NJW4305A

NJW4305A
3 PHASE BRUSHLESS DC MOTOR CONTROLL IC
■ GENERAL DESCRIPTION
The NJW4305A is a 3 phase brush less DC motor controller IC.
It uses hall element signal inputs and generates motor driving
waveform.
Output pre-driver is optimized to work with external Power MOS
transistor for better power handling.
Using the NJW4305A, 3-phase DC motor application with
speed control feature can be easily achieved
■ PACKAGE OUTLINE
NJW4305AVC3
(SSOP20-C3)
■ FEATURES
● Maximum Supply Voltage
: 40V
● Operating Voltage Range
: 7.3V to 36V
● Operating Ambient Temperature : - 40ºC to + 105ºC
● Quiescent Current
: 3.2mA ( typ. ) at VCC=24V
● FG Output
● Lock Protection Function (Auto Release)
● Forward / Reverse Function
● Over Current Detection Function
● Thermal Shutdown Function
● UVLO Protection Circuit
● Direct PWM Control
: up to 150kHz
● Bi-CDMOS Technology
● Package Outline
: SSOP20-C3
Ver.2014-03-06
-1-
NJW4305A
■ BLOCK DIAGRAM
FG
VCC
VREF
UVLO
UH
TSD
VH
H1+
H1-
+
-
Rotor
Position
Decode
H2+
H2-
+
-
WH
H3+
H3-
+
UL
18kHz Fix.
FR
Dead
Time
VL
FR Local
Oscillator
ILIMIT
OSC
VERR
GND
Saw
Oscillator
WL
PWM Logic
+
Lock
Detect
+
-
ILIMIT
Ct
-2-
Ver.2014-03-06
NJW4305A
■ PIN CONFIGURATION
1. H1+
20. VCC
2. H1-
19. UH
3. H2+
18. VH
NJW4305A
4. H25. H3+
6. H37. FR
17. WH
16. UL
15. VL
14. WL
8. VERR
13. ILIMIT
9. OSC
12. FG
10. Ct
11. GND
■ PIN DESCRIPTION
PIN
SYMBOL
1
H1 +
2
H1 3
H2 +
4
H2 5
H3 +
6
H3 -
DESCRIPTION
Hall Element Input Pin H1 +
Hall Element Input Pin H1 Hall Element Input Pin H2 +
Hall Element Input Pin H2 Hall Element Input Pin H3 +
Hall Element Input Pin H3 -
7
FR
Forward Reverse Select Signal Input
8
VERR
Error Amp Voltage Input
9
10
11
OSC
Ct
GND
Connect Capacitor of PWM Control
Connect Capacitor of Lock Protect
Ground
12
FG
13
ILIMIT
FG Output
Over Current Detect
NOTE
U Phase Hall Signal Input +
U Phase Hall Signal Input V Phase Hall Signal Input +
V Phase Hall Signal Input W Phase Hall Signal Input +
W Phase Hall Signal Input Low or Open = Forward Direction,
H = Reverse Direction
Set of PWM Duty.
Not use = Pull up
Set of PWM Frequency
Set of ON Time for Lock Protection
Connecting with Ground
Rotation speed output Pin
Use = Pull up
L = Operating, H = Stop
Nonuse = Pull down
W Phase Output for Low Arm
V Phase Output for Low Arm
U Phase Output for Low Arm
W Phase Output for Upper Arm
V Phase Output for Upper Arm
U Phase Output for Upper Arm
Input DC Power
14
WL
WL Output Pin
15
VL
VL Output Pin
16
UL
UL Output Pin
17
WH
WH Output Pin
18
VH
VH Output Pin
19
UH
UH Output Pin
20
VCC
Power Supply
* All Ground Pins must be connected at the outside.
* Electrical potential of all unused output pins must be fixed at the outside.
Ver.2014-03-06
-3-
NJW4305A
■ ABSOLUTE MAXIMUM RATINGS
(Ta=25C)
PARAMETER
SYMBOL
RATINGS
UNIT
NOTES
Supply Voltage
Hi Side Output Pin Voltage
FG Pin Voltage
VCC
VOH
VFG
40
40
7
V
V
V
Hall Input Pin Voltage
VIH
7
V
VIN
VLIM
VVERR
IOH
IOL
IFG
7
3.5
7
150
+100 / -150
15
V
V
V
mA
mA
mA
Power Dissipation
PD
1000
mW
VCC Pin
UH, VH, WH Pin
FG Pin
H1+, H1-, H2+, H2-, H3+, H3Pin
FR Pin
ILIMIT Pin
VERR Pin
UH, VH, WH Pin
UL, VL, WL Pin
FG Pin
Mounted on designated board
based on EIA/JEDEC.
