.44
Table 2 – Test Result Summary for this Design.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第26页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
11.1 带载模式效率
87.1
39 VDC Output
36 VDC Output
33 VDC Output
86.8
Efficiency (%)
86.5
86.2
85.9
85.6
85.3
85.0
175
185
195
205
215
225
235
245
255
265
AC Input Voltage (VRMS / 50Hz)
Figure 15 – Efficiency with Respect to AC Input Voltage.
第27页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
275
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
11.2 线电压调整
10
33 VDC Output
36 VDC Output
8
39 VDC Output
6
Regulation (%)
4
2
0
-2
-4
-6
-8
-10
175
185
195
205
215
225
235
245
255
265
275
AC Input Voltage (VRMS / 50Hz)
Figure 16 – Line Regulation, Room Temperature.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第28页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
11.3 功率因数
1.00
39 VDC Output
36 VDC Output
33 VDC Output
0.98
Power Factor (PF)
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82
0.80
175
185
195
205
215
225
235
245
255
265
AC Input Voltage (VRMS / 50 Hz)
Figure 17 – High Power Factor within the Operating Range.
第29页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
275
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
11.4 %THD
35
33 VDC Output
36 VDC Output
39 VDC Output
30
THD (%)
25
20
15
10
5
0
175
185
195
205
215
225
235
245
255
265
275
AC Input Voltage (VRMS / 50 Hz)
Figure 18 – Very Low %ATHD.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第30页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
11.5 谐波含量
90
Limit
36 VDC Output
80
Harmonic Content (mA)
70
60
50
40
30
20
10
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Order
Figure 19 – Meets EN61000-3-2 Harmonics Contents Standards for <25 W Rating for 36 V LED Output.
第31页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
11.6 谐波测量
VAC
(VRMS)
230
nth
Order
1
2
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
Freq
(Hz)
50.00
mA
Content
109.04
0.02
14.21
8.15
5.16
4.75
3.34
3.24
2.14
2.15
1.36
1.39
0.96
0.96
0.87
0.81
0.83
0.76
0.83
0.70
0.78
0.59
0.68
0.50
0.64
0.44
I (mA)
P
PF
110.76
%
Content
23.4120
Limit (mA)
<25 W
0.9197
0.02%
13.03%
7.47%
4.73%
4.36%
3.06%
2.97%
1.96%
1.97%
1.25%
1.27%
0.88%
0.88%
0.80%
0.74%
0.76%
0.70%
0.76%
0.64%
0.72%
0.54%
0.62%
0.46%
0.59%
0.40%
79.6008
44.4828
23.4120
11.7060
8.1942
6.9336
6.0091
5.3021
4.7440
4.2922
3.9190
3.6054
3.3384
3.1081
2.9076
2.7314
2.5753
2.4361
2.3112
Remarks
27.59%
10.00%
7.00%
5.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
Table 3 – 230 VAC Input Current Harmonic Measurement for 36 V LED.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第32页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
11.7 调光特性
The dimming characteristic was taken from a controlled AC supply to emulate the TRIAC conduction
pattern. The reference design meets the dimming requirement as set by National Electrical Manufacturers
Association (NEMA) Standards Publication SSL 1-2010 (Electronic Drivers for LED Devices, Arrays or
Systems) and SSL 6-2010(Solid Light Lighting for Incandescent Replacement-Dimming).
700
Dim to Full Brightness
NEMA Light Output Upper Limit
NEMA Light Output Lower Limit
600
Output Current (A)
500
400
300
200
100
0
0
20
40
60
80
100
120
140
160
Phase Angle Conduction (º)
第33页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
180
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
600
180-0 LYT4324E
0-180 LYT4324E
Output Current (mA)
500
400
300
200
100
0
0
20
40
60
80
100
120
140
160
180
Conduction Angle (θ)
Figure 20 – Dimming Curve Characteristic From Full Dim to Full Brightness. Meets NEMA SSL 6-2010.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第34页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
600
Full Brightness to Dim
400
300
200
100
0
240
220
200
180
160
140
120
100
80
60
40
20
0
Effective RMS Input Voltage During Dimming (VAC)
Figure 21 – Dimming Characteristic with Respect to RMS Input Voltage During Dimming.
