B GA 524 N 6 Low Noi se A m pl ifier fo r G lobal Na vig atio n S a tellite S ys te ms G PS/ G L O NA S S/ Gal ileo/ C O M PA S S fro m 1550 MH z to 1 61 5 MHz A pplic ati on s , Low Q in d uctor Applic atio n N ote A N 346 Revision: Rev.1.0 2013-09-30 RF and P r otecti on D evic es Edition 2013-09-30 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Application Note AN346 Revision History: 2013-09-30 Previous Revision: None Page Subjects (major changes since last revision) Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Application Note AN346, Rev.1.0 3 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Introduction of Global Navigation Satellite Systems (GNSS) Table of Content 1 Introduction of Global Navigation Satellite Systems (GNSS) ........................................................ 5 2 2.1 2.2 2.3 BGA524N6 Overview .......................................................................................................................... 8 Features ............................................................................................................................................... 8 Key Applications of BGA524N6 ........................................................................................................... 8 Description ........................................................................................................................................... 8 3 3.1 3.2 3.3 Application Circuit and Performance Overview ............................................................................ 10 Summary of Measurement Results .................................................................................................... 10 Summary BGA524N6 as 1550-1615 MHz LNA for GNSS................................................................. 12 Schematics and Bill-of-Materials ........................................................................................................ 13 4 Measurement Graphs ...................................................................................................................... 14 5 Evaluation Board and Layout Information .................................................................................... 22 6 Authors .............................................................................................................................................. 23 7 Remark .............................................................................................................................................. 23 List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 BGA524N6 TSNP-6-2 leadless Package size ..................................................................................... 6 BGA524N6 in TSNP-6-2 ...................................................................................................................... 8 Equivalent Circuit Block diagram of BGA524N6 .................................................................................. 9 Package and pin connections of BGA524N6 ....................................................................................... 9 Schematic of the BGA524N6 Application Circuit ............................................................................... 13 Power gain of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands .............................. 14 Narrowband power gain of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands .......... 14 Noise figure of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands ............................. 15 Input matching of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands ......................... 15 Input matching smith chart for COMPASS, Galileo, GPS and GLONASS bands ............................. 16 Output matching of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands ...................... 16 Output matching smith chart for COMPASS, Galileo, GPS and GLONASS bands .......................... 17 Reverse isolation of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands ..................... 