76.2*114.3*1.6mm 2Layer, FR-4
Operating Ambient Temperature
Storage Temperature
Topr
Tstg
- 40 to + 105
- 50 to + 150
°C
°C
Logic Input Pin Voltage
ILIMIT Pin Voltage
VERR Pin Voltage
Hi Side Output Current
Low Side Output Current
FG Output Current
■ RECOMMENDED OPERATIONAL CONDITIONS
PARAMETER
Supply Voltage
SYMBOL
VCC
TEST CONDITION
TYP.
24.0
(Ta=25C)
MAX. UNIT
36.0
V
MIN.
TYP.
(Ta=25C)
MAX. UNIT
0.08
0
-
3.5
V
V
2
0
-
5.5
0.8
V
V
0
-
-
5.5
150
V
kHz
MIN.
7.3
■ PIN OPERATING CONDITION
PARAMETER
SYMBOL
TEST CONDITION
► Hall Input Pin ( H1+, H1-, H2+, H2-, H3+, H3- )
Hall Input Sensitivity
ΔVMIH
Peak to peak
Hall Input Voltage Range
VICMIH
► Logic Input Pin ( FR )
H Level Input Voltage
VHIN
L Level Input Voltage
VLIN
► VERR Pin
Input Voltage Range
VICMVERR
PWM Input Frequency
fIPWMVERR
-4-
Ver.2014-03-06
NJW4305A
■ ELECTRICAL CHARACTERISTICS
( Ta = 25°C, VCC=24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V, FR=0V, VERR=5V, OSC=1V, Ct=ILIMIT= 0V )
PARAMETER
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX. UNIT
► GENERAL
Quiescent Current 1
ICC1
VCC = 12V
2.4
2.9
3.8
mA
Quiescent Current 2
ICC2
VCC = 24V
2.7
3.2
4.1
mA
► THERMAL SHUTDOWN BLOCK (TSD)
TSD Operating Temperature
TTSD1
180
°C
TSD Recovery Temperature
TTSD2
130
°C
TSD Hysteresis Temperature
ΔTTSD
50
°C
► UNDER VOLTAGE LOCK OUT BLOCK
UVLO Detect Voltage
VDUVLO
VCC Decreasing
6.0
6.45
7.19
V
UVLO Recovery Voltage
VRUVLO
VCC Increasing
6.01
6.6
7.2
V
UVLO Hysteresis Voltage Range
ΔVUVLO
0.15
V
► LOCK DETECT BLOCK ( Ct Pin )
Lock Protection ON time
tON
Ct = 0.47µF
0.18
0.25
0.34
s
High Level Voltage
VHCt
3.2
3.4
3.6
V
Low Level Voltage
VLCt
0.8
1.0
1.2
V
Lock Charge Current
ICHGCt
Ct = 0V → 2.5V
5.0
6.5
8.5
µA
Lock Discharge Current
IDCHGCt1
0.3
0.65
0.9
µA
Lock Charge Discharge
ICHGCt / IDCHGCt
10
Current Ratio
► HALL AMP BLOCK ( H1+, H1-, H2+, H2-, H3+, H3- Pin )
Hysteresis Voltage Range
ΔVHYSH
10
30
50
mV
Input Bias Current
IBIH
at 1 input
2
µA
► HIGH SIDE BLOCK ( UH, VH, WH Pin )
High Side Output Voltage
VOLH
ISINK = 50mA
0.5
1.2
V
High Side Leak Current
IOLEAKH
VOH = 36V
1
µA
► LOW SIDE BLOCK ( UL, VL, WL Pin )
Low Side Output Voltage1
VOHL1
VCC = 12V, ISOURCE = 50mA
8.0
10.0
V
Low Side Output Voltage2
VOHL2
VCC = 24V, ISOURCE = 50mA
8.0
10.0
V
Low Side Output L Voltage
VOLL
ISINK = 50mA
0.5
1.2
V
Low Side Clamp Voltage
VOCLL
VCC = 36V, ISOURCE = 0.1mA
16.0
V
► FG OUTPUT BLOCK ( FG Pin )
Output Voltage
VOFG
IFG = 10mA
0.2
0.6
V
Leak Current
ILEAKFG
VFG = 5V
1
µA
► OVER CURRENT DETECT BLOCK ( ILIMIT Pin )
Detect Voltage
VDETLIM
0.25
0.28
0.31
V
Input Bias Current
IBLIM
1.0
2.0
µA
► ERROR AMP BLOCK ( VERR Pin )
PWM0% Detect Voltage
VPWM1VERR Output ON Duty = 0%
0.6
V
PWM100% Detect Voltage
VPWM2VERR Output ON Duty = 100%
3.5
V
Input Bias Current
IBVERR
1.0
2.0
µA
► OSCILLATOR BLOCK ( OSC Pin )
Saw Wave Peak Voltage
VPOSC
2.7
3.0
3.3
V
Saw Wave Bottom Voltage
VBOSC
0.8
1.0
1.2
V
OSC Charge Current
ICHGOSC
OSC = 0V → 2.5V
50
80
120
µA
OSC Discharge Current
IDCHGOSC
OSC = 5V → 2.5V
0.6
1.3
2.0
mA
Oscillation Frequency
fOSC
COSC = 1000pF
35
50
kHz
► CONTROL INPUT BLOCK
H Level Input Current
IHIN