第35页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
Output Current (A)
500
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
11.8 参考设计与调光器的兼容性
These are the list of dimmers verified for this reference design. Users are not limited on
the following list. Make sure to test the dimmers according to its recommended operating
line input frequency to avoid flicker.
Dimmer Origin
Part Number
China
China
China
China
China
China
China
China
Korea
Korea
Korea
Korea
Germany
Germany
Germany
Germany
Germany
Germany
Germany
Germany
Germany
Germany
TCL 630 W
Sen Bo Lang
Eba Huang
SB elect 600 W
Myongbo
KBE 650 W
Clipmei
Mank 200 W
Anam 500 W
Shin Sung
Fantasia 500 W
Shin Sung 2
Rev 300 W
Busch 2250 600 W
PEHA 400 W
Merten 572499 400 W
Busch 6513 420 W
Berker 2875 600 W
Ove
Busch 691 U-101
Busch 6513 U-102
Peha 433AB
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
IMIN
(mA)
147.4
189.4
35.9
1.3
191.4
0.6
147.2
202.8
191.0
177.6
185.0
158.2
0.1
107.1
1.5
77.5
109.7
123.5
113.4
106.4
107.8
174.1
IMAX
(mA)
556.0
555.0
556.0
545.5
558.0
555.5
556.0
557.0
551.0
552.0
549.4
552.0
537.6
542.4
505.2
550.0
546.5
532.9
503.9
529.2
546.0
534.5
Dim Ratio
4
3
15
420
3
926
4
3
3
3
3
3
5376
5
337
7
5
4
4
5
5
3
第36页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
12 热性能
The scan is conducted at ambient temperature of 25 ºC open frame, 185 VAC / 50 Hz
input.
Figure 22 – Open Frame Thermal Scan
Legend:
Sp1 – Output Capacitor C14
Sp2 – Output Capacitor C15
Sp3 – Common Mode Inductor L2
Sp4 – Damper MOSFET Q3
Sp5 – Transformer T1.
Sp6 – Output Diode D8
Sp7 – Differential Inductor L1
Figure 23 – U1 LNK4314E Device Temperature.
第37页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
Figure 24 – Bottom Side Board Temperature at Open Frame.
Legend:
Sp1 – Bridge Rectifier BR1
Sp2 – Blocking Diode D4
Sp3 – Snubber Diode D3
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第38页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
13 波形
13.1 漏极电压和电流,正常工作
No saturation in the inductor and designed guaranteed to work in continuous mode within
the operating input voltage.
Figure 25 – 185 VAC / 50 Hz, 36 V LED String.
Ch2: VDRAIN, 200 V / div.
Ch3: IDRAIN, 0.2 A / div.
Time Scale: 2 ms / div.
Zoom Time Scale: 2 μs / div.
Figure 26 – 265 VAC / 50 Hz, 36 V LED String.
Ch2: VDRAIN, 200 V / div.
Ch3: IDRAIN, 0.2 A / div.
Time Scale: 2 ms / div.
Zoom Time Scale: 2 μs / div.
13.2 漏极电压和电流启动特征
Device has a built in soft start thereby reducing the stress in the device, transformer and
output diode .
Figure 27 – 185 VAC / 50 Hz, 36 V LED String.
Ch2: VDRAIN, 200 V / div.
Ch4: IDRAIN, 0.2 A / div.
Time Scale: 10 ms / div.
Zoom Time Scale: 10 μs / div.
第39页(共62页)
Figure 28 – 265 VAC / 50 Hz, 36 V LED String.
Ch2: VDRAIN, 200 V / div.
Ch4: IDRAIN, 0.2 A / div.
Time Scale: 10 ms / div.
Zoom Time Scale: 10 μs / div.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
13.3 输出电压启动特征
Start-up time <250 ms; the reference design will emit light within 250 ms at non-dimming
operation.
Figure 29 – 185 VAC / 50 Hz, 36 V LED
Ch1: VIN, 200 V / div.