17 Stability factor k of BGA524N6 upto 10 GHz ..................................................................................... 18 Stability factor µ1 of BGA524N6 upto 10 GHz ................................................................................... 18 Stability factor µ2 of BGA524N6 upto 10 GHz ................................................................................... 19 Input 1 dB compression point of BGA524N6 at supply voltage of 1.8 V for COMPASS, Galileo, GPS and GLONASS bands ........................................................................................................................ 19 Input 1 dB compression point of BGA524N6 at supply voltage of 2.8 V for COMPASS, Galileo, GPS and GLONASS bands ........................................................................................................................ 20 Carrier and intermodulation products of BGA524N6 for GPS band at Vcc=1.8 V ............................. 20 Carrier and intermodulation products of BGA524N6 for GPS band at Vcc=2.8 V ............................. 21 Carrier and intermodulation products of BGA524N6 for GLONASS band at Vcc=2.8 V ................... 21 Picture of Evaluation Board (overview) .............................................................................................. 22 Picture of Evaluation Board (detailed view) ....................................................................................... 22 PCB Layer Information ....................................................................................................................... 22 List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Pin Assignment of BGA524N6 ............................................................................................................. 9 Mode Selection of BGA524N6 ............................................................................................................. 9 Electrical Characteristics for COMPASS/Galileo at Vcc = Vpon = 1.8 V ........................................... 10 Electrical Characteristics for COMPASS/Galileo at Vcc = Vpon = 2.8 V ........................................... 11 Bill-of-Materials................................................................................................................................... 13 Application Note AN346, Rev.1.0 4 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Introduction of Global Navigation Satellite Systems (GNSS) 1 Introduction of Global Navigation Satellite Systems (GNSS) The BGA524N6 is a front-end Low Noise Amplifier (LNA) for Global Navigation Satellite Systems (GNSS) application. It is based on Infineon Technologies’ B7HF Silicon-Germanium (SiGe) technology, enabling a cost-effective solution in a TSNP-6-2 leadless package with ultra low noise figure, high linearity, low current consumption and high gain, over a wide range of supply voltages from 1.5 V up to 3.3 V. All these features make BGA524N6 an excellent choice for GNSS LNA as it improves sensitivity, provide better immunity against out-of-band jammer signals, reduces filtering requirement and hence the overall cost of the GNSS receiver. The GNSS satellites are at an orbit altitude of more than 20,000 km away from earth’s surface and transmit power in the range of +47 dBm. After taking losses (atmospheric, antenna etc.) into account, the received signal strength at the GNSS device input is very low in the range of -130 dBm. The ability of the GNSS device to receive such low signal strength and provide meaningful information to the end-user depends strongly on the noise figure of the GNSS receives chain. This ability which is called receiver sensitivity can be improved by using a low-noise amplifier with low noise figure and high gain at the input of the receiver chain. The improved sensitivity results in a shorter Time-To-First-Fix (TTFF), which is the time required for a GNSS receiver to acquire satellite signals and navigation data, and calculate a position. Noise figure of the LNA defines the overall noise figure of the GNSS receiver system. This is where BGA524N6 excels by providing noise figure as low