ETC LNK574

LNK574
LinkZero-LP
™
零空载功耗的集成离线式开关IC
产品特色
零空载功耗实现最低系统成本
•
断开负载后自动进入零输入功率模式
•
检测负载重新连接并自动重启动调节
•
对现有LinkSwitch-LP设计可简单升级
•
非常严格的IC参数容差可提高系统制造良品率
•
适合低成本无箝位设计
•
频率调制技术可极大降低EMI滤波元件的成本
•
增大的封装爬电距离可提高系统的应用可靠性
+ DC
AC
IN
Output
D
LinkZero-LP
S
PI-5508-072610
先进的保护/安全特性
•
(a)TypicalApplicationSchematic
精确的迟滞热关断保护 – 自动恢复功能可降低电源在应用现场
VO
的故障率
•
通用输入范围可在全世界范围内使用
•
自动重启动功能在短路及开环电路故障状况下可将输出功率降
•
简单的开/关控制,无需环路补偿
•
高带宽提供快速的无过冲启动及出色的瞬态负载响应
FB
BP/M
Rated Output Power = VR × IR
VR
低85%以上
EcoSmart™ – 高效节能
•
230VAC下的空载功耗低至4mW(注释1)
•
无需增加任何元件,轻松满足全球所有的节能标准
•
开/关控制可在极轻负载时具备恒定的效率
应用
• 手机或无绳电话、PDA、电动工具、MP3或便携式音频设备、
剃须刀等使用的充电器
IR
(b)OutputCharacteristic
图1.典型应用–非简化的电路(a)及输出特性包络(b)
输出功率表
说明
LinkZero-LP是流行器件LinkSwitch-LP的升级版本,后者是业界
在 设 计 充 电 器 / 适 配 器 时 所 用 元 件 数 最 少 且 待 机 功 率 最 低 的
开关IC。LinkZero-LP控制器采用新的控制技术,能使器件自动
IO
PI-5510-082310
230VAC±15%
产品4
LNK574DG
85-265VAC
适配器2
开放式3
适配器2
开放式3
3W
3W
3W
3W
进入空载模式并从控制模式中唤醒,而AC输入功率不足5mW。
表1.输出功率表
IEC16301规定待机功率的测量值必须最低达到10mW的精确度,
注释:
1. IEC16301第4.5条规定低于5mW的待机功率为零功耗。
2. 典型连续输出功率是在无风冷密闭适配器中、环境温度为+50°C的条件下测量
得到的。
3. 最大的实际持续输出功率是在开放式设计及有足够的散热、环境温度为50ºC的
条件下测量得到的。
4. 封装:D:SO-8C。
而LinkZero-LP在230VAC下的待机功耗远低于5mW,因此根据
IEC定义其待机功耗可舍入为零。这种低功率水平在大部分功率
表中也是无法测量出来的。严格指定的反馈(FB)引脚电压参考能
使通用输入初级侧稳压电源在5%负载到满载之间实现精确恒压。
启动及工作时的功率直接来自于漏极引脚,无需使用启动电路。
通过内部振荡频率的抖动大大降低了准峰值和平均值的EMI,
从而降低滤波器成本。
www.powerint.com
December2010
LNK574
BYPASS/
MULTI FUNCTION
(BP/M)
PU
OPEN LOOP
PULL UP
+
REGULATOR
5.85 V
OVERVOLTAGE
PROTECTION
+
+
GENERATOR
FEEDBACK REF
1.70 V - 1.37 V
3V
6.5 V
5.85 V
4.85 V
+
AUTO-RESTART
COUNTER
FEEDBACK
(FB)
RESET
+
DRAIN
(D)
BYPASS PIN
UNDERVOLTAGE
-
FAULT
CURRENT LIMIT
+
JITTER
-
0.9 V
VI
LIMIT
CLOCK
CC CUT BACK
1.70 V - 0.9 V
ADJ
DCMAX
S
Q
R
Q
OSCILLATOR
POWER
DOWN
COUNTER
160 fOSC
CYCLES
SYSTEM
POWER
DOWN/
RESTART
EVENT
COUNTER
RESET
LEADING
EDGE
BLANKING
PU
PI-5509-111810
SOURCE
(S)
图2.功能结构图
引脚功能描述
漏极(D)引脚:
功率MOSFET的漏极连接点。在开启及稳态工作时提供内部操
D Package (SO-8C)
作电流。
旁路/多功能可编程(BP/M)引脚:
BP/M
一个外部旁路电容连接到这个引脚,用于生成内部的5.85V供电
FB
电源。电容的值可建立断电时长。电容的最小值为0.1μF。
8
2
7
6
如果流入该引脚的电压超过6.5V(I SD ) 以上,过压保护将禁止开
)
1
)
关。
D
4
5
S
S
S
S
反馈(FB)引脚:
在正常操作下,功率MOSFET的开关由此引脚控制。当一个高
于内部VFB参考电压的电压施加到反馈引脚时,MOSFET开关将
被禁止。
PI-5507-060210
图3.引脚配置
在恒压模式下,VFB 参考电压从满载时的1.70 V内部调整到空载
时的1.37 V,在恒流模式下则从1.70 V内部调整到0.9 V。低于
0.9V时,元件将进入自动重启动模式。
源极(S)引脚:
这个引脚是功率MOSFET的源极连接点。它也是旁路和反馈引
脚的接地参考。
2
版本B12/07/10
www.powerint.com
LNK574
LinkZero-LP功能描述
行,此周期中随后产生的反馈引脚电压的变化对MOSFET状态
LinkZero-LP在一片晶圆上包括一个700V的功率MOSFET开关及
都不构成影响。
一个电源控制器。与通常的PWM(脉冲宽度调制)控制器不
反馈输入恒流模式
同,它使用了一个简单的开/关控制来调节输出电压。这个控制
当反馈引脚电压在满载条件下降低到1.70V以下时,振荡器频率
器包括了以下电路:一个振荡器、反馈(检测)5.85V稳压器、
开始线性下降,到自动重启动阈值电压0.9V时频率通常会降到
欠压/过压保护旁路引脚、过热保护、频率抖动、电流限流、前
43%的水平上。这一功能在输出电压低于额定稳压阈值电压V R
沿消隐旁路引脚在断电和旁路模式下箝位。此外,该控制器还采
情况下可限定电源的输出功率(参见图1)。
用了拥有专利的断电模式,可自动将待机功耗降至大部分功率
5.85 V稳压器
表都难以测量的超低水平。
只要MOSFET处在关断状态,5.85 V稳压器就会从漏极吸收电流,
断电模式
将连接到旁路引脚的旁路电容充电到5.85
当总负载(电源输出负载加偏置绕组负载)降至满载的约0.6%
时,LinkZero-LP使用存储在旁路电容中的能量。内部电路极低
时,器件进入断电模式。开关将被禁止,此时,内部控制器会
的功率耗散使LinkZero-AX可使用从漏极吸收的电流持续工作。
检测到已两次跳过160个周期,且在两组160个已跳过开关周期
之间只有一个带载开关周期。在断电期间,旁路引脚将从5.85V
V。当MOSFET导通
一个0.1µF的旁路电容就足够实现高频率的去耦及能量存储。
放电到约3V,此时,LinkZero-LP将唤醒,并将旁路引脚重新充
6.45 V分流稳压器及8.5 V箝位
电到5.85V。唤醒频率由用户所选择的旁路引脚电容决定(请参
另外,当有电流从外部提供给旁路引脚时,一个6.45V的分流稳
见图22,了解旁路引脚电容的选择方法)。旁路引脚重新充电
压箝位电路会将旁路引脚电压箝在6.5 V。在非隔离设计中,这
到5.85 V后,LinkZero-LP会检测负载条件是否已发生变化,如果
有助于通过电阻从偏置绕组或电源输出端对器件进行外部供
未发生变化,LinkZero-LP将进入新的断电周期,否则会恢复正
电,从而降低器件功耗并提高电源效率。
常工作(请参见“应用范例”部分,了解断电模式工作原理的
详细信息。)
6.5 V分流稳压器只在正常工作模式下带有负载。在断电模式下,
振荡器
电压较高时(典型值为8.5V)将对旁路引脚进行箝位。
典型的振荡器频率内部设置在100kHz的平均水平。一个内部电
路会检测MOSFET的导通并调整振荡器的频率,以便振荡器频率
旁路引脚欠压保护
在大占空比(低输入电压)下达到约100 kHz,在小占空比(
如果旁路引脚的电压被拉升到6.5 V(BP以上且分流稳压器中的
高输入电压)下达到约78 kHz。进行这种内部频率调整是为了
电流超过6.5mA,将设定锁存,功率MOSFET将停止开关。要对
让峰值功率点始终高于输入电压。此振荡器产生两个信号:最
此锁存进行复位,必须将旁路引脚的电压拉低到1.5V以下。
大占空比信号(DCMAX)及显示每个开关周期开始的时钟信号。
旁路引脚过压保护
振荡器具有的电路可导入少量的频率抖动,通常为6%的开关频率
如果旁路引脚的电压被拉升到6.45(BPSHUNT )以上且分流稳压器中
以将EMI降低到最小。频率抖动的调制速率设置在1kHz的水平,
目的是降低平均及准峰值的EMI,并给予优化。频率抖动与振荡
的电流超过8mA,将设定锁存,功率MOSFET将停止开关。要对
此锁存进行复位,必须将旁路引脚的电压拉低到1.5V以下。
器频率成正比,测量时应把示波器触发设定在漏极电压波形的
过热保护
下降沿来测量。当反馈引脚电压从1.70 V降低到1.37 V时,振荡
热关断电路检测结的温度。阈值设置在142°C并具备70°C的迟
器频率将线性降低。
滞范围。当结温度超过这个阈值(142°C),功率MOSFET开关被
反馈输入电路恒压模式
禁止,直到结温度下降70°C,MOSFET才会重新使能。
反馈输入电路的参考电压在满载时设定为1.70V,在空载时逐步
电流限流点
降低到1.37V。当反馈引脚电压根据负载情况达到VFB 参考电压
电流限流电路检测功率MOSFET的电流。当电流超过内部阈值
(1.70 V至1.37 V)时,反馈电路的输出端会产生一个低逻辑电
(I LIMIT )时,在该周期剩余阶段会关断功率MOSFET。在功率
平(禁止)。在每个周期开始时,对输出进行采样。如果高,
功率MOSFET会在那个周期导通(使能),否则功率MOSFET将
仍处于关断状态(禁止)。由于采样仅在每个周期开始时进
MOSFET导通后,前沿消隐电路会将电流限流比较器抑制片刻
(tLEB)。通过设置前沿消隐时间,可以防止由电容及整流管反向恢
复时间产生的电流尖峰引起导通的MOSFET提前误关断。
3
www.powerint.com
版本B12/07/10
LNK574
自动重启动
一旦出现故障,比如输出短路,LinkZero-LP进入自动重启动
该设计采用简单的偏置绕组电压反馈方式,由LinkZero-LP进行开/
操作。每当反馈引脚电压超过反馈引脚的自动重启动阈值电压
关控制。C5上的电压由反馈引脚参考电压以及R3和R4形成的分压
(VFB(AR))的典型值0.9 V时,一个由振荡器计时的内部计数器会进行
电阻决定。电容C4对反馈引脚提供高频滤波,以避免开关周期脉
复位。如果反馈引脚电压下降到VFB(AR)并超过了145ms到170ms
冲束流。反馈引脚参考电压随负载变化,在空载时设定为1.37V,
(具体取决于输入电压大小),功率MOSFET开关被禁止。自
满载时逐步升高到1.70 V,用来提供电缆压降补偿。在恒压(CV)阶
动重启动电路以一个12%典型占空比对功率MOSFET进行交替
段,LinkZero-LP器件使能/禁止开关周期以维持反馈引脚参考电
使能和禁止,直到故障排除为止。
压。二极管D6及低成本陶瓷电容C5提供初级反馈绕组波形的整流
滤波功能。在高负载条件下,当超过最大功率阈值时,IC切换到
反馈引脚开环情况
恒流(CC)阶段。在此阶段,反馈引脚电压开始随电源输出电压的
当检测到反馈引脚的开环情况时,内部拉升电流源会将反馈引
下降而降低。为了维持恒流输出,内部振荡器的频率在此阶段逐
脚电压拉升到1.70 V以上,并且LinkZero-LP在160个时钟周期后
渐降低,直到达到起始频率的48%。当反馈引脚电压下降到低于
停止开关。
自动重启动阈值(反馈引脚通常为0.9V)时,电源进入自动重启
动模式。在此模式下,电源将关断1.2 s,然后重新导通170 ms。
应用范例
自动重启动功能可在输出短路情况下减小平均输出电流。
图4所示为一个使用LinkZero-LP设计的典型的6V,330mA、
LinkZero-LP器件通过漏极引脚进行自偏置。不过,为了提升高压
恒压/恒流(CV/CC)输出电源的电路。
下的效率,可以使用可选元件二极管D5和电阻R2形成外部偏置。
AC输入差模滤波可由C1、C2和L1形成的π型滤波器得以
实现。LinkZero-LP具有专利的频率抖动功能,无需使用任何Y
断电(PD)模式占空比和空载功耗由旁路引脚电容C3决定。使用较
电容或共模电感。绕线式电阻RF1属于可熔阻燃型电阻,也可以
高值的电容可以降低空载功耗。C3电容值较高时,会增大断电
用作保险丝来限定浪涌电流。
C6
R5 220 pF
5.1 Ω 100 V
5
D1
1N4007
D2
1N4007
6 V, 350 mA
9
4
8
NC
RF1
10 Ω
2W
C7
330 µF
16 V
D7
SS15
RTN
2
1
C1
3.3 µF
400 V
85 - 265
VAC
D3
1N4007
D4
1N4007
R1
4.7 kΩ
T1
EF16
C2
3.3 µF
400 V
D
LinkZero-LP
U1
LNK574DG
FB
D5
1N4148
R2
82 kΩ
R3
113 kΩ
1%
C5
220 nF
50 V
D6
DL4003
BP/M
S
L1
1.0 mH
C3
220 nF
50 V
R4
9.09 kΩ
1%
C4
1 nF
50 V
PI-6086-072110
图4.一个2.1W、6V、350mA充电器的电路图
4
版本B12/07/10
www.powerint.com
LNK574
模式下的输出纹波–请参见下面的LinkZero-LP设计指南部分。
断时长也决定了输出电压的纹波。
由于在LinkZero-LP制造过程中使用了流限调节技术,使得限流
点容差非常精确,同时采用了专利的变压器结构技术,得以在
如果图4中没有使用元件D5和R2,该时间将仅由C3的取值
初级电路中实现无箝位电路的设计。因此,峰值漏极电压在
决定。不过,如果使用D5和R2提供外部引脚电源,则在C5和
265VAC输入时可以控制在550V以下,对700V耐压(BV DSS )的
C3中储存的总能量将决定在旁路引脚电压达到VBPPDRESET(~3V)之
MOSFET来说具有非常大的裕量。
前断电模式的关断时长。
输出的整流滤波由输出整流管D7和滤波电容C7来实现。由于自
在以上任一情况下,C5都会在断电模式关断期间通过R3和R4
动重启动特性,平均短路输出电流大大低于1A,因而可以使用低
进行完全放电(D5可防止旁路电容C3通过此路径放电)。
电流额定值和低成本的整流管D7。输出电路只要能处理电源输出
因此,C5的电容值应尽可能地小,以便降低在下一个断开模式
短路时的持续短路电流就可以了。虽然在本设计中不用使用假负
导通期间开始时与此电容放电相关的电源空载输入功耗。C5的最
载电阻,但在电源输出端使用时可降低空载模式下的输出电压。
LinkZero-LP断电(PD)模式设计指南
小值由反馈电阻R3和R4所设定的时间系数决定,以避免C5上的
过量逐周期纹波影响输出电压稳压。C5的典型取值介于100 nF和
330nF之间。
当电源输出负载降低到足够低的水平,以致两次跳过160个连续
开关周期,且在两组160个已跳过开关周期之间只有一个带载开
当使用D5和R2时,偏置绕组电容C5的最小值再次由电压稳压
关周期时,LinkZero-LP进入断电模式。此时,功耗水平约为
性能决定,因此在必要时通常需要减小旁路引脚电容C3的值,
LinkZero-LP满载功率能力的0.6%。
以缩短断电模式的关断时长。建议C3的最小值取47nF。
不过,即使完全断开功率输出负载,输出端的任何假负载电阻
PCB布局注意事项
和与偏置绕组相连的元件仍可代表变压器的负载。因此,设计
出的与偏置绕组相连的反馈电路应能代表小于电源满载0.6%的
LinkZero-LP PCB板布局的注意事项
负载。否则,LinkZero-LP将无法检测到输出的空载情况,也不
布局
会进入断电模式,因而无法实现零空载输入功率。
参见图5LinkZero-LP(U1)的推荐电路板布局。
在图4的设计中,电源满载输出功率为2.1W(6V,350mA)。
单点接地
因此,设计出的偏置绕组负载应小于该功率的0.6%(<12.6mW)。