Ch2: VOUT, 10 V / div.
Ch3: IIN, 200 mA / div.
Ch4: IOUT, 200 mA / div., 100 ms / div.
Figure 30 – 265 VAC / 50 Hz, 36 V LED
Ch1: VIN, 200 V / div.
Ch2: VOUT, 10 V / div.
Ch3: IIN, 200 mA / div.
Ch4: IOUT, 200 mA / div., 100 ms / div.
13.4 输入与输出电压和电流的波形
Output current ripple is inversely proportional to the impedance of the LED. Verify the
actual current ripple on the actual LED to be used in the system. Increase output
capacitance for lesser output current ripple is intended.
Figure 31 – 185 VAC / 50 Hz, 36 V LED String.
Ch1: VIN, 200 V / div.
Ch2: VOUT, 10 V / div.
Ch3: IIN, 200 mA / div.
Ch4: IOUT, 200 mA / div., 10 ms / div.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
Figure 32 – 220 VAC / 50 Hz, 36 V LED String.
Ch1: VIN, 200 V / div.
Ch2: VOUT, 10 V / div.
Ch3: IIN, 200 mA / div.
Ch4: IOUT, 200 mA / div., 10 ms / div.
第40页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
Figure 33 – 240 VAC / 50 Hz, 36 V LED String.
Ch1: VIN, 200 V / div.
Ch2: VOUT, 10 V / div.
Ch3: IIN, 200 mA / div.
Ch4: IOUT, 200 mA / div., 10 ms / div.
Figure 34 – 265 VAC / 50 Hz, 36 V LED String.
Ch1: VIN, 200 V / div.
Ch2: VOUT, 10 V / div.
Ch3: IIN, 200 mA / div.
Ch4: IOUT, 200 mA / div., 10 ms / div.
13.5 漏极电压和电流波形:正常工作到输出短路
No saturation in the inductor during short-circuit, inductor current is limited by the ILIM.
Figure 35 – 185 VAC / 50 Hz, Normal Operation
then Output Short.
Ch1: VOUT, 20 V / div.
Ch2: VDS, 200 V / div.
Ch4: IDRAIN, 0.5 A / div., 10 ms / div.
Z3: IDRAIN, 0.2 A / div., 5 μs / div.
第41页(共62页)
Figure 36 – 265 VAC / 50 Hz, Normal Operation
then Output Short.
Ch1: VOUT, 20 V / div.
Ch2: VDS, 200 V / div.
Ch4: IDRAIN, 0.5 A / div., 10 ms / div.
Z3: IDRAIN, 0.2 A / div., 5 μs / div.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
13.6 漏极电压和电流波形:输出短路时启动
No saturation in the inductor during start-up short-circuit due to the built-in soft-start.
Figure 37 – 185 VAC / 50 Hz, Output Shorted.
Ch1: VDS, 20 V / div.
Ch3: IDRAIN, 0.2 A / div., 10 ms / div.
Z3: IDRAIN, 0.2 A / div., 10 μs / div.
Figure 38 – 265 VAC / 50 Hz, Output Shorted.
Ch1: VDS, 20 V / div.
Ch3: IDRAIN, 0.2 A / div., 10 ms / div.
Z3: IDRAIN, 0.2 A / div., 10 μs / div..
13.7 空载工作
The driver is protected during no-load operation, U1 operating is cycle skipping mode.
Figure 39 – 185 VAC / 50 Hz, Start-up No-load.
Ch2: VOUT, 10 V / div.
Ch3: IDS, 0.1 A / div.
Time Scale: 2 s / div.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
Figure 40 – 265 VAC / 50 Hz, Start-up No-load.
Ch2: VOUT, 10 V / div.
Ch3: IDS, 0.1 A / div.
Time Scale: 2 s / div.
第42页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
13.8 交流电循环上电
The reference design has no perceptible delay.
Figure 41 – 240 VAC / 50 Hz,
300 ms On – 300 ms Off.
Load: 36 V LED String.
Ch1: VIN, 200 V / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 1 s / div.