as 0.55 dB and high gain of 19.6 dB, thereby improving the receiver sensitivity significantly. The ever growing demand to integrate more and more functionality into one device leads to many challenges when transmitter/receiver has to work simultaneously without degrading the performance of each other. In today’s smart-phones a GNSS receiver simultaneously coexists with transceivers in the GSM/EDGE/UMTS/LTE bands. These 3G/4G transceivers transmit high power in the range of +24 dBm which due to insufficient isolation couple to the GNSS receiver. The cellular signals can mix to produce Intermodulation products exactly in the GNSS receiver frequency band. For example, GSM 1712.7 MHz mixes with UMTS 1850 MHz to produce third-order-product exactly at GPS band. To quantify the effect, BGA524N6 Application Note AN346, Rev.1.0 5 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Introduction of Global Navigation Satellite Systems (GNSS) shows out-of-band input IP3 at GPS band of -4 dBm, as a result of frequency mixing between GSM 1712.7 MHz and UMTS 1850 MHz with power levels of -20 dBm. Due to this high outof-band input 3rd order intercept point (IIP3), BGA524N6 is especially suitable for the GPS function in mobile phones. Figure 1 BGA524N6 TSNP-6-2 leadless Package size As the industry inclines toward assembly miniaturization and also surface mount technology matures, there is a desire to have smaller and thinner components. This is especially the case with portable electronics where higher circuit density allows device design flexibility and also optimum use of the limited space available. BGA524N6 has a small package with dimensions of 0.70mm x 1.1mm x 0.375mm and it requires only one external component at its input, the inductor providing the input matching. The DC block at input is optional as it is usually provided by the pre-filter before the LNA in many GPS applications. All the device/phone manufacturers implement very good power supply filtering on their boards so that the RF bypass capacitor mentioned in this application circuit may not be needed in the end. The minimal number of external SMD components reduces the application bill of materials, assembly complexity and the PCB area thus making it an ideal solution for compact and cost-effective GNSS LNA. The output of the BGA524N6 is internally matched to 50 Ω, and a DC blocking capacitor is integrated on-chip, thus no external component is required at the output. Application Note AN346, Rev.1.0 6 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Introduction of Global Navigation Satellite Systems (GNSS) The device also integrates an on-chip ESD protection which can resist until 2 kV (referenced to human body model) in all pins. The integrated power on/off feature provides for low power consumption and increased stand-by time for GNSS handsets. Moreover, the low current consumption (2.5 mA) makes the device suitable for portable technology like GNSS receivers and mobiles phones. The Internal circuit block diagram of the BGA524N6 is presented in Figure 3. Table 1 shows the pin assignment of BGA524N6. Table 2 shows the truth table to turn on/off BGA524N6 by applying different voltage to the PON pin. Application Note AN346, Rev.1.0 7 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor BGA524N6 Overview 2 BGA524N6 Overview 2.1 Features High insertion power gain: 19.6 dB Out-of-band input 3rd order intercept point: -4 dBm Input 1 dB compression point: -12 dBm Low noise figure: 0.55 dB Low current consumption: 2.5 mA Operating frequencies: 1550 - 1615 MHz Supply voltage: 1.5 V to 3.3 V Digital on/off switch (1 V logic high level) Ultra small TSNP-6-2 leadless package (footprint: 0.7 x 1.1 mm2) B7HF Silicon Germanium technology RF output internally matched to 50 Ω Only 1 external SMD component necessary 2 kV HBM ESD protection (including AI-pin) Pb-free (RoHS compliant) package 2.2 Key Applications of BGA524N6 Figure 2 BGA524N6 in TSNP-6-2 Ideal for all Global Navigation Satellite Systems (GNSS) like GPS (Global Positioning System) working in the L1 band at 1575.42 MHz GLONASS (Russian