在输入滤波电容与连接源极引脚的铜铂区域使用一个单一接地
以图4中的设计为例,偏置绕组电容C5的平均空载电压约为20 V。
点(Kelvin)。
因此,在该偏置电压下,R3、R4及R2(如果使用)的负载取值
旁路电容(CBP)、反馈引脚噪声滤波电容(CFB)及反馈电阻
应能代表小于12.6mW的负载。在该设计示例中,R2路径的功耗
约为3.3 mW,R3及R4的功耗也约为3.3 mW。因此,6.6 mW的
总功耗能够满足确保在电源负载断开后电源进入断电模式所需的
条件。因此,可以通过调整与偏置绕组相连的电路的功耗值,
来调整LinkZero-LP进入断电模式时的电源输出功率阈值。
为减小环路面积,这两个电容的物理位置应分别尽量接近旁路
和源极引脚,以及反馈和源极引脚。另请注意,为降低噪声干
扰,反馈电阻RFB1和RFB2应靠近反馈引脚放置。
初级环路面积
连接输入滤波电容、变压器初级及LinkZero-LP的初级环路面积
因此可以看出,如果需要,只需在电源输出端添加一个假负载
电阻或将偏置绕组的负载提高到大于电源最大功率能力的0.6%
(加上裕量),就可以避免进入断电模式。
当LinkZero-LP处于断电模式时,旁路引脚电压放电至VBPPDRESET
(~3 V)所花费的时间决定了断电模式的关断时长。断电模式的关
应尽可能小。
初级箝位电路
可以使用一个外部箝位来控制MOSFET在关断状态时漏极引脚
的峰值电压。在初级绕组上使用一个RCD箝位或一个齐纳稳
压管(~200V)及二极管箝位即能够实现。在任何情况下,为改善
EMI,从箝位元件到变压器再到LinkZero-LP(U1)的电路路径应保
证最小。
5
www.powerint.com
版本B12/07/10
LNK574
CB
DB
RS
CS
DBP
RBP
DO
RFB2
CFB
CO
CBP
RFB1
R6
Transformer
U1
J3
Ð
DC
IN
T1
+
PI-6098-082310
图5.一个2.1W,6V,350mA充电器的PCB布局
散热考量
LinkZero-LP(U1)之下的铜铂区域不仅仅是一个接地点,而且还
起到一个散热片的作用。因它连接到安静的源极节点,应将这
个区域扩大以使U1实现良好的散热。这同样适用于输出二极管
的阴极。
Y电容
快速设计校验
对于任何使用LinkZero-LP的电源设计,都应经过全面测试以确
保在最差条件下元件的规格没有超过规定范围。建议至少进行
如下测试:
1. 最大漏极电压–校验在最高输入电压和峰值(过载)输出功
率时VDS没有超过660V。给700V的BVDSS规格增加50V的裕
应将Y电容(如使用)直接放置在初级输入滤波电容正极和变压
量,使得在设计变更时留有一定的设计裕量,尤其是在无箝
器次级的共地/返回极接脚之间。这样放置会使高幅值的共模浪
位电路设计中。
涌电流远离U1。注意:如果在输入端使用了π型EMI滤波器,
那么滤波器内的电感应放置在输入滤波电容的负极之间。
输出二极管(DO)
要达到最佳的性能,连接次级绕组、输出二极管(DO)及输出滤波
电容(CO)的环路区域面积应最小。此外,与二极管的阴极和阳极
连接的铜铂区域应足够大,以便用来散热。最好在电气安静的
阴极留有更大的铜铂区域。阳极铺铜区域过大会增加高频传导
及辐射EMI。电阻RS与CS形成次级侧RC缓冲电路。
2. 最大漏极电流–在最高环境温度、最大输入电压及峰值输出
(过载)功率情况下,检查漏极电流以确定变压器是否出现
饱和,另外也要检测电源开启时是否出现过高的前沿导通电
流尖峰。在稳态工作下重复以上操作,校验前沿电流尖峰在
t LEB(MIN)结束时低于ILIMIT(MIN)。在任何条件下,最大漏极电流应
低于规定的绝对最大额定值。
3. 热检测–在规定的最大输出功率、最小输入电压及最高环境温
度情况下,检查LinkZero-LP、变压器、输出二极管及输出电容
的温度没有超标。应有足够的温度裕量以保证LinkZero-LP不
会因元件与元件间RDS(ON)的差异而引起过热问题,请参见数
据手册中关于RDS(ON)的说明。建议在低压输入及最大输出功率
的情况下,LinkZero-LP源极引脚的最高温度不高于100°C,
这样就可以适应上述参数的变化。
6
版本B12/07/10
www.powerint.com
LNK574
绝对最大额定值(1,6)
漏极电压....................................................................-0.3V至700V
LNK574峰值漏极电流..........................................200(375)mA(2)
峰值负向脉冲漏极电流................................................. -100mA(3)
反馈电压........................................................................-0.3V至9V
反馈电流............................................................................. 100mA
旁路引脚电压................................................................-0.3V至9V
断电模式下的旁路引脚电压................................... -0.3V至11V(7)
贮存温度............................................................... -65°C至150°C
工作结温........................................................... -40°C至150°C(4)
引线温度............................................................................ 260°C(5)
注释:
1. 所有电压都是以TA=25°C时的源极为参考点。
2. 在漏源极电压不超过400V时允许使用更高的峰值漏极电流。
3. 持续时间不超过2μs。
4. 通常由内部电路控制。
5. 在距壳体1/16英寸处测量,持续时间5秒。
6.在短时间内施加器件允许的最大额定值不会引起产品永久性的
损坏。但长时间用在器件允许的最大额定值时,会对产品的可靠
性造成影响。
7.流入引脚的最大电流为300μA。
热阻
热阻:D封装:
(qJA)..................................100°C/W(2);80°C/W(3)
(qJC)........................................................30°C/W(1)
参数
符号
注释:
1. 在靠近塑料表面的源极引脚测得。
2. 焊在0.36平方英寸(232mm2)、2盎司铜铂区域。
3. 焊在1平方英寸(645mm2)、2盎司铜铂区域。
条件
源极=0V;TJ=-40至125°C
最小值
典型值
最大值
单位
93
100
107
kHz
(除非另有说明)
控制功能
输出频率
fOSC
频率抖动
TJ=25°C
VFB=1.70V,参见注释C
相对于平均频率抖动的峰峰值,TJ=25°C
±3
%
TJ=25°C
VFB=VFB(AR)
参见注释B
43
%
%
自动重启动操作频率
与fOSC的比率
fOSC(AR)
fOSC
最大占空比
DCMAX
60
63
无跳过周期时的反馈
引脚电压
VFB
1.63
1.70
存在99.4%跳过周期
时的反馈引脚电压
VFB(NL)
自动重启动时的反馈
引脚电压
VFB(AR)
1.77
1.37
0.8
0.9
V
V
1.05
V
7
www.powerint.com
版本B12/07/10
LNK574
参数
符号
条件
源极=0V;TJ=-40至125°C
最小值
典型值
最大值
单位
(除非另有说明)
控制功能(继上)
开关最短导通时间
tON(MIN)
700
ns
IS1
反馈电压>VFB
(MOSFET未开启)
150
200
260
IS2
0.9V≤VFB≤1.70V
(MOSFET开启)
200
250
310
ICH1
VBP=0V,TJ=25°C
-5.5
-3.8
-1.8
ICH2
VBP=4V,TJ=25°C
-3.8
-2.5
-1.0
VBP
5.60
5.85
6.10
V
旁路引脚电压迟滞
VBP(H)
0.8
1.0
1.2
V
旁路引脚分流电压
BPSHUNT
6.1
6.5
6.9
V
漏极供电电流
旁路引脚充电电流
旁路引脚电压
mA
mA
电路保护
ILIMIT
di/dt=40mA/ms
TJ=25°C
126
136
146
mA
功率因数
I2f
di/dt=40mA/ms
TJ=25°C
1665
1850
2091
A2Hz
前沿消隐时间
tLEB
TJ=25°C
220
265
旁路引脚关断阈值电流
ISD
VBP=BPSHUNT
See Note E
5.0
6.5
8.0
mA
热关断温度
TSD
参见注释B
135
142
150
°C
热关断迟滞
TSD(H)
参见注释B
70
断电模式下的关断状态
漏极漏电流
IDSS(PD)
TJ=25°C,
VDRAIN=325V
参见图23
6.5
9
mA
断电模式下的旁路引脚
过压保护
VBP(PDP)
IBP=300mA
TJ≤100°C
7.25
8.5
10.9
V
旁路引脚通电复位阈值
(断电模式或在电源启
动时)
VBP(PU)
1.5
3
4
V
电流限流点
ns
°C
断电(PD)模式
8
版本B12/07/10
www.powerint.com
LNK574
参数
符号
条件
源极=0V;TJ=-40至125°C
最小值
典型值
最大值
TJ=25°C
48
55
TJ=100°C
76
88
单位
(除非另有说明)
输出
导通电阻
RDS(ON)
击穿电压
BVDSS
ID=13mA
VBP=6.2V,TJ=25°C
漏极供电电压
自动重启动导通时间
自动重启动关断时间
输出使能延时
VIN=85VAC,TJ=25°C,
DCAR
tEN
参见注释D
参见图8
W
700
V
50
V
145
ms
1.0
s
14
ms
注释:
A. IDSS为80%的BVDSS以及最大工作结温时最差的关断状态漏电流。
B. 此参数是通过表征法得到的。
C. 输出频率规格适用于最终应用中的低输入电压。设计出的控制器可在高压输入下降低约20%的输出频率,使低压和高压下的最
大输出功率保持平衡。
D. 在265VAC高压输入下,自动重启动导通/关断时间延长20%。
E. 如果流入旁路引脚的电流在 BPSHUNT 电压时达到ISD,LinkZero-LP将关断。
9
www.powerint.com
版本B12/07/10
LNK574
BP/M
S
FB
S
S
0-2 V
0.1 µF
S1
D
470 Ω
5W
S
50 V
PI-6067-072110
图6.一般测试电路
DCMAX
(internal signal)
tP
FB
tEN
VDRAIN
tP =
1
fOSC
PI-3707-112503
图8.输出使能定时
PI-4021-101305
DRAIN Current (mA)
图7.占空比测量
100
2 µs
0
-100
Time (µs)
图9.峰值负脉冲漏极电流波形
10
版本B12/07/10
www.powerint.com
LNK574
典型性能特性
1.0
0.9
-50 -25
0
25
50
PI-6065-071910
1.2
Output Frequency
(Normalized to 25 °C)
PI-2213-012301
Breakdown Voltage
(Normalized to 25 °C)
1.1
1.0
0.8
0.6
0.4
0.2
0
75 100 125 150
-50
-25
Junction Temperature (°C)
25
50
75
100 125
Junction Temperature (°C)
图10.击穿电压相对于温度的变化
图11.频率随温度的变化
1.0
0.8
PI-4057-071905
Current Limit
(Normalized to 25 °C)
1.2
1.1
FEEDBACK Pin Voltage
(Normalized to 25 °C)
PI-6066-071910
1.4
1.0
0.6
0.4
0.2
0.9
0
0
50
100
-50 -25
150
0
25
50
75 100 125 150
Temperature (°C)
Temperature (°C)
图12.限流点相对于温度的变化
图13.反馈引脚电压与温度的特性曲线
6
5
4
3
2
1
200
175
DRAIN Current (mA)
PI-2240-012301
7
PI-3927-083104
-50
BYPASS Pin Voltage (V)
0
25 °C
150
100 °C
125
100
75
50
25
0
0
0
0.2
0.4
0.6
0.8
1.0
0
4
6
8 10 12 14 16 18 20
DRAIN Voltage (V)
Time (ms)
图14.旁路引脚启动波形(CBP=0.22μF)
2
图15.输出特性
11
www.powerint.com
版本B12/07/10
LNK574
典型性能特性(继上)
100
Frequency (kHz)
100
10
PI-6068-071910
110
PI-3928-083104
Drain Capacitance (pF)
1000
90
80
70
1
60
0
100
200
300
400
500
0
600
10
20
Drain Voltage (V)
60
70
1.5
1.4
6.0
7.0
1.3
40
30
20
10
0
-10
-20
-30
0 10 20 30 40 50 60 70 80 90 100
0.0
Output Load (%)
-6
-8
-10
-12
-14
-16
-18
-20
3.0
4.0
5.0
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
PI-6072-072110
FEEDBACK Pin Current (µA)
-4
2.0
图19.反馈引脚输入的输入特性曲线
PI-6071-072110
-2
1.0
FEEDBACK Pin Voltage (V)
图18.恒压模式下反馈引脚稳压阈值随输出负载的变化
0
PI-6070-072110
50
FEEDBACK Pin Current (µA)
1.6
FEEDBACK Pin Current (µA)
50
图17.频率降低随占空比(线电压)的变化
PI-6069-072110
FEEDBACK Pin Voltage (V)
1.7
40
Duty Cycle (%)
图16.CDSS相对漏极电压的变化
1.8
30
Auto-Restart
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FEEDBACK Pin Voltage (V)
Frequency Normalized to 1
图20.恒流模式下反馈引脚的输入特性曲线(1.7V至0.9V)
图21.频率在恒流模式下降低并归一化
12
版本B12/07/10
www.powerint.com
LNK574
典型性能特性(继上)
0.9
9
Drain Current (µA)
0.8
0.7
0.6
0.5
0.4
0.3
8
7
6
5
4
3
0.2
2
0.1
1
0
PI-6111-081810
10
PI-6110-090810
BYPASS Pin Capacitor (µF)
1
0
0
200 400 600 800 1000 1200 1400
Power Down Period (ms)
图22.断电关断时间随旁路引脚电容的变化。VBP起始值为
5.85V(温度=25°C)
-50
-25
0
25
50
75
100 125
Temperature (°C)
图23.断电模式下典型漏极电流随温度的变化
13
www.powerint.com
版本B12/07/10
LNK574
SO-8C (D Package)
4
B