Figure 42 – 240 VAC / 50 Hz,
500 ms On – 500 ms Off.
Load: 36 V LED String.
Ch1: VIN, 200 V / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 1 s / div.
Figure 43 – 240 VAC / 50 Hz,
1s On – 1s Off.
Load: 36 V LED String.
Ch1: VIN, 200 V / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 1 s / div.
Figure 44 – 240 VAC / 50 Hz,
2s On – 2s Off.
Load: 36 V LED String.
Ch1: VIN, 200 V / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 1 s / div.
第43页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
13.9 调光波形
Figure 45 – 240 VAC / 50 Hz, (China) TCL 630 W
Dimmer at Full TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 46 – 240 VAC / 50 Hz, (China) TCL 630 W
Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 47 – 240 VAC / 50 Hz, (China) Sen Bo Lang
300 W Dimmer at Full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 48 – 240 VAC / 50 Hz, (China) Sen Bo Lang
300 W Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第44页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
Figure 49 – 240 VAC / 50 Hz, (China) Eba Huang
Dimmer at Full TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 51 – 240 VAC / 50 Hz, (China) SB elect 600 W
Dimmer at Full TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
第45页(共62页)
Figure 50 – 240 VAC / 50 Hz, (China) Eba Huang
Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 52 – 240 VAC / 50 Hz, (China) SB elect 600 W
Dimmer at Minimum TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
Figure 53 – 240 VAC / 50 Hz, (China) Myongbo
Dimmer at Full TRIAC conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 54 – 240 VAC / 50 Hz, (China) Myongbo
Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 55 – 240 VAC / 50 Hz, (China) KBE, 650 W
Dimmer at Full TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 56 – 240 VAC / 50 Hz, (China) KBE, 650 W
Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第46页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
Figure 57 – 240 VAC / 50 Hz, (China) Clipmei
Dimmer at Full TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 58 – 240 VAC / 50 Hz, (China) Clipmei
Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 59 – 240 VAC / 50 Hz, (China) Mank 200 W
Dimmer at Full TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 60 – 240 VAC / 50 Hz, (China) Mank 200 W
Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
第47页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
Figure 61 – 240 VAC / 50 Hz, (Korea) Anam,
500 W Dimmer at full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 62 – 240 VAC / 50 Hz, (Korea) Anam,
500 W Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 63 – 240 VAC / 50 Hz, (Korea) Shin Sung
Dimmer at Full TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 64 – 240 VAC / 50 Hz, (Korea) Shin Sung
Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第48页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
Figure 65 – 240 VAC / 50 Hz, (Korea) Fantasia
500 W Dimmer at Full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 66 – 240 VAC / 50 Hz, (Korea) Fantasia
500 W Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 67 – 240 VAC / 50 Hz, (Korea) Shin Sung 2
Dimmer at Full TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 68 – 240 VAC / 50 Hz, (Korea) Shin Sung 2
Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
第49页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
Figure 69 – 240 VAC / 50 Hz, (Germany) Rev 300 W
Dimmer at Full TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 71 – 240 VAC / 50 Hz, (Germany) Busch
2250 600 W Dimmer at Full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
25-Sep-13
Figure 70 – 240 VAC / 50 Hz, (Germany) Rev 300 W
Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 72 – 240 VAC / 50 Hz, (Germany) Busch
2250 600 W Dimmer at Minimum
TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
第50页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
Figure 73 – 240 VAC / 50 Hz, (Germany) PEHA
400 W Dimmer at Full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 74 – 240 VAC / 50 Hz, (Germany) PEHA