GNSS) working in the L1 band from 1598.06 MHz to 1605.38 MHz Galileo (European GNSS) working in the E2-L1-E1 band from 1559 MHz to 1592 MHz COMPASS (Chinese Beidou Navigation System) working in E2 band at 1561.10 MHz and E1 band at 1589.74 MHz 2.3 Description The BGA524N6 is a front-end low noise amplifier for Global Navigation Satellite Systems (GNSS) from 1550 MHz to 1615 MHz like GPS, GLONASS, Beidou, Galileo and others. The LNA provides 16.2 dB gain and 0.55 dB noise figure at a current consumption of 4.8 mA in the application configuration described in Chapter 3. The BGA524N6 is based upon Infineon Technologies B7HF Silicon Germanium technology. It operates from 1.5 V to 3.3 V supply voltage. Application Note AN346, Rev.1.0 8 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor BGA524N6 Overview Figure 3 Equivalent Circuit Block diagram of BGA524N6 3 4 2 5 1 6 Bottom View Figure 4 Table 1 Top View Package and pin connections of BGA524N6 Pin Assignment of BGA524N6 Pin No. Symbol Function 1 GND Ground 2 VCC DC supply 3 AO LNA output 4 GND Ground 5 AI LNA input 6 PON Power on control Table 2 LNA Mode Mode Selection of BGA524N6 Symbol ON/OFF Control Voltage at PON pin Min Max ON PON, on 1.0 V VCC OFF PON, off 0V 0.4 V Application Note AN346, Rev.1.0 9 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Application Circuit and Performance Overview 3 Application Circuit and Performance Overview Device: Application: BGA524N6 Low Noise Amplifier for Global Navigation Satellite Systems GPS/GLONASS/Galileo/COMPASS from 1550 MHz to 1615 MHz Applications, Low Q inductor PCB Marking: BGA524N6 3.1 Summary of Measurement Results Table 3 Electrical Characteristics for COMPASS/Galileo at Vcc = Vpon = 1.8 V Parameter Symbol Value Unit DC Voltage Vcc 1.8 DC Current Icc 2.5 Navigation System Sys COMPASS/ Galileo GPS GLONASS Frequency Range Freq 1559-1593 1575.42 1598-1606 MHz Gain G 19.3 19.2 19.2 dB Noise Figure NF 0.78 0.78 0.79 dB Input Return Loss RLin 11.3 11.4 11.3 dB Output Return Loss RLout 17.4 21.7 23.7 dB Reverse Isolation IRev 37.3 37.4 37.8 dB V mA Comment/Test Condition PCB and SMA losses 0.03 dB are substracted Input P1dB IP1dB -15.5 -15.6 -16 f gal = 1559 MHz dBm fgps = 1575.42 MHz fGLONASS = 1605 MHz Output P1dB OP1dB 2.8 2.6 2.2 dBm Input IP3 In-band IIP3 -9.9 -9.7 -9.5 dBm Output IP3 In-band OIP3 9.4 9.5 9.7 LTE band-13 2 Harmonic nd H2-iput referred -41.9 Input IP3 Out-of-band IIP3OOB -5.5 Stability k >1 Application Note AN346, Rev.1.0 f1 gal = 1559 MHz, f2 gal = 1560 MHz, f1gps = 1575.42 MHz, f2gps = 1576.42 MHz dBm f1GLONASS = 1602 MHz, f2GLONASS = 1603 MHz Input power= -35 dBm fIN = 787.76 MHz, PIN = -25 dBm; dBm fH2 = 1575.52 MHz f1 = 1712.7 MHz, P1IN = -25 dBm; dBm f2 = 1850 MHz, P2IN = -65 dBm; fIIP3 = 1575.4 MHz -- 10 / 24 Unconditionnally Stable from 0 to 10GHz 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Application Circuit and Performance Overview Table 4 Electrical Characteristics for COMPASS/Galileo at Vcc = Vpon = 2.8 V Parameter Symbol Value Unit DC Voltage Vcc 2.8 V DC Current Icc 2.6 mA Navigation System Sys COMPASS/ Galileo Frequency Range Freq 1559-1593 1575.42 1598-1606 MHz Gain G 19.3 19.3 19.2 dB Noise Figure NF 0.79 0.79 0.8 dB Input Return Loss RLin 11.3 11.4 11.4 dB Output Return Loss RLout 15.5 19.1 27.2 dB Reverse Isolation IRev 37.4 37.4 37.6 dB Input P1dB IP1dB -12 -12 -12.3 Output P1dB OP1dB 6.3 6.3 5.9 dBm Input IP3 In-band IIP3 -9.6 -9.4 -9.2 dBm Output IP3 In-band OIP3 9.7 9.9 10 LTE band-13 2 Harmonic nd GPS GLONASS H2-input referred -42.1 Input IP3 Out-of-band IIP3OOB -5.4 Stability k >1 Application Note AN346, Rev.1.0 PCB and SMA losses 0.03dB are substracted f gal = 1559 MHz dBm fgps = 1575.42 MHz fGLONASS = 1605 MHz f1 gal = 1559 MHz, f2 gal = 1560 MHz, f1gps = 1575.42 MHz, f2gps = 1576.42 MHz dBm f1GLONASS = 1602 MHz, f2GLONASS = 1603 MHz Input power= -35 dBm fIN = 787.76 MHz, PIN = -25 dBm; dBm fH2 = 1575.52 MHz f1 = 1712.7 MHz, P1IN = -25 dBm; dBm f2 = 1850 MHz, P2IN = -65 dBm; fIIP3 = 1575.4 MHz -- 11 / 24 Comment/Test Condition Unconditionnally Stable from 0 to 10GHz 