0.10 (0.004) C A-B 2X
2
DETAIL A
4.90 (0.193) BSC
A
4
8
D
5
2 3.90 (0.154) BSC
GAUGE
PLANE
SEATING
PLANE
6.00 (0.236) BSC
C
0-8
1.04 (0.041) REF
0.10 (0.004) C D
2X
Pin 1 ID
1
4
0.25 (0.010)
BSC
0.40 (0.016)
1.27 (0.050)
0.20 (0.008) C
2X
7X 0.31 - 0.51 (0.012 - 0.020)
0.25 (0.010) M C A-B D
1.27 (0.050) BSC
1.25 - 1.65
(0.049 - 0.065)
1.35 (0.053)
1.75 (0.069)
o
DETAIL A
0.10 (0.004)
0.25 (0.010)
0.10 (0.004) C
H
7X
SEATING PLANE
0.17 (0.007)
0.25 (0.010)
C
Reference
Solder Pad
Dimensions
+
2.00 (0.079)
+
D07C
4.90 (0.193)
+
+
1.27 (0.050)
Notes:
1. JEDEC reference: MS-012.
2. Package outline exclusive of mold flash and metal burr.
3. Package outline inclusive of plating thickness.
4. Datums A and B to be determined at datum plane H.
5. Controlling dimensions are in millimeters. Inch dimensions
are shown in parenthesis. Angles in degrees.
0.60 (0.024)
PI-4526-040110
元件订购信息
• LinkZero产品系列
• LinkZero-LP序列号
• 封装信息
D
塑封SO-8C
• 封装材料
G
绿色:无卤素和符合RoHS
• 带装和卷轴装及其他包装形式
空白
LNK 574
D G - TL
TL
标准配置
带装&卷轴装,至少2500个,仅适用D封装不适用于P封装。
14
版本B12/07/10
www.powerint.com
LNK574
15
www.powerint.com
版本B12/07/10
版本
注释:
日期
A
初始版本
10/12/10
B
更新了文字及参数表格。
12/07/10
有关最新产品信息,请访问:www.powerint.com
PowerIntegrationsreservestherighttomakechangestoitsproductsatanytimetoimprovereliabilityormanufacturability.Power
Integrationsdoesnotassumeanyliabilityarisingfromtheuseofanydeviceorcircuitdescribedherein.POWERINTEGRATIONSMAKES
NOWARRANTYHEREINANDSPECIFICALLYDISCLAIMSALLWARRANTIESINCLUDING,WITHOUTLIMITATION,THEIMPLIED
WARRANTIESOFMERCHANTABILITY,FITNESSFORAPARTICULARPURPOSE,ANDNON-INFRINGEMENTOFTHIRDPARTYRIGHTS.
Patent Information
Theproductsandapplicationsillustratedherein(includingtransformerconstructionandcircuitsexternaltotheproducts)maybecovered
byoneormoreU.S.andforeignpatents,orpotentiallybypendingU.S.andforeignpatentapplicationsassignedtoPowerIntegrations.
AcompletelistofPowerIntegrationspatentsmaybefoundatwww.powerint.com.PowerIntegrationsgrantsitscustomersalicense
undercertainpatentrightsassetforthathttp://www.powerint.com/ip.htm.
Life Support Policy
POWERINTEGRATIONSPRODUCTSARENOTAUTHORIZEDFORUSEASCRITICALCOMPONENTSINLIFESUPPORTDEVICESOR
SYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFTHEPRESIDENTOFPOWERINTEGRATIONS.Asusedherein:
1. ALifesupportdeviceorsystemisonewhich,(i)isintendedforsurgicalimplantintothebody,or(ii)supportsorsustainslife,and(iii)
whosefailuretoperform,whenproperlyusedinaccordancewithinstructionsforuse,canbereasonablyexpectedtoresultinsignificant
injuryordeathtotheuser.
2. Acriticalcomponentisanycomponentofalifesupportdeviceorsystemwhosefailuretoperformcanbereasonablyexpectedtocause
thefailureofthelifesupportdeviceorsystem,ortoaffectitssafetyoreffectiveness.
ThePIlogo,TOPSwitch,TinySwitch,LinkSwitch,DPA-Switch,PeakSwitch,EcoSmart,Clampless,E-Shield,Filterfuse,StakFET,PIExpert
andPIFACTSaretrademarksofPowerIntegrations,Inc.Othertrademarksarepropertyoftheirrespectivecompanies.
©2010,PowerIntegrations,Inc.
Power Integrations全球销售支持网络
全球总部
5245HellyerAvenue
SanJose,CA95138,USA.
Main:+1-408-414-9200
CustomerService:
Phone:+1-408-414-9665
Fax:+1-408-414-9765
e-mail:[email protected]
中国(上海)
Room1601/1610,Tower1
KerryEverbrightCity
No.218TianmuRoadWest
Shanghai,P.R.C.200070
Phone:+86-21-6354-6323
Fax:+86-21-6354-6325
e-mail:[email protected]
中国(深圳)
RmA,B&C4thFloor,BlockC,
ElectronicsScienceand
TechnologyBldg.,2070
ShennanZhongRd,
Shenzhen,Guangdong,
China,518031
Phone:+86-755-8379-3243
Fax:+86-755-8379-5828
e-mail:[email protected]
德国
Rüeckertstrasse3
D-80336,Munich
Germany
Phone:+49-89-5527-3910
Fax:+49-89-5527-3920
e-mail:[email protected]
印度
#1,14thMainRoad
Vasanthanagar
Bangalore-560052India
Phone:+91-80-4113-8020
Fax:+91-80-4113-8023
e-mail:[email protected]
意大利
ViaDeAmicis2
20091BressoMI
Italy
Phone:+39-028-928-6000
Fax:+39-028-928-6009
e-mail:[email protected]
日本
KoseiDai-3Bldg.
2-12-11,Shin-Yokohama,
Kohoku-ku
Yokohama-shiKanagwan
222-0033Japan
Phone:+81-45-471-1021
Fax:+81-45-471-3717
e-mail:[email protected]
韩国
RM602,6FL
KoreaCityAirTerminalB/D,159-6
Samsung-Dong,Kangnam-Gu,
Seoul,135-728,Korea
Phone:+82-2-2016-6610
Fax:+82-2-2016-6630
e-mail:[email protected]
台湾
5F,No.318,NeiHuRd.,Sec.1
NeiHuDist.
Taipei,Taiwan114,R.O.C.
Phone:+886-2-2659-4570
Fax:+886-2-2659-4550
e-mail:[email protected]
欧洲总部
1stFloor,St.James’sHouse
EastStreet,Farnham
SurreyGU97TJ
UnitedKingdom
Phone:+44(0)1252-730-141
Fax:+44(0)1252-727-689
e-mail:[email protected]
技术支持热线
WorldWide+1-408-414-9660
新加坡
51NewtonRoad
技术支持传真
#15-08/10GoldhillPlaza
WorldWide+1-408-414-9760
Singapore,308900
Phone:+65-6358-2160
Fax:+65-6358-2015
e-mail:[email protected]
LNK574
LinkZero-LP
™
Zero No-Load Consumption Integrated Off-Line Switcher
Product Highlights
Lowest System Cost with Zero No-Load
• Automatically enters zero input power mode when load is
disconnected
• Detects load reconnection and automatically restarts regulation
• Simple upgrade to existing LinkSwitch-LP designs
• Very tight IC parameter tolerances improve system manufacturing yield
• Suitable for low-cost clampless designs
• Frequency jittering greatly reduces EMI filter cost
• Extended package creepage improves system field reliability
Applications
• Chargers for cell/cordless phones, PDAs, power tools, MP3/
portable audio devices, shavers, etc.
Description
LinkZero-LP is an upgrade to the popular LinkSwitch-LP, the
industry’s lowest component count charger/adapter and standby
power switcher IC. The LinkZero-LP controller incorporates new
technology which enables the device to automatically enter into
and wake up from no-load mode while taking less than 5 mW from
the AC power. IEC 62301 specifies measurements of standby
power to a minimum accuracy of 10 mW, and so LinkZero-LP’s
consumption of substantially less than 5 mW at 230 VAC rounds to
zero based on the IEC definition. This low power level is also
immeasurable on most power meters. The tightly specified
FEEDBACK (FB) pin voltage reference enables universal input
primary side regulated power supplies with accurate constant
voltage from 5% to full load. The start-up and operating power are
derived directly from the DRAIN pin which eliminates start-up
circuitry. The internal oscillator frequency is jittered to significantly
reduce both quasi-peak and average EMI, minimizing filter cost.
www.powerint.com Output
D
LinkZero-LP
FB
BP/M
S
PI-5508-072610
Advanced Protection/Safety Features
• Accurate hysteretic thermal shutdown protection – automatic
recovery reduces field returns
• Universal input range allows worldwide operation
• Auto-restart reduces delivered power by >85% during shortcircuit and open loop fault conditions
• Simple ON/OFF control, no loop compensation needed
• High bandwidth provides excellent transient load response with
no overshoot
EcoSmart™ – Energy Efficient
• No-load consumption as low as 4 mW at 230 VAC input
(Note 1)
• Easily meets all global energy efficiency regulations with no
added components
• ON/OFF control provides constant efficiency to very light loads
+ DC
AC
IN
(a) Typical Application Schematic
VO
Rated Output Power = VR × IR
VR
IR
IO
PI-5510-082310
(b) Output Characteristic
Figure 1.