400 W Dimmer at Minimum TRIAC
conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 75 – 240 VAC / 50 Hz, (Germany) Merten
572499, 400 W Dimmer at Full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 76 – 240 VAC / 50 Hz, (Germany) Merten
572499, 400 W Dimmer at Minimum
TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
第51页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
Figure 77 – 240 VAC / 50 Hz, (Germany) Busch
6513, 420 W Dimmer at Full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 78 – 240 VAC / 50 Hz, (Germany) Busch
6513, 420 W Dimmer at Minimum
TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 79 – 240 VAC / 50 Hz, (Germany) Berker
2875, 600 W Dimmer at Full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 80 – 240 VAC / 50 Hz, (Germany) Berker
2875, 600 W Dimmer at Minimum
TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第52页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
Figure 81 – 240 VAC / 50 Hz, (Germany) Ove
Dimmer at Full TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 82 – 240 VAC / 50 Hz, (Germany) Ove
Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 83 – 240 VAC / 50 Hz, (Germany) Busch
691 U-101 Dimmer at Full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 84 – 240 VAC / 50 Hz, (Germany) Busch
691 U-101 Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
第53页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
Figure 85 – 240 VAC / 50 Hz, (Germany) Busch
6513 U102 Dimmer at Full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 86 – 240 VAC / 50 Hz, (Germany) Busch
6513 U102 Dimmer at minimum
TRIAC Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 87 – 240 VAC / 50 Hz, (Germany) PEHA
433AB Dimmer at Full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Figure 88 – 240 VAC / 50 Hz, (Germany) PEHA
433AB Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第54页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
Figure 89 – 240 VAC / 50 Hz, (Germany) PEHA
433AB oA Dimmer at Full TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
第55页(共62页)
Figure 90 – 240 VAC / 50 Hz, (Germany) PEHA
433AB oA Dimmer at Minimum TRIAC
Conduction.
Load: 36 V LED String.
Ch2: VIN, 200 V / div.
Ch3: IIN, 100 mA / div.
Ch4: IOUT, 100 mA / div.
Time Scale: 5 ms / div.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
13.10 输入浪涌波形
13.10.1
差模输入浪涌
Figure 91 – 265 VAC / 60 Hz, 36 V Load,
VDS = 591 VPK
(+) 500 V Diff. Line Surge at 90º.
Ch1: VDS, 200 V / div.
Ch2: IIN, 500 mA / div.
Time Scale: 1 μs / div.
13.10.2
Figure 92 – 265 VAC / 50 Hz, 36 V Load,
VDS = 611 VPK
(+) 500 V Diff. Line Surge at 270º.
Ch1: VBULK, 100 V / div.
Ch2: VDS, 200 V / div.
Time Scale: 200 μs / div.
Zoom Time Scale: 20 μs / div.
差模振铃浪涌
Figure 93 – 230 VAC / 60 Hz, 36 V Load,
VDS = 572 VPK
(+) 500 V Differential Ring Surge at 90º.
Ch1: VDS, 200 V / div.
Ch2: VBULK, 200 V / div.
Zoom Time Scale: 5 μs / div.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
Figure 94 – 230 VAC / 60 Hz, 36 V Load,
VDS = 565 VPK
(+) 500 V Differential Ring Surge at 0º.
Ch1: VDS, 200 V / div.
Ch2: VBULK, 200 V / div.
Zoom Time Scale: 5 μs / div.
第56页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
14 输入浪涌
Input voltage was set at 230 VAC / 60 Hz. Output was loaded with 36 V LED string and
operation was verified following each surge event. Two units were verified in the following
conditions.
Differential input line 1.2 / 50 μs surge testing was completed on one test unit to
IEC61000-4-5.
Surge Level
(V)
+500
-500
+500
-500
Input
Voltage
(VAC)
120
120
120
120
Injection
Location
L to N
L to N
L to N
L to N
Injection
Phase
(°)
0
270
90
180
Test Result
(Pass/Fail)
Pass
Pass
Pass
Pass
Differential input line ring surge testing was completed on one test unit to IEC61000-4-5.
Surge Level
(V)
+2500
-2500
+2500
-2500
Input
Voltage
(VAC)
120
120
120
120
Injection
Location
L to N
L to N
L to N
L to N
Injection
Phase
(°)
0
270
90
180
Test Result
(Pass/Fail)
Pass
Pass
Pass
Pass
Unit passes under all test conditions.