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Application Circuit and Performance Overview 3.2 Summary BGA524N6 as 1550-1615 MHz LNA for GNSS This application note addresses the application circuit of high gain low current GNSS LNA using low Q inductor. The circuit requires only one 0402 LQG type inductor for the application. It has in band gain of 19.3 dB. The circuit achieves input return loss better than 11.3 dB, as well as output return loss better than 15.5 dB for the whole frequency band of GNSS. At room temperature the noise figure is 0.78 dB (SMA and PCB losses are subtracted) for the GPS frequecncy and 0.79 dB for GLONASS frequency band. Furthermore, the circuit is unconditionally stable till 10 GHz. At GPS frequency, using two tones spacing of 1 MHz, the output third order intercept point IIP3 reaches 9.9 dBm. And for the GLONASS frequency band, OIP3 reaches 10 dBm. Output P1dB of the GNSS LNA is about 6.3 dBm for the GPS frequency and 5.9 dBm for GLONASS frequency band. Out of band Input IP3 is -5.4 dBm for the GPS frequency. Application Note AN346, Rev.1.0 12 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Application Circuit and Performance Overview 3.3 Schematics and Bill-of-Materials N1 BGA524N6 AO, 3 GNDRF, 4 C1 (optional) RFout L1 RFin AI, 5 VCC VCC, 2 C2 (optional) PON Figure 5 PON, 6 GND, 1 Schematic of the BGA524N6 Application Circuit Table 5 Symbol Bill-of-Materials Value Unit Size Manufacturer Comment C1 (optional) 1.8 nF 0402 Various DC block C2 (optional) 1 µF 0402 Various RF bypass L1 7.5 nH 0402 Murata LQG type Input matching N1 BGA524N6 TSNP-6-2 Infineon SiGe LNA Application Note AN346, Rev.1.0 13 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Measurement Graphs 4 Measurement Graphs Insertion Power Gain (Wideband) 35 Vcc=1.8 V 1.559 GHz 19.3 dB 1.605 GHz 19.21 dB S21 (dB) 20 Vcc=2.8 V 5 1.575 GHz 19.31 dB -10 -25 -40 0 Figure 6 1 2 3 Frequency (GHz) 4 5 6 Power gain of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands Insertion Power Gain (Narrowband) 20 Vcc=1.8 V 1.5754 GHz 19.311 dB 1.559 GHz 19.303 dB S21 (dB) 19.5 Vcc=2.8 V 1.605 GHz 19.208 dB 19 1.559 GHz 19.26 dB 1.5754 GHz 19.236 dB 1.605 GHz 19.095 dB 18.5 18 1.5 Figure 7 1.53 1.56 1.59 Frequency (GHz) 1.62 1.65 Narrowband power gain of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands Application Note AN346, Rev.1.0 14 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Measurement Graphs Noise Figure 0.9 Vcc=1.8 V Vcc=2.8 V NF (dB) 0.85 1.559 GHz 0.79 1.605 GHz 0.80 1.5742 GHz 0.79 0.8 0.75 1.559 GHz 0.78 1.605 GHz 0.79 1.5742 GHz 0.78 0.7 1.55 Figure 8 1.56 1.57 1.58 1.59 Frequency (GHz) 1.6 1.61 Noise figure of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands Input Return Loss -9 Vcc=1.8 V Vcc=2.8 V S11 (dB) -10 1.559 GHz -11.28 dB 1.5754 GHz -11.36 dB 1.605 GHz -11.33 dB -11 1.559 GHz -11.33 dB -12 1.5754 GHz -11.40 dB 1.605 GHz -11.36 dB -13 1.5 Figure 9 1.53 1.56 1.59 Frequency (GHz) 1.62 1.65 Input matching of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands Application Note AN346, Rev.1.0 15 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Measurement Graphs 0.8 1.0 Input Return Loss (Smith Chart) Swp Max 1.65GHz 2. 0 0. 6 Vcc=1.8 V 1.605 GHz r 0.62 x 0.24 Vcc=2.8 V 3. 0 0. 4 4. 10.0 5.0 3.0 2.0 1.0 0.8 0.6 0.4 1.5754 GHz r 0.60 x 0.17 10.0 1.5754 GHz r 0.60 x 0.18 0 0 .0 Figure 10 Swp Min 1.5GHz -1.0 -0.8 -0 .6 -2 .0 -3 .4 -4 . -0 1.559 GHz r 0.59 x 0.13 -5. 2 -10.0 0 0.2 0.2 1.605 GHz r 0.62 x 0.24 4.0 1.559 GHz r 0.59 x 0.15 -0. 0 5.0 Input matching smith chart for COMPASS, Galileo, GPS and GLONASS bands Output Return Loss -10 Vcc=1.8 V 1.559 GHz -15.5 dB S22 (dB) -15 Vcc=2.8 V 1.5754 GHz -19.12 dB 1.559 GHz -17.4 dB 1.605 GHz -23.68 dB -20 1.5754 GHz -21.72 dB -25 1.605 GHz -27.24 dB -30 1.5 Figure 11 1.53 1.56 1.59 Frequency (GHz) 1.62 1.65 Output matching of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands Application Note AN346, Rev.1.0 16 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Measurement Graphs 1.0 Swp Max 1.65GHz Vcc=1.8 V 2. 0 0. 6 0.8 Output Return Loss (Smith Chart) Vcc=2.8 V 0. 