Typical Application – Not a Simplified Circuit (a) and Output
Characteristic Envelope (b).
Output Power Table
230 VAC ±15%
Product4
LNK574DG
85-265 VAC
Adapter2
Open
Frame3
Adapter2
Open
Frame3
3W
3W
3W
3W
Table 1. Output Power Table.
Notes:
1. IEC 62301 Clause 4.5 rounds standby power use below 5 mW to zero.
2. Typical continuous power in a non-ventilated enclosed adapter measured at
+50 °C ambient.
3. Maximum practical continuous power in an open frame design with adequate
heatsinking, measured at 50 °C ambient.
4. Packages: D: SO-8C.
December 2010
LNK574
BYPASS/
MULTI FUNCTION
(BP/M)
PU
OPEN LOOP
PULL UP
+
REGULATOR
5.85 V
OVERVOLTAGE
PROTECTION
+
+
GENERATOR
FEEDBACK REF
1.70 V - 1.37 V
3V
6.5 V
5.85 V
4.85 V
+
AUTO-RESTART
COUNTER
FEEDBACK
(FB)
RESET
+
DRAIN
(D)
BYPASS PIN
UNDERVOLTAGE
-
FAULT
CURRENT LIMIT
+
JITTER
-
0.9 V
VI
LIMIT
CLOCK
CC CUT BACK
1.70 V - 0.9 V
ADJ
DCMAX
S
Q
R
Q
OSCILLATOR
POWER
DOWN
COUNTER
160 fOSC
CYCLES
SYSTEM
POWER
DOWN/
RESTART
EVENT
COUNTER
RESET
LEADING
EDGE
BLANKING
PU
PI-5509-111810
Figure 2
SOURCE
(S)
Functional Block Diagram.
Pin Functional Description
DRAIN (D) Pin:
The power MOSFET drain connection provides internal
operating current for both startup and steady-state operation.
BYPASS/MULTI-FUNCTIONAL PROGRAMMABLE (BP/M) Pin:
An external bypass capacitor for the internally generated 5.85 V
supply is connected to this pin. The value of capacitor
establishes the power down period. The minimum value of
capacitor is 0.1 mF. An overvoltage protection disables the
switching if the current into the pin exceeds 6.5 mA (ISD).
FEEDBACK (FB) Pin:
During normal operation, switching of the power MOSFET is
controlled by this pin. MOSFET switching is disabled when a
voltage greater than an internal VFB reference voltage is applied
to the FEEDBACK pin.
D Package (SO-8C)
BP/M
FB
1
8
2
7
6
D
4
5
S
S
S
S
PI-5507-060210
Figure 3. Pin Configuration.
The VFB reference voltage is internally adjusted from 1.70 V at full
load to 1.37 V at no-load in CV mode, and 1.70 V to 0.9 V in CC
mode. Below 0.9 V the part enters auto-restart operation.
SOURCE (S) Pin:
This pin is the power MOSFET source connection. It is also the
ground reference for the BYPASS and FEEDBACK pins.
2
Rev. B 12/07/10
www.powerint.com
LNK574
LinkZero-LP Functional Description
LinkZero-LP comprises a 700 V power MOSFET switch with a
power supply controller on the same die. Unlike conventional
PWM (pulse width modulation) controllers, it uses a simple ON/
OFF control to regulate the output voltage. The controller
consists of the following circuits, an oscillator, feedback (sense)
5.85 V regulator, BYPASS pin under/overvoltage protection,
over-temperature protection, frequency jittering, current limit,
leading edge blanking BYPASS pin clamp in power down and
bypass mode. The controller includes a proprietary power
down mode that automatically reduces standby consumption to
levels that are immeasurable on most power meters.
sampled at the beginning of each cycle. If high, the power
MOSFET is turned on for that cycle (enabled), otherwise the
power MOSFET remains off (disabled). Since the sampling is
done only at the beginning of each cycle, subsequent changes
in the FEEDBACK pin voltage during the remainder of the cycle
are ignored.
Feedback Input CC Mode
When the FEEDBACK pin voltage at full load falls below 1.70 V,
the oscillator frequency linearly reduces to typically 43% at the
auto-restart threshold voltage of 0.9 V. This function limits the
power supply output power at output voltages below the rated
voltage regulation threshold VR (see Figure 1).
Power Down Mode
The device enters into power down mode (where MOSFET
switching is disabled) when the total load (power supply output
plus bias winding loads) has reduced to ~0.6% of full load. The
internal controller detects this condition by sensing when 160
cycles have been skipped twice with only one active switching
cycle in between the two sets of 160 skipped switching cycles.
During the power down period the BYPASS pin capacitor will
discharge from 5.85 V down to about 3 V at which point the
LinkZero-LP will wake up and charge the BYPASS pin back up
to 5.85 V. The wake up frequency is determined by the user
through the choice of the BYPASS pin capacitor value (see
Figure 22 for BYPASS pin capacitor choice). Once the BYPASS
pin has recharged 5.85 V LinkZero-LP senses if the load
condition has changed or not, if not the LinkZero-LP will enter
into a new power down cycle or otherwise resumes normal
operation (See Applications Example section for more details of
power down mode operation).
5.85 V Regulator
The BYPASS pin voltage is regulated by drawing a current from
the DRAIN whenever the MOSFET is off if needed to charge up
the BYPASS pin to a typical voltage of 5.85 V. When the
MOSFET is on, LinkZero-LP runs off of the energy stored in the
bypass capacitor. Extremely low power consumption of the
internal circuitry allows LinkZero-LP to operate continuously
from the current drawn from the DRAIN pin. A bypass
capacitor value of 0.1 µF is sufficient for both high frequency
decoupling and energy storage.
Oscillator
The typical oscillator frequency is internally set to an average of
100 kHz. An internal circuit senses the on-time of the MOSFET
switch and adjusts the oscillator frequency so that at large duty
cycle (low line voltage) the frequency is about 100 kHz and at
small duty cycle (high line voltage) the oscillator frequency is
about 78 kHz. This internal frequency adjustment is used to
make the peak power point constant over line voltage. Two
signals are generated from the oscillator: the maximum duty
cycle signal (DCMAX) and the clock signal that indicates the
beginning of a switching cycle.
The 6.5 V shunt regulator is only active in normal operation, and
when in power down mode a clamp at a higher voltage (typical
8.5 V) will clamp the BYPASS pin.
The oscillator incorporates circuitry that introduces a small
amount of frequency jitter, typically 6% of the switching frequency,
to minimize EMI. The modulation rate of the frequency jitter is
set to 1 kHz to optimize EMI reduction for both average and
quasi-peak emissions. The frequency jitter, which is proportional
to the oscillator frequency, should be measured with the
oscilloscope triggered at the falling edge of the drain voltage
waveform. The oscillator frequency is linearly reduced when the
FEEDBACK pin voltage is lowered from 1.70 V down to 1.37 V.
Feedback Input Circuit CV Mode
The feedback input circuit reference is set at 1.70 V at full load
and gradually reduces down to 1.37 V at no-load. When the
FEEDBACK pin voltage reaches a VFB reference voltage (1.70 V
to 1.37 V) depending on the load, a low logic level (disable) is
generated at the output of the feedback circuit. This output is
6.5 V Shunt Regulator and 8.5 V Clamp
In addition, there is a shunt regulator that helps maintain the
BYPASS pin at 6.5 V when current is provided to the BYPASS
pin externally. This facilitates powering the device externally
through a resistor from the bias winding or power supply output
in non-isolated designs, to decrease device dissipation and
increase power supply efficiency.
BYPASS Pin Undervoltage Protection
The BYPASS pin undervoltage circuitry disables the power
MOSFET when the BYPASS pin voltage drops below 4.85 V.
Once the BYPASS pin voltage drops below 4.85 V, it must rise
back to 5.85 V to enable (turn on) the power MOSFET.
BYPASS Pin Overvoltage Protection
If the BYPASS pin gets pulled above 6.5 V (BPSHUNT )and the
current into the shunt exceeds 6.5 mA a latch will be set and
the power MOSFET will stop switching. To reset the latch the
BYPASS pin has to be pulled down to below 1.5 V.
Over-Temperature Protection
The thermal shutdown circuit senses the die temperature. The
threshold is set at 142 °C typical with a 70 °C hysteresis. When
the die temperature rises above this threshold (142 °C) the power
MOSFET is disabled and remains disabled until the die temperature
falls by 70 °C, at which point the MOSFET is re-enabled.
Current Limit
The current limit circuit senses the current in the power MOSFET.
When this current exceeds the internal threshold (ILIMIT ), the
power MOSFET is turned off for the remaining of that cycle.
The leading edge blanking circuit inhibits the current limit
3
www.powerint.com
Rev. B 12/07/10
LNK574
comparator for a short time (tLEB) after the power MOSFET is
turned on. This leading edge blanking time has been set so
that current spikes caused by capacitance and rectifier reverse
recovery time will not cause premature termination of the
MOSFET conduction.
Wire-wound types are recommended for designs that operate
≥132 VAC to withstand the instantaneous power when AC is
first applied as C1 and C2 charge.
The power supply utilizes simplified bias winding voltage
feedback, enabled by the LinkZero-LP ON/OFF control. The
voltage across C5 is determined by the FEEDBACK pin
reference voltage and the resistor divider formed by R3 and R4.
Capacitor C4 provides high frequency filtering on the FEEDBACK
pin to avoid switching cycle pulse bunching. The FEEDBACK
pin reference voltage, which varies with load, is set to 1.37 V at
no-load and gradually increases to 1.70 V at full load to provide
cable drop compensation. In the constant voltage (CV) region,
the LinkZero-LP device enables/disables switching cycles to
maintain the FEEDBACK pin reference voltage. Diode D6 and
low cost ceramic capacitor C5 provide rectification and filtering
of the primary feedback winding waveform. At increased loads,
beyond the maximum power threshold, the IC transitions into
the constant current (CC) region. In this region, the FEEDBACK
pin voltage begins to reduce as the power supply output voltage
falls. In order to maintain a constant output current, the internal
oscillator frequency is reduced in this region until it reaches
typically 48% of the starting frequency. When the FEEDBACK
pin voltage drops below the auto-restart threshold (typically
0.9 V on the FEEDBACK pin), the power supply enters the
auto-restart mode. In this mode, the power supply will turn off
for 1.2 s and then turn back on for 170 ms. The auto-restart
function reduces the average output current during an output
short-circuit condition.
Auto-Restart
In the event of a fault condition such as output short-circuit,
LinkZero-LP enters into auto-restart operation. An internal
counter clocked by the oscillator gets reset every time the
FEEDBACK pin voltage exceeds the FEEDBACK pin autorestart threshold voltage (VFB(AR) typical 0.9 V). If the FEEDBACK
pin voltage drops below VFB(AR) for more than 145 ms to 170 ms
depending on the line voltage, the power MOSFET switching is
disabled. The auto-restart alternately enables and disables the
switching of the power MOSFET at a duty cycle of typically 12%
until the fault condition is removed.
Open Loop Condition on the FEEDBACK Pin
When an open loop condition on the FEEDBACK pin is detected,
an internal pull up current source pulls the FEEDBACK pin up to
above 1.70 V and LinkZero-LP stops switching after 160 clock
cycles.
Applications Example
The circuit shown in Figure 4 is a typical isolated zero no-load 6 V,
350 mA, constant voltage, and constant current (CV/CC) output
power supply using LinkZero-LP.
AC input differential filtering is accomplished by the π filter formed
by C1, C2 and L1. The proprietary frequency jitter feature of the
LinkZero-LP eliminates the need for any Y capacitor or commonmode inductor. Wire-wound resistor RF1 is a fusible, flame proof
resistor which is used as a fuse as well as to limit inrush current.
The LinkZero-LP device is self biased through the DRAIN pin.
However, to improve efficiency at high line, an external bias may
be added using optional components diode D5 and resistor R2.
The power down (PD) mode duty cycle and the no-load power
C6
R5 220 pF
5.1 Ω 100 V
5
D1
1N4007
D2
1N4007
6 V, 350 mA
9
4
8
NC
RF1
10 Ω
2W
C7
330 µF
16 V
D7
SS15
RTN
2
1
C1
3.3 µF
400 V
85 - 265
VAC
D3
1N4007
D4
1N4007
R1
4.7 kΩ
T1
EF16
C2
3.3 µF
400 V
D
LinkZero-LP
U1
LNK574DG
FB
D5
1N4148
R2
82 kΩ
R3
113 kΩ
1%
C5
220 nF
50 V
D6
DL4003
BP/M
S
L1
1.0 mH
C3
220 nF
50 V
R4
9.09 kΩ
1%
C4
1 nF
50 V
PI-6086-072110
Figure 4. Schematic of 2.1 W, 6 V, 350 mA, 0.00 W Adapter/Charger.
4
Rev. B 12/07/10
www.powerint.com
LNK574
consumption is determined by the BYPASS pin capacitor C3.
No-load power consumption can be reduced by a capacitor
with higher value. Higher C3 capacitor values will tend to
increase the output ripple in PD mode - See LinkZero-LP
Design Considerations section below.
A clampless primary circuit is achieved due to the very tight
tolerance current limit trimming techniques used in manufacturing
the LinkZero-LP, plus the transformer construction techniques
used. The peak drain voltage is therefore limited to typically
less than 550 V at 265 VAC, providing significant margin to the
700 V minimum drain voltage specification (BVDSS).
When the LinkZero-LP is in PD mode, the time taken for the
BYPASS pin voltage to discharge to VBPPDRESET (~3 V) determines
the duration of the PD off-time. The duration of the PD off time
also determines the ripple on the output voltage.