第57页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
15 传导EMI
15.1 设备
Receiver:
Rohde & Schwartz
ESPI - Test Receiver (9 kHz – 3 GHz)
Model No: ESPI3
LISN:
Rohde & Schwartz
Two-Line-V-Network
Model No: ENV216
15.2 EMI测试设置
Usually LED driver is placed in a conical metal housing (for self-ballasted lamps;
CISPR15 Edition 7.2) but since lamp housing is not available during the UUT was tested
then it was evaluated as shown in the figure below.
Figure 95 – Conducted Emissions Measurement Set-up.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第58页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
15.3 EMI测试结果
Att 10 dB AUTO
dBµV
120
EN55015Q
110
100 kHz
LIMIT CHECK
1 MHz
PASS
10 MHz
SGL
1 QP
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
30 MHz
Figure 96 – Conducted EMI, 36 V output / 550 mA Steady-State Load, 230 VAC, 60 Hz, and EN55015
Limits.
第59页(共62页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
Trace1:
25-Sep-13
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
130.825395691 kHz
38.20
L1 gnd
1
Quasi Peak
133.454986145 kHz
64.55
L1 gnd
2
Average
133.454986145 kHz
64.29
N gnd
2
Average
136.137431366 kHz
24.88
L1 gnd
1
Quasi Peak
174.145343305 kHz
52.73
L1 gnd
-12.02
2
Average
200.175581485 kHz
35.00
N gnd
-18.60
1
Quasi Peak
208.303512797 kHz
50.42
L1 gnd
-12.85
1
Quasi Peak
227.818484195 kHz
50.65
N gnd
-11.87
1
Quasi Peak
246.694773277 kHz
50.50
L1 gnd
-11.36
1
Quasi Peak
254.169871602 kHz
51.18
N gnd
-10.43
2
Average
267.135089486 kHz
44.12
N gnd
-7.07
2
Average
401.705024172 kHz
36.36
N gnd
-11.45
1
Quasi Peak
434.988979109 kHz
45.29
L1 gnd
-11.86
2
Average
667.263434405 kHz
34.06
N gnd
-11.93
2
Average
798.145472681 kHz
35.73
N gnd
-10.26
1
Quasi Peak
3.76891518811 MHz
42.16
L1 gnd
-13.83
2
Average
3.76891518811 MHz
33.46
L1 gnd
-12.53
1
Quasi Peak
4.16322710559 MHz
45.25
L1 gnd
-10.74
2
Average
5.28619370567 MHz
41.89
N gnd
-8.10
1
Quasi Peak
5.55584271143 MHz
46.93
N gnd
-13.06
-16.50
Figure 97 – Conducted EMI, 36 V / 550 mA Steady-State Load Steady-State Load, 230 VAC, 60 Hz, and
EN55015 Limits / Line and Neutral Scan Design Margin Measurement.
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第60页(共62页)
25-Sep-13
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
16 版本历史
Date
25-Sep-13
Author
ME
第61页(共62页)
Revision
1.0
Description and Changes
Initial Release
Reviewed
Apps & Mktg
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-396:使用LYT4324E设计的20 W反激式LED驱动器
25-Sep-13
有关最新产品信息,请访问:www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits’ external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,
HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power
Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2012 Power Integrations, Inc.
Power Integrations全球销售支持网络
全球总部
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: [email protected]
德国
Lindwurmstrasse 114
80337, Munich
Germany
Phone: +49-895-52739110
Fax: +49-895-527-39200
e-mail:
[email protected]
日本
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
台湾
5F, No. 318, Nei Hu Rd.,
Sec. 1
Nei Hu District
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
中国(上海)
Rm 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-021-6354-6323
Fax: +86-021-6354-6325
e-mail: [email protected]
印度
#1, 14th Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
韩国
RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
欧洲总部
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
中国(深圳)
3rd Floor, Block A, Zhongtou
International Business Center, No.
1061, Xiang Mei Road, FuTian District,
ShenZhen, China, 518040
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: [email protected]
意大利
Via Milanese 20, 3rd. Fl.
20099 Sesto San Giovanni
(MI) Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail:
[email protected]
新加坡
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
技术支持热线
World Wide +1-408-4149660
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
技术支持传真
World Wide +1-408-4149760
第62页(共62页)