3. 10.0 5.0 4.0 3.0 2.0 1.0 0.8 0.6 0.4 1.605 GHz r 0.97 x -0.08 .0 Figure 12 -1.0 -0.8 -0 .6 -2 .0 -3 .4 1.605 GHz r 1.01 x -0.13 .0 0.2 10.0 0 0 0 5.0 -10.0 1.5754 GHz r 0.80 x -0.00 -0 -0 4. -4 0.2 1.559 GHz r 0.76 x.2-0.01 1.5754 GHz r 0.85 x -0.03 -5. 4 1.559 GHz r 0.71 x 0.01 0 Swp Min 1.5GHz Output matching smith chart for COMPASS, Galileo, GPS and GLONASS bands Reverse Isolation -36 Vcc=1.8 V Vcc=2.8 V -36.5 1.559 GHz -37.299 dB S12 (dB) -37 1.5754 GHz -37.394 dB 1.605 GHz -37.591 dB -37.5 1.559 GHz -37.357 dB -38 1.5754 GHz -37.365 dB 1.605 GHz -37.811 dB -38.5 -39 1.5 Figure 13 1.53 1.56 1.59 Frequency (GHz) 1.62 1.65 Reverse isolation of BGA524N6 for COMPASS, Galileo, GPS and GLONASS bands Application Note AN346, Rev.1.0 17 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Measurement Graphs Stability k Factor 5 Vcc=1.8 V Vcc=2.8 V 4 3 2 1 0 0.01 Figure 14 2.01 4.01 6.01 Frequency (GHz) 8.01 10 Stability factor k of BGA524N6 upto 10 GHz Stability Mu1 Factor 3 Vcc=1.8 V Vcc=2.8 V 2.5 2 1.5 1 0.5 0 0.01 Figure 15 2.01 4.01 6.01 Frequency (GHz) 8.01 10 Stability factor µ1 of BGA524N6 upto 10 GHz Application Note AN346, Rev.1.0 18 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Measurement Graphs Stability Mu2 Factor 3 Vcc=1.8 V Vcc=2.8 V 2.5 2 1.5 1 0.5 0 0.01 Figure 16 2.01 4.01 6.01 Frequency (GHz) 8.01 10 Stability factor µ2 of BGA524N6 upto 10 GHz Input 1dB Compression Point at Vcc=1.8 V 20 COMPASS (1559 MHz) -30 dBm 19.329 19.5 S21 (dB) GPS (1575.42 MHz) -30 dBm 19.315 GLONASS (1605 MHz) -15.45 dBm 18.329 19 -15.57 dBm 18.315 -30 dBm 19.169 18.5 -16.03 dBm 18.169 18 -30 Figure 17 -25 -20 Power (dBm) -15 -10 Input 1 dB compression point of BGA524N6 at supply voltage of 1.8 V for COMPASS, Galileo, GPS and GLONASS bands Application Note AN346, Rev.1.0 19 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Measurement Graphs Input 1dB Compression Point at Vcc=2.8 V 20 COMPASS (1559 MHz) -30 dBm 19.359 19.5 S21 (dB) GPS (1575.42 MHz) -30 dBm 19.349 GLONASS (1605 MHz) -12.03 dBm 18.359 19 -30 dBm 19.266 -12.01 dBm 18.349 18.5 -12.32 dBm 18.266 18 -30 Figure 18 -25 -20 Power (dBm) -15 -10 Input 1 dB compression point of BGA524N6 at supply voltage of 2.8 V for COMPASS, Galileo, GPS and GLONASS bands Intermodulation for GPS at Vcc=1.8 V 0 1.576 GHz -15.65 1.575 GHz -15.77 -20 -40 -60 1.577 GHz -67.98 1.574 GHz -66.35 -80 -100 -120 1.573 Figure 19 1.574 1.575 1.576 Frequency (GHz) 1.577 1.578 Carrier and intermodulation products of BGA524N6 for GPS band at Vcc=1.8 V Application Note AN346, Rev.1.0 20 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Measurement Graphs Intermodulation for GPS at Vcc=2.8 V 0 1.576 GHz -15.6 1.575 GHz -15.73 -20 -40 1.574 GHz -66.93 1.577 GHz -68.51 -60 -80 -100 -120 1.573 Figure 20 1.574 1.575 1.576 Frequency (GHz) 1.577 1.578 Carrier and intermodulation products of BGA524N6 for GPS band at Vcc=2.8 V Intermodulation for GLONASS at Vcc=2.8 V 0 1.602 GHz -15.69 -20 -40 1.603 GHz -15.67 1.601 GHz -67.22 1.604 GHz -68.95 -60 -80 -100 -120 1.6 Figure 21 1.601 1.602 1.603 Frequency (GHz) 1.604 1.605 Carrier and intermodulation products of BGA524N6 for GLONASS band at Vcc=2.8 V Application Note AN346, Rev.1.0 21 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Evaluation Board and Layout Information 5 Evaluation Board and Layout Information In this application note, the following PCB is used: PCB material: Rogers r of PCB material: 3.4 Figure 22 Picture of Evaluation Board (overview) Figure 23 Picture of Evaluation Board (detailed view) Vias RO4003, 0.2mm Copper 35µm Figure 24 FR4, 0.8mm PCB Layer Information Application Note AN346, Rev.1.0 22 / 24 2013-09-30 BGA524N6 BGA524N6 for GSNN LNA using low Q inductor Authors 6 Authors Moakhkhrul Islam, Application Engineer of Business Unit “RF and Protection Devices”. Jagjit Singh Bal, Application Engineer of Business Unit “RF and Protection Devices” 7 Remark The graphs are generated with the simulation program AWR Microwave Office®. Application Note AN346, Rev.1.0 23 / 24 2013-09-30 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG AN346