Output rectification and filtering is achieved with output rectifier
D7 and filter capacitor C7. Due to the auto-restart feature, the
average short circuit output current is significantly less than 1 A,
allowing low current rating and low cost rectifier D7 to be used.
Output circuitry is designed to handle a continuous short circuit
on the power supply output. Although not necessary in this
design, a preload resistor may be used at the output of the
supply to reduce output voltage at no-load.
In either case, C5 is completely discharged through R3 and R4
during the PD off time (D5 prevents the BYPASS capacitor C3
being discharged through this path). C5 is therefore kept as
small as possible to reduce the power supply no-load input
power consumption associated with recharging this capacitor
at the start of the next PD on time. The minimum value of C5 is
determined by the time constant set up with the feedback
resistors R3 and R4 to avoid excessive cycle by cycle ripple on
C5 influencing the output voltage regulation. The typical choice
for C5 is between 100 nF and 330 nF.
LinkZero-LP Power Down (PD) Mode Design
Considerations
The LinkZero-LP goes into PD mode when the output power
supply load is reduced enough that 160 consecutive switching
cycles are skipped twice with only one active switching cycle in
between the two sets of 160 skipped switching cycles. This
corresponds to ~0.6% of the full load power capability of the
LinkZero-LP.
Even when the power supply output load is completely removed,
any preload resistor on the output and the components
connected to the bias winding still represent a load on the
transformer. The feedback circuitry connected to the bias winding
should therefore be designed to represent <0.6% of the power
supply full load. Otherwise LinkZero-LP will not be able to
detect a no-load condition on the output and will not enter PD
mode thereby disabling the benefit of zero no-load input power.
In the case of the design of Figure 4, the power supply full load
output power is 2.1 W (6 V, 350 mA). The bias winding load
should therefore be designed to be <<0.6% of this (<12.6 mW). In
the example of Figure 4, the average no-load voltage across
bias winding capacitor C5 is approximately 20 V. The loading of
R3, R4 and R2 (if used) should therefore be chosen to present
<12.6 mW load with this bias voltage. In the case shown, the R2
path consumes ~3.3 mW and R3 and R4 also consumes ~3.3 mW.
So the total consumption of 6.6 mW meets the criteria necessary
to ensure the power supply will enter PD mode when the power
supply load is removed. Adjusting the power consumption of
the circuitry connected to the bias winding can therefore be
used to adjust the power supply output power threshold at
which the LinkZero-LP goes into PD mode.
It can be seen therefore that, if desired, PD mode can be
avoided altogether simply by adding a preload resistor on the
output of the power supply or increasing the load on the bias
winding to >0.6% (plus margin) of the power supply maximum
power capability.
If components D5 and R2 are not used in Figure 4, this time is
determined purely by the choice of C3. If however D5 and R2
are used to provide an external BYPASS pin supply, then a
combination of the energy stored in C5 and C3 determine the
PD off time before the BYPASS pin voltage reaches the VBP(PU)
(~3 V).
When D5 and R2 are used, the minimum value of bias winding
capacitor C5 is again governed by voltage regulation performance
so the value of BYPASS pin capacitor C3 is typically reduced to
reduce PD off time period if required. A minimum C3 value of
47 nF is recommended.
PCB Layout Considerations
LinkZero-LP Layout Considerations
Layout
See Figure 5 for a recommended circuit board layout for
LinkZero-LP (U1).
Single Point Grounding
Use a single point ground (Kelvin) connection from the input
filter capacitor to the area of copper connected to the SOURCE
pins.
Bypass Capacitor (CBP), FEEDBACK Pin Noise Filter
Capacitor (CFB) and Feedback Resistors
To minimize loop area, these two capacitors should be physically
located as near as possible to the BYPASS and SOURCE pins,
and FEEDBACK pin and SOURCE pins respectively. Also note
that to minimize noise pickup, feedback resistors RFB1 and RFB2
are placed close to the FEEDBACK pin.
Primary Loop Area
The area of the primary loop that connects the input filter
capacitor, transformer primary and LinkZero-LP should be kept
as small as possible.
Primary Clamp Circuit
An external clamp may be used to limit peak voltage on the
DRAIN pin at turn off. This can be achieved by using an RCD
clamp or a Zener (~200 V) and diode clamp across the primary
winding. In all cases, to minimize EMI, care should be taken to
minimize the circuit path from the clamp components to the
transformer and LinkZero-LP (U1).
5
www.powerint.com
Rev. B 12/07/10
LNK574
DB
CB
RS
CS
DBP
RBP
DO
RFB2
CFB
CO
CBP
RFB1
R6
Transformer
U1
J3
–
HV DC
IN
T1
+
–
+
LV DC
OUT
PI-6098-092410
Figure 5. PCB Layout of a 2.1 W, 6 V, 350 mA Charger.
Thermal Considerations
The copper area underneath the LinkZero-LP (U1) acts not only
as a single point ground, but also as a heatsink. As it is
connected to the quiet source node, this area should be
maximized for good heat sinking of U1. The same applies to
the cathode of the output diode.
Y Capacitor
The placement of the Y-type capacitor (if used) should be
directly from the primary input filter capacitor positive terminal to
the common/return terminal of the transformer secondary.
Such a placement will route high magnitude common-mode
surge currents away from U1. Note: If an input π EMI filter is
used, the inductor in the π filter should be placed between the
negative terminals on the input filter capacitors.
Output Diode (DO)
For best performance, the area of the loop connecting the
secondary winding, the output diode (DO) and the output filter
capacitor (CO)should be minimized. In addition, sufficient
copper area should be provided at the anode and cathode
terminals of the diode for heat sinking. A larger area is preferred
at the electrically “quiet” cathode terminal. A large anode area
can increase high frequency conducted and radiated EMI.
Resistor RS and CS represent the secondary side RC snubber.
Quick Design Checklist
The following minimum set of tests is strongly recommended:
1. Maximum drain voltage – Verify that VDS does not exceed
660 V at the highest input voltage and peak (overload) output
power. This margin to the 700 V BVDSS specification gives
margin for design variation, especially in clampless designs.
2. Maximum drain current – At maximum ambient temperature,
maximum input voltage and peak output (overload) power,
verify drain current waveforms for any signs of transformer
saturation and excessive leading-edge current spikes at
startup. Repeat under steady state conditions and verify that
the leading-edge current spike event is below ILIMIT(MIN) at the
end of the tLEB(MIN). Under all conditions, the maximum drain
current should be below the specified absolute maximum
ratings.
3. Thermal check – At specified maximum output power,
minimum input voltage and maximum ambient temperature,
verify that the temperature specifications are not exceeded
for LinkZero-LP, transformer, output diode and output
capacitors. Enough thermal margin should be allowed for
part-to-part variation of the RDS(ON) of LinkZero-LP as specified in the data sheet. Under low line and maximum power,
maximum LinkZero-LP source pin temperature of 100 °C is
recommended to allow for these variations.
4. Negative drain voltages – clampless designs may allow the
drain voltage to ring below source and cause reverse
currents to flow from source to drain. Verify that any such
current remains within the envelope shown in Figure 9.
As with any power supply design, all LinkZero-LP designs
should be verified on the bench to make sure that component
specifications are not exceeded under worst-case conditions.
6
Rev. B 12/07/10
www.powerint.com
LNK574
Absolute Maximum Ratings(1,6)
DRAIN Voltage ............................................ ..............-0.3 V to 700 V
Peak DRAIN Current LNK574...............................200 (375) mA(2)
Peak Negative Pulsed Drain Current ............................. -100 mA(3)
Feedback Voltage ......................................................... -0.3 V to 9 V
Feedback Current ................................................................ 100 mA
BYPASS Pin Voltage .................................................... -0.3 V to 9 V
BYPASS Pin Voltage in Power Down Mode......... -0.3 V to 11 V(7)
Storage Temperature ............................................ -65 °C to 150 °C
Operating Junction Temperature...................... -40 °C to 150 °C(4)
Lead Temperature ................................................................ 260 °C(5)
Notes:
1. All voltages referenced to SOURCE, TA = 25 °C.
2. Higher peak DRAIN current allowed while DRAIN source voltage does not exceed 400 V.
3. Duration not to exceed 2 ms.
4. Normally limited by internal circuitry.
5. 1/16 in. from case for 5 seconds.
6. Maximum ratings specified may be applied, one at a time without causing permanent damage to the product. Exposure to Absolute Maximum ratings for extended
periods of time may affect product reliability.
7. Maximum current into pin is 300 mA.
Thermal Resistance
Thermal Resistance: D Package:
(qJA) ..................................100 °C/W(2); 80 °C/W(3)
(qJC) ..........................................................30 °C/W(1)
Parameter
Notes:
1. Measured on the SOURCE pin close to plastic interface.
2. Soldered to 0.36 sq. in. (232 mm2), 2 oz. copper clad.
3. Soldered to 1 sq. in. (645 mm2), 2 oz. copper clad.
Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
Units
fOSC
TJ = 25 °C
VFB = 1.70 V, See Note C
93
100
107
kHz
Control Functions
Output Frequency
Frequency Jitter
Peak-Peak Jitter Compared to
Average Frequency, TJ = 25 °C
±3
%
TJ = 25 °C
VFB = VFB(AR)
See Note B
43
%
%
Ratio of Output
Frequency at
Auto-Restart to fOSC
fOSC(AR)
fOSC
Maximum Duty Cycle
DCMAX
60
63
FEEDBACK Pin
Voltage at No Skipped
Cycles
VFB
1.63
1.70
FEEDBACK Pin
Voltage at 99.4%
Skipped Cycles
VFB(NL)
FEEDBACK Pin
Voltage at AutoRestart
VFB(AR)
1.77
1.37
0.8
0.9
V
V
1.05
V
7
www.powerint.com
Rev. B 12/07/10
LNK574
Parameter
Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
Units
Control Functions (cont.)
Minimum Switch
ON-Time
tON(MIN)
BYPASS Pin Voltage
BYPASS Pin
Voltage Hysteresis
BYPASS Pin
Shunt Voltage
ns
IS1
FeedBack Voltage > VFB
(MOSFET not Switching)
150
200
260
IS2
0.9 V ≤ VFB ≤ 1.70 V
(MOSFET Switching)
200
250
310
ICH1
VBP = 0 V, TJ = 25 °C
-5.5
-3.8
-1.8
ICH2
VBP = 4 V, TJ = 25 °C
-3.8
-2.5
-1.0
VBP
5.60
5.85
6.10
V
VBP(H)
0.8
1.0
1.2
V
BPSHUNT
6.1
6.5
6.9
V
DRAIN Supply Current
BYPASS Pin
Charge Current
700
mA
mA
Circuit Protection
ILIMIT
di/dt = 40 mA/ms
TJ = 25 °C
126
136
146
mA
Power Coefficient
I2f
di/dt = 40 mA/ms
TJ = 25 °C
1665
1850
2091
A2Hz
Leading Edge
Blanking Time
tLEB
TJ = 25 °C
220
265
BYPASS Pin Shutdown
Threshold Current
ISD
VBP = BPSHUNT
See Note E
5.0
6.5
8.0
mA
Thermal Shutdown
Temperature
TSD
See Note B
135
142
150
°C
Thermal Shutdown
Hysteresis
TSD(H)
See Note B
70
Off-State Drain Leakage
in Power Down Mode
IDSS(PD)
TJ = 25 °C,
VDRAIN = 325 V
See Figure 23
6.5
9
mA
BYPASS Pin Overvoltage
Protection in Power
Down Mode
VBP(PDP)
IBP = 300 mA
TJ ≤ 100 °C
7.25
8.5
10.9
V
BYPASS Pin Power Up
Reset Threshold (in
Power Down Mode or at
Power Supply Start-up)
VBP(PU)
1.5
3
4
V
Current Limit
ns
°C
Power Down (PD) Mode
8
Rev. B 12/07/10
www.powerint.com
LNK574
Parameter
Symbol
Conditions
SOURCE = 0 V; TJ = -40 to 125 °C
(Unless Otherwise Specified)
Min
Typ
Max
TJ = 25 °C
48
55
TJ = 100 °C
76
88
Units
Output
ON-State
Resistance
RDS(ON)
Breakdown
Voltage
BVDSS
ID = 13 mA
VBP = 6.2 V, TJ = 25 °C
DRAIN Supply
Voltage
Auto-Restart
ON-Time
tAR
Auto-Restart
OFF-Time
Output Enable Delay
700
V
50
V
VIN = 85 VAC, TJ = 25 °C,
See Note D
tEN
W
See Figure 8
145
ms
1.0
s
14
ms
NOTES:
A. IDSS is the worse case off state leakage specification at 80% of BVDSS and maximum operating junction temperature.
B. This parameter is derived from characterization.
C. Output frequency specification applies to low line input voltage in the final application. The controller is designed to reduce output
frequency by approximately 20% at high line input voltages to balance low line and high line maximum output power.
D. The auto-restart on-time/off-time is increased by 20% at high line input 265 VAC.
E. LinkZero-LP shuts down if current into BYPASS pin reaches ISD at BPSHUNT voltage.
9
www.powerint.com
Rev. B 12/07/10
LNK574
BP/M
S
FB
S
S
0-2 V
0.1 µF
S1
D
470 Ω
5W
S
50 V
PI-6067-072110
Figure 6. General Test Circuit.
DCMAX
(internal signal)
tP
FB
tEN
VDRAIN
tP =
1
fOSC
PI-3707-112503
Figure 8. Output Enable Timing.
PI-4021-101305
DRAIN Current (mA)
Figure 7. Duty Cycle Measurement.
100
2 ms
0
-100
Time (ms)
Figure 9. Peak Negative Pulsed DRAIN Current Waveform.
10
Rev. B 12/07/10
www.powerint.com
LNK574
Typical Performance Characteristics
1.0
0.9
-50 -25
0
25
50
PI-6065-071910
1.2
Output Frequency
(Normalized to 25 °C)
PI-2213-012301
Breakdown Voltage
(Normalized to 25 °C)
1.1
1.0
0.8
0.6
0.4
0.2
0
75 100 125 150
-50
-25
Junction Temperature (°C)
25
50
75
100 125
Junction Temperature (°C)
Figure 10. Breakdown vs. Temperature.
Figure 11. Frequency vs. Temperature.
1.0
0.8
PI-4057-071905
Current Limit
(Normalized to 25 °C)
1.2
1.1
FEEDBACK Pin Voltage
(Normalized to 25 °C)
PI-6066-071910
1.4
1.0
0.6
0.4
0.2
0.9
0
0
50
100
-50 -25
150
0
25
50
75 100 125 150
Temperature (°C)
Temperature (°C)
Figure 12. Current Limit vs. Temperature.
Figure 13. FEEDBACK Pin Voltage vs. Temperature.
6
5
4
3
2
1
200
175
DRAIN Current (mA)
PI-2240-012301
7
PI-3927-083104
-50
BYPASS Pin Voltage (V)
0
25 °C
150
100 °C
125
100
75
50
25
0
0
0
0.2
0.4
0.6
0.8
Time (ms)
Figure 14. BYPASS Pin Start-up Waveform (CBP = 0.22 mF).
1.0
0
2
4
6
8 10 12 14 16 18 20
DRAIN Voltage (V)
Figure 15. Output Characteristics.
11
www.powerint.com
Rev. B 12/07/10
LNK574
Typical Performance Characteristics (cont.)
100
Frequency (kHz)
100
10
PI-6068-071910
110
PI-3928-083104
Drain Capacitance (pF)
1000
90
80
70
1
60
0
100
200
300
400
500
0
600
10
20
Drain Voltage (V)
60
1.5
1.4
70
40
30
20
10
0
-10
-20
-30
0 10 20 30 40 50 60 70 80 90 100
0.0
Output Load (%)
-6
-8
-10
-12
-14
-16
-18
-20
3.0
4.0
5.0
6.0
7.0
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
PI-6072-072110
FEEDBACK Pin Current (µA)
-4
2.0
Figure 19. FEEDBACK Pin Input Characteristics.
PI-6071-072110
-2
1.0
FEEDBACK Pin Voltage (V)
Figure 18. FEEDBACK Pin Regulation Voltage Threshold vs.
Output Load in CV Mode.
0
PI-6070-072110
FEEDBACK Pin Current (µA)
1.6
50
1.3
FEEDBACK Pin Current (µA)
50
Figure 17. Frequency Reduction vs. Duty Cycle (Line Voltage).
PI-6069-072110
FEEDBACK Pin Voltage (V)
1.7
40
Duty Cycle (%)
Figure 16. CDSS vs. Drain Voltage.
1.8
30
Auto-Restart
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FEEDBACK Pin Voltage (V)
Frequency Normalized to 1
Figure 20. FEEDBACK Pin Input Characteristics in CC Mode
(1.7 V to 0.9 V).
Figure 21. Frequency Cut Back in CC Mode Normalized to 1.
12
Rev. B 12/07/10
www.powerint.com
LNK574
Typical Performance Characteristics (cont.)
0.9
9
Drain Current (µA)
0.8
0.7
0.6
0.5
0.4
0.3
8
7
6
5
4
3
0.2
2
0.1
1
0
PI-6111-081810
10
PI-6110-112310
BYPASS Pin Capacitor (µF)
1
0
0
200 400 600 800 1000 1200 1400
Power Down Off-Time (ms)
Figure 22. Power Down Off-Time vs. BYPASS Pin Capacitor.
VBP Start at 5.85 V (Temperature = 25 °C)
-50
-25
0
25
50
75
100 125
Temperature (°C)
Figure 23. Typical Drain Current vs. Temperature in
Power Down Mode.
13
www.powerint.com
Rev. B 12/07/10
LNK574
SO-8C (D Package)
4
B
0.10 (0.004) C A-B 2X
2
DETAIL A
4.90 (0.193) BSC
A
4
8
D
5
2 3.90 (0.154) BSC
GAUGE
PLANE
SEATING
PLANE
6.00 (0.236) BSC
C
0-8
1.04 (0.041) REF
0.10 (0.004) C D
2X
1
Pin 1 ID
4
0.25 (0.010)
BSC
0.40 (0.016)
1.27 (0.050)
0.20 (0.008) C
2X
7X 0.31 - 0.51 (0.012 - 0.020)
0.25 (0.010) M C A-B D
1.27 (0.050) BSC
1.25 - 1.65
(0.049 - 0.065)
1.35 (0.053)
1.75 (0.069)
o
DETAIL A
0.10 (0.004)
0.25 (0.010)
0.10 (0.004) C
H
7X
SEATING PLANE
0.17 (0.007)
0.25 (0.010)
C
Reference
Solder Pad
Dimensions
+
2.00 (0.079)
+
D07C
4.90 (0.193)
+
+
1.27 (0.050)
Notes:
1. JEDEC reference: MS-012.
2. Package outline exclusive of mold flash and metal burr.
3. Package outline inclusive of plating thickness.
4. Datums A and B to be determined at datum plane H.
5. Controlling dimensions are in millimeters. Inch dimensions
are shown in parenthesis. Angles in degrees.
0.60 (0.024)
PI-4526-040110
Part Ordering Information
• LinkZero Product Family
• LinkZero-LP Series Number
• Package Identifier
D
Plastic SO-8C
• Package Material
G
GREEN: Halogen Free and RoHS Compliant
• Tape & Reel and Other Options
Blank
LNK 574
D G - TL
TL
Standard Configurations
Tape & Reel, 2.5 k pcs minimum for D Package. Not available for P Package.
14
Rev. B 12/07/10
www.powerint.com
LNK574
Notes
15
www.powerint.com
Rev. B 12/07/10
Revision
Notes
Date
A
Internal release.
10/12/10
B
Updated text and parameter tables.
12/07/10
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES
NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
Patent Information
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by
one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at http://www.powerint.com/ip.htm.
Life Support Policy
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant
injury or death to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or effectiveness.
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CPAZero, SENZero, EcoSmart, Clampless, E-Shield, Filterfuse,
StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies.
©2010, Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
World Headquarters
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: [email protected]
China (Shanghai)
Room 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: [email protected]
China (Shenzhen)
Rm A, B & C 4th Floor, Block C,
Electronics Science and
Technology Bldg., 2070
Shennan Zhong Rd,
Shenzhen, Guangdong,
China, 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: [email protected]
Germany
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3910
Fax: +49-89-5527-3920
e-mail: [email protected]
India
#1, 14th Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail: [email protected]
Italy
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail: [email protected]
Japan
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama,
Kohoku-ku
Yokohama-shi Kanagwan
222-0033 Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
Korea
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
Taiwan
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, Taiwan 114, R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail: [email protected]
Europe HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail: [email protected]
Applications Hotline
World Wide +1-408-414-9660
Singapore
51 Newton Road
Applications Fax
#15-08/10 Goldhill Plaza
World Wide +1-408-414-9760
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail: [email protected]
Design Example Report
Title
<5 mW No-load Input Power, 2.1 W CV/CC
Charger Using LinkZeroTM-LP LNK574DG
Specification 85 VAC – 265 VAC Input; 6 V, 0.35 A Output
Application
LinkZero-LP Reference Design
Author
Applications Engineering Department
Document
Number
DER-258
Date
December 7, 2010
Revision
1.2
Summary and Features





Ultra low no-load consumption, <5 mW at 230 VAC
Primary side CV/CC controller eliminates secondary side control and optocoupler, provides
low cost, low part count solution.
EcoSmartTM – 70% average efficiency, exceeds standards requirement of 67%, and
thus meets all existing and proposed harmonized energy efficiency standards
including: CECP (China), CEC, EPA, AGO, European Commission
FEEDBACK pin reference voltage varies with output load to provide excellent cross
regulation as well as cable drop compensation.
Meets EN550022 and CISPR-22 Class B conducted EMI with 10 dB margin.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at <http://www.powerint.com/ip.htm>.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
Table of Contents
1
2
3
4
Introduction.................................................................................................................3
Power Supply Specification ........................................................................................4
Circuit Diagram...........................................................................................................5
Circuit Description ......................................................................................................6
4.1
Input Rectification and Filtering ...........................................................................6
4.2
LinkZero-LP Primary ...........................................................................................6
4.3
Design of External Bias for LinkZero-LP..............................................................6
4.4
Primary Clamp and Transformer Construction ....................................................6
4.5
Output Rectification .............................................................................................7
4.6
Ultra-low No-load Input Power.............................................................................7
5 PCB Layout ................................................................................................................8
6 Bill of Materials ...........................................................................................................9
7 Transformer Specification.........................................................................................10
7.1
Electrical Diagram .............................................................................................10
7.2
Electrical Specifications.....................................................................................10
7.3
Materials............................................................................................................10
7.4
Transformer Build Diagram ...............................................................................11
7.5
Transformer Construction..................................................................................11
8 Transformer Design Spreadsheet.............................................................................12
9 Performance Data ....................................................................................................14
9.1
Efficiency ...........................................................................................................14
9.2
Active Mode CEC Measurement Data...............................................................15
9.2.1
USA Energy Independence and Security Act 2007 ....................................16
9.2.2
ENERGY STAR EPS Version 2.0 ..............................................................16
9.3
No-load Input Power..........................................................................................17
9.4
Available Standby Output Power.......................................................................18
9.5
Line and Load Regulation..................................................................................19
10
Thermal Performance ...........................................................................................20
11
Waveforms............................................................................................................21
11.1 Drain Voltage and Current, Normal Operation...................................................21
11.2 Output Voltage Start-Up Profile .........................................................................21
11.3 Drain Voltage and Current Start-Up Profile .......................................................22
11.4 Load Transient Response .................................................................................23
11.5 Output Ripple Measurements............................................................................24
11.5.1 Ripple Measurement Technique ................................................................24
11.5.2 Measurement Results ................................................................................25
12
Conducted EMI .....................................................................................................26
13
Statistical Data for the Design...............................................................................28
14
Revision History ....................................................................................................29
Important Note:
Although this board was designed to satisfy safety isolation requirements, it has not been
agency approved. Therefore, all testing should be performed using an isolation
transformer to provide the AC input to the power supply.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 30
07-Dec-10
DER-258 2.1 W Universal Input Charger
1 Introduction
This report describes a universal input, 6 V, 350 mA flyback power supply using a
LNK574DG device from the LinkZero-LP family of ICs. It contains the complete
specification of the power supply, a detailed circuit diagram, the entire bill of materials
required to build the supply, extensive documentation of the power transformer, along
with test data and oscillographs of important electrical waveforms.
Figure 1 – Populated Circuit Board Photographs.
Page 3 of 30
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
2 Power Supply Specification
The table below represents the minimum acceptable performance of the design. Actual
performance is listed in the results section.
Description
Input
Voltage
Frequency
No-load Input Power
Output
Output Voltage
Output Ripple Voltage
Output Current
Total Output Power
Continuous Output Power
Efficiency
Average efficiency
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
85
47
265
64
5
VAC
Hz
mW
2 Wire – no P.E.
50/60
See V-I Curves, Figure 9, for limits
200
VOUT
VRIPPLE
IOUT
350
V
mV
mA
POUT
2.1
W
70
%

6
67
230 VAC
20 MHz bandwidth
Environmental
Conducted EMI
Meets CISPR22B / EN55015B
Designed to meet IEC950, UL1950
Class II
Safety
Surge
Ambient Temperature
DM
0.5
kV
CM
1
kV
TAMB
-5
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
40
o
C
1.2/50 s surge, IEC 1000-4-5,
Series Impedance:
Differential Mode: 2 
Common Mode: 12 
Free convection, sea level
Page 4 of 30
07-Dec-10
DER-258 2.1 W Universal Input Charger
3 Circuit Diagram
Figure 2 – Schematic.
Page 5 of 30
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
4 Circuit Description
This flyback power supply was designed around the LNK574DG, U1 in Figure 2. The
output voltage is sensed through the bias winding and fed back to U1 through resistor
divider R3 and R4. That feedback is used by U1 to maintain Constant Voltage (CV)
regulation of the output.
4.1 Input Rectification and Filtering
Diodes D1-D4 rectifies the AC input which is then filtered by capacitors C1 and C2.
Inductor L1, C1 and C2 form a pi (π) filter that attenuates differential mode conducted
EMI. Resistor R1 provides high frequency damping. Shielding techniques (E-Shield™)
were used in the construction of T1 to reduce common mode EMI displacement currents.
This filter arrangement, the proprietary E-Shield techniques together with the IC
frequency jitter function provide excellent EMI performance even without a Y capacitor or
clamp network on the primary side.
4.2 LinkZero-LP Primary
The power supply utilizes simplified bias winding voltage feedback, enabled by
LNK574DG ON/OFF control. The voltage across C5 is determined by the FEEDBACK
(FB) pin reference voltage and the resistor divider formed by R3 and R4. The FB pin
reference voltage, which varies with load, is set to 1.36 V at no load and gradually
increases to 1.70 V at full load to provide good output load regulation as well as cable
drop compensation. In the CV region, U1 enables/disables switching cycles to maintain
the FB pin reference voltage. Diode D6 and low cost ceramic capacitor C5 provide
rectification and filtering of the primary feedback winding waveform. At increased loads,
beyond the maximum power threshold, the IC transitions into the Constant Current (CC)
region. In this region, the FB pin voltage begins to reduce as the power supply output
voltage falls. In order to maintain a constant output current, the internal oscillator
frequency is reduced in this region until it reaches typically 48% of the starting frequency.
When the FB pin voltage drops below the auto-restart threshold (typically 0.9 V on the FB
pin), the power supply enters the auto-restart mode. In this mode, the power supply will
turn off for 1.2 s and then turn back on for 170 ms. The auto-restart function reduces the
average output current during an output short-circuit condition.
4.3 Design of External Bias for LinkZero-LP
Diode D5 and R2 form the external bias circuit and although this is not necessary for the
operation of the LinkZero-LP family, its use can help to significantly improve the average
efficiency of a power supply, especially at 230 VAC. During steady-state operation the
external bias circuit supplies the IC bias current. Resistor R2 is chosen such that the bias
winding supplies 200 A to 300 A into the BP pin.
4.4 Primary Clamp and Transformer Construction
A clampless primary circuit is achieved due to the very tight tolerance current limit
trimming techniques used in manufacturing the LNK574DG, plus the transformer
construction techniques used. Peak drain voltage is therefore limited to typically less than
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 30
07-Dec-10
DER-258 2.1 W Universal Input Charger
550 V at 265 VAC – providing significant margin to the 700 V maximum drain voltage
(BVDSS).
4.5 Output Rectification
Output rectification is provided by diode D7 and filtering is provided by capacitor C7.
Resistor R5 and capacitor C6 provide high frequency filtering for improved EMI.
4.6 Ultra-low No-load Input Power
The LinkZero-LP has a built in “power-down” (PD) mode wherein when 160 consecutive
switching cycles have been skipped, the chip goes into the PD mode and inhibits
switching and in addition, dramatically reduces its internal power consumption. The PD
mode occurs when the output load has reduced to about 0.3% of full load. During PD
mode the internal circuitry of the device completely shuts down and thus the capacitor
connected to BYPASS (BP) pin C3 is discharged from 5.8 V. The controller wakes up to
check output load conditions at a frequency determined by the user through the choice of
the BP pin capacitor value. Once the BP pin voltage reaches 3 V, U1 powers up again
and resumes switching. The no-load power consumption can be reduced further with a
higher value for BP pin capacitor C3. If the load increases such that fewer than 160
cycles were skipped, the IC resumes normal operation.
When U1 is in PD mode, the time taken for the BP pin voltage to discharge to
VBPPDRESET (~3 V) determines the duration of the PD off-time. The duration of the PD
off-time also determines the ripple on the output voltage. The total energy stored in C5
and C3 determine the PD off-time (and also the output ripple in PD mode). The typical
choice for C5 is between 100 nF and 330 nF and for C3 is between 47 nF and 470 nF.
Page 7 of 30
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
5 PCB Layout
Figure 3 – Printed Circuit Board Layout (Dimensions in Inches).
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 30
07-Dec-10
DER-258 2.1 W Universal Input Charger
6 Bill of Materials
Ref
Des
C1 C2
C3
C4
C5
C6
Item
1
2
3
4
5
Qty
2
1
1
1
1
6
1
7
8
4
1
C7
D1 D2
D3 D4
D5
9
10
11
12
13
14
15
16
17
19
20
21
1
1
1
1
1
1
1
1
1
1
1
1
D6
D7
J3
L1
R1
R2
R3
R4
R5
RF1
T1
U1
Description
3.3 F, 400 V, Electrolytic, (8 x 11.5)
220 nF, 50 V, Ceramic, X7R, 0805
1000 pF, 50 V, Ceramic, X7R, 0805
220 nF, 50 V, Ceramic, X7R, 1206
220 pF, 100 V, Ceramic, X7R, 0805
330 F, 16 V, Electrolytic, Very Low ESR,
72 M, (8 x 11.5)
Manufacturer P/N
TAQ2G3R3MK0811MLL3
GRM21BR71H224KA01L
ECJ-2VB1H102K
ECJ-3YB1H224K
ECJ-2VB2A221K
Manufacturer
Taicon Corporation
Murata
Panasonic
Panasonic
Panasonic
EKZE160ELL331MHB5D
Nippon Chemi-Con
1000 V, 1 A, Rectifier, DO-41
75 V, 300 mA, Fast Switching, DO-35
200 V, 1 A, Rectifier, Glass Passivated,
DO-213AA (MELF)
50 V, 1 A, Schottky, DO-214AC
6 ft, 26 AWG, 2.1 mm connector (custom)
1 mH, 0.15 A, Ferrite Core
4.7 k, 5%, 1/8 W, Thick Film, 0805
82 k, 5%, 1/10 W, Thick Film, 0603
113 k, 1%, 1/16 W, Thick Film, 0603
9.09 k, 1%, 1/16 W, Thick Film, 0603
5.1 , 5%, 1/8 W, Thick Film, 0805
10 , 2 W, Fusible/Flame Proof Wire Wound
Bobbin, EF16, Horizontal, 9 pins (5x4)
LinkZero-LP, LNK574DG, SO-8
1N4007-E3/54
1N4148TR
Vishay
Vishay
DL4003-13-F
SS15-TP
3PH323A0
SBCP-47HY102B
ERJ-6GEYJ472V
ERJ-3GEYJ823V
ERJ-3EKF1133V
ERJ-3EKF9091V
ERJ-6GEYJ5R1V
CRF253-4 10R
EF16HP09-QO
LNK574DG
Diodes Inc
Micro commercial Co.
Anam Instruments
Tokin
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Vitrohm
TDK
Power Integrations
Note – All parts are RoHS compliant
Page 9 of 30
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
7 Transformer Specification
7.1
Electrical Diagram
5
WD #2
Primary
WD #1
feedback
108T #35
4
2
27T #35 x2
1
WD #3
Balance
9
WD #4
9T TIW #28 x 2
8
Secondary
NC
9 T # 29 x 3
5
Figure 4 – Transformer Electrical Diagram.
7.2
Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage Inductance
7.3
1 second, 60 Hz, from pins 1-5 to pins 6-9
Pins 5-4, all other windings open, measured at
100 kHz, 0.4 VRMS
Pins 5-4, all other windings open
Pins 4-5, with pins 7-9 shorted, measured at
100kHz, 0.4 VRMS
3000 VAC
2.75 mH, 10%
520 kHz (Min.)
50 H (Max.)
Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
Description
Core: PC44 EF16-Z, TDK or equivalent gapped for AL of 235.8 nH/T2
Bobbin: EE16X16H, Horizontal 9 pin
Magnet Wire: #35 AWG
Magnet Wire: #29 AWG
Triple Insulated Wire: #28 AWG
Tape: 3M 1298 Polyester Film, 2.0 mils thick, 9.8 mm wide
Varnish
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 30
07-Dec-10
7.4
DER-258 2.1 W Universal Input Charger
Transformer Build Diagram
8
9 Secondary Winding
Balance Shield
5
NC
5
Primary Winding
4
1
2
Feedback Winding
Figure 5 – Transformer Build Diagram.
7.5
Transformer Construction
Bobbin Preparation
WD#1
Feedback
Insulation
WD#2
Primary
Insulation
WD #3
Balance Shield
Insulation
WD #4
Secondary
Insulation
Grind Core
Secure and Varnish
Page 11 of 30
Primary pin side of the bobbin orients to the left hand side.
Start on pin 2, wind 27 bifilar turns of item [3] from left to right. Wind with tight
tension across entire bobbin evenly. Finish on pin 1.
1 layer of tape [6] for insulation
Start on pin 4, wind 54 turns of item [3] from left to right. After finishing the first
layer, placing one layer of tape [6]. Continue to wind the wire from right to left with
another 54 turns. Finish on pin 5.
1 layer of tape [6] for insulation.
Start on any pin on the secondary temporarily. Wind 9 trifilar turns of item [4],
wind from right to left with tight tension uniformly, and connect end of winding to
pin 5. Cut out wire connected to secondary side and leave this end not connected
1 layer of tape [6] for insulation.
Start at pin 9, wind 9 bifilar turns of item [5] from right to left. Wind uniformly. After
finishing the 9th turn, bring the wire back and finish it on pin 8.
3 layers of tape [6] for insulation.
Grind the core to get 2.75 mH. Secure the core with tape.
Secure the core with tape. Dip varnish for 3 minutes.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
8 Transformer Design Spreadsheet
LinkZero-LP 052410;
Rev.1.0; Copyright
Power Integrations
2010
INPUT
INFO
ENTER APPLICATION VARIABLES
VACMIN
85
VACMAX
265
fL
50
VO
6.00
IO
0.32
OUTPUT
Volts
Volts
Hertz
Volts
Amps
PO
1.92
Feedback Type
BIAS
Bias
Winding
Clampless design
YES
Clamples
s
N
0.70
0.7
Z
0.45
0.45
tC
2.90
CIN
10.00
Input Rectification
Type
UNIT
Watts
mSecond
s
uFarads
F
F
LinkZero-LP 052410_Rev1-0.xls; LinkZero-LP
Flyback Transformer Design Spreadsheet
Minimum AC Input Voltage
Maximum AC Input Voltage
AC Mains Frequency
Output Voltage (main) measured at the end of output
cable (For CV/CC designs enter typical CV tolerance
limit)
Power Supply Output Current (For CV/CC designs enter
typical CC tolerance limit)
Output Power (VO x IO + dissipation in output cable)
Choose 'BIAS' for Bias winding feedback and 'OPTO' for
Optocoupler feedback from the 'Feedback Type' drop
down box at the top of this spreadsheet
Choose 'YES' from the 'Clampless Design' drop down
box at the top of this spreadsheet for a clampless
design. Choose 'NO' to add an external clamp circuit.
Clampless design lowers the total cost of the power
supply
Efficiency Estimate at output terminals. For CV only
designs enter 0.7 if no better data available
Loss Allocation Factor (Secondary side losses / Total
losses)
Bridge Rectifier Conduction Time Estimate
Input Capacitance
Choose H for Half Wave Rectifier and F for Full Wave
Rectification from the 'Rectification' drop down box at the
top of this spreadsheet
ENTER LinkZero-LP VARIABLES
LinkZero-LP
Auto
LinkZero-LP device.
LNK574
LNK57
4
Chosen Device
ILIMITMIN
ILIMITMAX
fSmin
0.126
0.146
93000
Amps
Amps
Hertz
I^2fMIN
1664.64
A^2Hz
I^2fTYP
1849.6
A^2Hz
78
10
0.5
Volts
Volts
Volts
VOR
VDS
VD
78.00
KP
1.60
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
EF16
EF16
EF16
P/N:
Core
EF16_BOBBIN
P/N:
Bobbin
AE
0.201
cm^2
LE
3.76
cm
AL
1100
nH/T^2
BW
10
mm
M
L
NS
NB
0
9
2
9
28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
mm
Minimum Current Limit
Maximum Current Limit
Minimum Device Switching Frequency
I^2f Minimum value (product of current limit squared and
frequency is trimmed for tighter tolerance)
I^2f typical value (product of current limit squared and
frequency is trimmed for tighter tolerance)
Reflected Output Voltage
LinkZero-LP on-state Drain to Source Voltage
Output Winding Diode Forward Voltage Drop
Ripple to Peak Current Ratio (0.9<KRP<1.0 :
1.0<KDP<6.0)
User-Selected transformer core
PC40EF16-Z
EF16_BOBBIN
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to Secondary
Creepage Distance)
Number of primary layers
Number of Secondary Turns
Number of Bias winding turns
Page 12 of 30
07-Dec-10
DER-258 2.1 W Universal Input Charger
VB
19.50
Volts
R1
113.00
k-ohms
R2
8.87
k-ohms
RBP
86.6
k-ohms
CFB
680.00
CBP
220.00
Recommended Bias
1N4003
Diode
DC INPUT VOLTAGE PARAMETERS
VMIN
103
VMAX
375
CURRENT WAVEFORM SHAPE PARAMETERS
DMAX
0.37
IAVG
0.03
IP
0.1260
IR
0.1260
IRMS
0.05
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP
2724
LP_TOLERANCE
10
pF
nF
Volts
Volts
Minimum DC Input Voltage
Maximum DC Input Voltage
Amps
Amps
Amps
Amps
Maximum Duty Cycle
Average Primary Current
Minimum Peak Primary Current
Primary Ripple Current
Primary RMS Current
uHenries
%
NP
108
ALG
234
nH/T^2
BM
1832
Gauss
BAC
916
Gauss
ur
1637
LG
0.10
mm
BWE
OD
20
0.185
mm
mm
INS
0.04
mm
DIA
0.145
mm
35
AWG
CM
32
Cmils
Cmils/A
mp
Info
676
TRANSFORMER SECONDARY DESIGN PARAMETERS
Lumped parameters
ISP
1.51
ISRMS
0.62
IRIPPLE
0.53
CMS
124
Amps
Amps
Amps
Cmils
AWGS
29
AWG
0.29
mm
DIAS
ODS
1.11
mm
INSS
VOLTAGE STRESS PARAMETERS
0.41
mm
VDRAIN
PIVS
Page 13 of 30
Typical Primary Inductance. +/- 10%
Primary inductance tolerance
Primary Winding Number of Turns
AWG
CMA
Bias Winding Voltage
Upper Resistor in the resistor divider component
between bias wiinding and FB pin of LinkZero-LP
Lower Resistor in the resistor divider component
between bias wiinding and FB pin of LinkZero-LP
Optional BP pin resistor (connected between BP pin and
bias winidng) to improve efficiency
FB pin resistor (Improve noise sensitivity)
BP pin capacitor
Place this diode on the return leg of the bias winding for
optimal EMI.
-
Volts
37
Volts
Gapped Core Effective Inductance
Maximum Operating Flux Density, BM<2000 is
recommended
AC Flux Density for Core Loss Curves (0.5 X Peak to
Peak)
Relative Permeability of Ungapped Core
!!! Info. Gap sizes below 0.1 mm may cause
manufacturing tolerancing problems - please verify with
magnetics vendor. Increase LG > 0.1 mm (increase NS,
decrease VOR,bigger Core)
Effective Bobbin Width
Maximum Primary Wire Diameter including insulation
Estimated Total Insulation Thickness (= 2 * film
thickness)
Bare conductor diameter
Primary Wire Gauge (Rounded to next smaller standard
AWG value)
Bare conductor effective area in circular mils
CAN DECREASE CMA < 500 (decrease L(primary
layers),increase NS,use smaller Core)
Peak Secondary Current
Secondary RMS Current
Output Capacitor RMS Ripple Current
Secondary Bare Conductor minimum circular mils
Secondary Wire Gauge (Rounded up to next larger
standard AWG value)
Secondary Minimum Bare Conductor Diameter
Secondary Maximum Outside Diameter for Triple
Insulated Wire
Maximum Secondary Insulation Wall Thickness
Peak Drain Voltage is highly dependent on Transformer
capacitance and leakage inductance. Please verify this
on the bench and ensure that it is below 650 V to allow
50 V margin for transformer variation.
Output Rectifier Maximum Peak Inverse Voltage
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
9 Performance Data
The ON/OFF control scheme employed by LinkZero-LP helps to yield virtually constant
efficiency across the 25% to 100% load range required for compliance with EPA, CEC,
CECP and AGO energy efficiency standards for external power supplies (EPS). This
performance is automatic with ON/OFF control. There are no special burst modes that
require the designer to consider specific thresholds within the load range in order to
achieve compliance with global energy efficiency standards.
All measurements performed at room temperature, 50 Hz input frequency.
9.1
Efficiency
80
85 VAC
115 VAC
230 VAC
265 VAC
Efficiency (%)
75
70
65
60
55
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Output Current (A)
Figure 6 – Efficiency vs. Output Current, Room Temperature, 60 Hz.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 30
07-Dec-10
DER-258 2.1 W Universal Input Charger
Percent of
Full Load
25
50
75
100
Average
US EISA (2007)
requirement
ENERGY STAR 2.0
requirement
Efficiency (%)
115 VAC
230 VAC
74.9
74.6
73.7
72.9
74.0
68.9
70.0
70.9
70.2
70.0
57
67
9.2 Active Mode CEC Measurement Data
The external power supply requirements below all require meeting active mode efficiency
and no-load input power limits. Minimum active mode efficiency is defined as the average
efficiency of 25, 50, 75 and 100% of output current (based on the nameplate output
current rating).
For adapters that are single input voltage only then the measurement is made at the
rated single nominal input voltage (115 VAC or 230 VAC), for universal input adapters the
measurement is made at both nominal input voltages (115 VAC and 230 VAC).
To meet the standard the measured average efficiency (or efficiencies for universal input
supplies) must be greater than or equal to the efficiency specified by the standard.
The test method can be found here:
http://www.energystar.gov/ia/partners/prod_development/downloads/power_supplies/EP
SupplyEffic_TestMethod_0804.pdf
For the latest up to date information please visit the PI Green Room:
http://www.powerint.com/greenroom/regulations.htm
Page 15 of 30
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
9.2.1 USA Energy Independence and Security Act 2007
This legislation mandates all single output single output adapters, including those
provided with products, manufactured on or after July 1st, 2008 must meet minimum
active mode efficiency and no load input power limits.
Active Mode Efficiency Standard Models
Nameplate Output (PO)
Minimum Efficiency in Active Mode of Operation
0.5  PO
0.09  ln (PO) + 0.5
0.85
ln = natural logarithm
<1W
 1 W to  51 W
> 51 W
No-load Energy Consumption
Nameplate Output (PO)
Maximum Power for No-load AC-DC EPS
All
 0.5 W
This requirement supersedes the legislation from individual US States (for example CEC
in California).
9.2.2 ENERGY STAR EPS Version 2.0
This specification takes effect on November 1st, 2008.
Active Mode Efficiency Standard Models
Nameplate Output (PO)
Minimum Efficiency in Active Mode of Operation
1W
0.48  PO + 0.14
> 1 W to  49 W
> 49 W
0.0626  ln (PO) + 0.622
0.87
ln = natural logarithm
Active Mode Efficiency Low Voltage Models (VO<6 V and IO  550 mA)
Nameplate Output (PO)
Minimum Efficiency in Active Mode of Operation
1W
0.497  PO + 0.067
> 1 W to  49 W
0.075  ln (PO) + 0.561
> 49 W
0.86
ln = natural logarithm
No-load Energy Consumption (both models)
Nameplate Output (PO)
Maximum Power for No-load AC-DC EPS
0 to < 50 W
 0.3 W
 50 W to  250 W
 0.5 W
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 30
07-Dec-10
9.3
DER-258 2.1 W Universal Input Charger
No-load Input Power
7
Input Power (mW)
6
5
4
3
2
1
80
100
120
140
160
180
200
220
240
Input Voltage (VAC)
Figure 7 – No-load Input Power vs. Input Line Voltage, Room Temperature, 50 Hz.
Page 17 of 30
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
260
DER-258 2.1 W, Universal Input Charger
07-Dec-10
9.4 Available Standby Output Power
The chart below shows the available output power vs. line voltage for an input power of
0.3 W, 0.5 W, 1 W and 2 W.
2
1.8
0.3 W
0.5 W
1W
2W
Standby Power (W)
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
80
100
120
140
160
180
200
220
240
260
Input Votage (VAC)
Figure 8 – Available Output Power for 0.2 W, 0.5 W, 1 W and 2 W Input Power.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 30
07-Dec-10
Output Voltage (VDC)
9.5
DER-258 2.1 W Universal Input Charger
Line and Load Regulation
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
85 VAC
230 VAC
MIN
0
100
200
300
400
500
600
700
800
115 VAC
265 VAC
MAX
900 1000 1100 1200
Output Current (mA)
Figure 9 – Load and Line Regulation, Room Temperature.
Page 19 of 30
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
10 Thermal Performance
Temperature measurements of key components were taken using T-type thermocouples.
The thermocouples were soldered directly to a SOURCE pin of the LNK574DG device
and to the cathode of the output rectifier D7. The thermocouples were glued to the
external core and winding surfaces of transformer T1.
Temperature °C
85 VAC
265 VAC
Ambient Inside Box*
51.0
51.0
LNK574DG
72.0
90.0
Transformer
70.0
73.0
Output Diode
63.0
67.0
*To simulate operation inside sealed enclosure at 40 C external ambient.
Item
These results show that all the parts in the board have thermal margin to run at 50 ºC
ambient.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 20 of 30
07-Dec-10
DER-258 2.1 W Universal Input Charger
11 Waveforms
11.1 Drain Voltage and Current, Normal Operation
Figure 10 – 85 VAC, Full Load.
Upper: VDRAIN, 100 V / div. (MAX DRAIN
VOLTAGE = 250 V).
Lower: IDRAIN, 0.1 A, 10 s / div.
Figure 11 – 265 VAC, Full Load.
Upper: VDRAIN, 200 V / div. (MAX DRAIN
VOLTAGE = 500 V).
Lower: IDRAIN, 0.1 A, 10 s / div.
11.2 Output Voltage Start-Up Profile
Start-up into full resistive load and no-load were both verified. An 18  resistor was used
for the load, to maintain a 0.35 A under steady-state conditions.
Figure 12 – Start-Up Profile, 115 VAC.
Fast Trace is at No-load.
Slower Trace is at Maximum Load.
1 V, 5 ms / div.
Page 21 of 30
Figure 13– Start-Up Profile, 230 VAC.
Fast Trace is at No-load.
Slower Trace is at Maximum Load.
1 V, 5 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
11.3 Drain Voltage and Current Start-Up Profile
Figure 14 – 85 VAC Input and Maximum Load.
Upper: VDRAIN, 100 V / div.
Lower: IDRAIN, 0.1 A, 1 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 15 – 265 VAC Input and Maximum Load.
Upper: VDRAIN, 200 V / div.
Lower: IDRAIN, 0.1 A, 1 ms / div.
Page 22 of 30
07-Dec-10
DER-258 2.1 W Universal Input Charger
11.4 Load Transient Response
Figure 16 – Transient Response, 115VAC,
2 mA to 350 mA to 2 mA.
Upper: VOUT 1 V / div.
Lower: IOUT 0.2 A, 10 ms / div.
Figure 17 – Transient Response, 230VAC,
2 mA to 350 mA to 2 mA.
Upper: VOUT 1 V / div.
Lower: IOUT 0.2 A, 10 ms / div.
Figure 18 – Transient Response, 115VAC,
170 mA to 262 mA to 170 mA.
Upper: VOUT 0.2 V / div.
Lower: IOUT 0.2 A, 10 ms / div.
Figure 19 – Transient Response, 230VAC,
170 mA to 262 mA to 170 mA.
Upper: VOUT 0.2 V / div.
Lower: IOUT 0.2 A, 10 ms / div.
Page 23 of 30
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
11.5 Output Ripple Measurements
11.5.1 Ripple Measurement Technique
A modified oscilloscope test probe was used to take output ripple measurements, in order
to reduce the pickup of spurious signals. Using the probe adapter pictured below, the
output ripple was measured with a 1 F electrolytic, and a 0.1 F ceramic capacitor
connected as shown.
Probe Ground
Probe Tip
Figure 20 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 24 of 30
07-Dec-10
DER-258 2.1 W Universal Input Charger
11.5.2 Measurement Results
The maximum voltage ripple at the output terminals of the power supply was measured
as 80 mV, well below 200 mV specification limit.
Figure 21 – Ripple, 85 VAC, Full Load.
100 s, 50 mV / div.
Figure 22 – Ripple, 115 VAC, Full Load.
20 s, 50 mV / div.
Figure 23 – Ripple, 230 VAC, Full Load.
100 s, 50 mV / div.
Figure 24 – Ripple, 265 VAC, Full Load.
100 s, 50 mV / div.
Page 25 of 30
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
12 Conducted EMI
Conducted emissions tests were performed at 115 VAC and 230 VAC at maximum load.
Measurements were taken with an Artificial Hand connected to a load resistor. EMI of line
and neutral were scanned into one picture and the load resistance was adjusted for
maximum power output.
Composite EN55022B / CISPR22B conducted limits are shown. In all cases there was
excellent (~10 dB) margin.
Figure 25 – Conducted EMI at 115 VAC, Artificial Hand, 6.2 V, 0.362 A.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 26 of 30
07-Dec-10
DER-258 2.1 W Universal Input Charger
Figure 26 – Conducted EMI at 230 VAC, Artificial Hand, 6.05 V, 0.373 A.
Page 27 of 30
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
13 Statistical Data for the Design
The following is some statistical data collected from 50 DER-258 design boards to
demonstrate the repeatability and variation of certain measurements over a relatively
large sample size, line voltage and temperature.
Figure 27 – Cold Temperature Regulation.
CVCC Response Measured at -5 ºC
and 90 VAC.
Figure 28 – Cold Temperature Regulation.
CVCC Response Measured at -5 ºC
and 265 VAC.
Figure 29 – High Ambient Regulation.
CVCC Response Measured at 40 ºC
and 90 VAC.
Figure 30 – High Ambient Regulation.
CVCC Response Measured at 40 ºC
and 265 VAC.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 28 of 30
07-Dec-10
DER-258 2.1 W Universal Input Charger
14 Revision History
Date
07-Dec-10
Page 29 of 30
Author
PL
Revision
1.2
Description & changes
Initial Release
Reviewed
Apps and Mktg
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-258 2.1 W, Universal Input Charger
07-Dec-10
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, CAPZero, SENZero, LinkZero, HiperLCS, PeakSwitch, EcoSmart,
Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks
are property of their respective companies. ©Copyright 2010 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail:
[email protected]
GERMANY
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3911
Fax: +49-89-5527-3920
e-mail:
[email protected]
JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-021-6354-6323
Fax: +86-021-6354-6325
e-mail:
[email protected]
INDIA
th
#1, 14 Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728
Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
CHINA (SHENZHEN)
th
Rm A, B & C 4 Floor, Block C,
Electronics Science and
Technology Building
2070 Shennan Zhong Road
Shenzhen, Guangdong,
P.R.C. 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail:
[email protected]
ITALY
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
APPLICATIONS FAX
World Wide +1-408-414-9760
Page 30 of 30