VIN = 5V
30
50
100
µA
L Level Input Current
ILIN
VIN = 0V
1
µA
Pull Down Resistance
RIN
100
kΩ
Ver.2014-03-06
-5-
NJW4305A
■ OPERATIONAL DEFINITION ( TERMINAL and CIRCUIT )
► Hole input Pin Common mode input voltage range
VICMH
► Hall input hysteresis voltage width
VICMH
Logic
Inversion
3.5V
Logic
Inversion
3.5V
ΔVHY SIH
0V
0V
► Input Pin
► Oscillation frequency
VIN
5.5V
VOSC
High Level
Voltage
VPOSC
2.0V
Undefined
0.8V
Low Level
Voltage
VBOSC
t CHGOSC
Time : t
t DCH GOSC
0V
fosc = 1 / ( tCHGOSC + tDCHGOSC )
-6-
Ver.2014-03-06
NJW4305A
► PWM 0% / PWM 100% detect voltage
VVERR
Full Speed ( = Output ON Duty 100% )
VPWM2VERR
VPOSC
VVERR
VOSC
Variable Speed Control
VBOSC
VPWM1VERR
Stop ( = Output ON Duty 0% )
► Over current detect voltage
LOCAL_OSC(fOSCLO)=18kHz typ. Fix.
VDETLIM
VILIMIT
Time : t
VOL
(V UL, V VL, V WL)
Active
L
Active
Time : t
Motor Operation
Rotate
STOP
Rotate
Time : t
► Thermal shutdown (TSD) operational temperature
TSD Reset
Temperature
( Normal
Operating )
-40ºC
105ºC
Hysteresis
Temperature
TTSD2 150ºC
TSD Operating
Temperature
( Output Stop )
TTSD1
Tj
(Tjmax)
Ver.2014-03-06
-7-
NJW4305A
► Under voltage protection operating voltage
VCC
36V
7.3V
Recommended Operational Voltage (max.)
Recommended Operational Voltage (min.)
UVLO Reset Volage( Nomral Operation )
VRUVLO
Hysteresis Voltage
VDUVLO
0V
UVLO Operating Voltage( Output Stop )
► Lock detect
FG
Hole Signal Input Timing
VCt
VHCt
Time : t
VLCt
t ON
Motor Rotate
-8-
t OFF
Motor Hold
Ver.2014-03-06
NJW4305A
■ TRUTH TABLE
Input vs. Output Truth table 1 ( H1+ > H1 -, H2+ > H2 -, H3+ > H3 - = “ H ”, Don’t Care = “ X ” )
H1
H2
H3
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
H
H
H
L
L
L
H
H
H
L
L
L
L
H
H
H
L
L
L
H
H
H
L
L
L
L
H
H
H
L
L
L
H
H
H
L
H
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
H
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
H
H
L
L
L
L
H
H
H
L
H
L
H
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
H
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
H
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
H
L
H
L
H
H
L
L
L
L
H
H
H
L
L
L
L
H
H
Hi-Z
L
Hi-Z
L
Hi-Z
H
L
H
TSD UVLO ILIMIT VERR OSC
UH
VH
WH
UL
VL
WL
FG
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Hi-Z
Hi-Z
H
L
L
L
L
L
H
H
L
L
L
L
L
H
H
Hi-Z
L
Hi-Z
L
Hi-Z
Hi-Z
L
Hi-Z
H
L
L
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
H
H
L
L
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
Hi-Z
L
Hi-Z
L
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
L
Hi-Z
Hi-Z
L
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
L
Hi-Z
L
Hi-Z
H
L
Hi-Z
Hi-Z
L
L
L
L
H
H
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
Hi-Z
L
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
Hi-Z
L
Hi-Z
Hi-Z
L
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
L
Hi-Z
L
Hi-Z
L
Hi-Z
Hi-Z
OFF
OFF
OFF
H
L
Ct
L
FR
L
OFF
OFF
OFF
H
L
L
H
OFF
OFF
X
X
X
H
L
OFF
OFF
OFF
OFF
OFF
X
ON
OFF
OFF
OFF
OFF
OFF
ON
X
X
X
X
ON
ON
X
X
L
X
L
H
H
X
X
H
X
H
X
X
X
X
L
H
L
L
L
X
X
L
H
H
L
H
X
X
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
COMMENT
Forward
Reverse
Lock Detect
( Forward )
PWM
( Forward )
Lock Detect
( Reverse )
PWM
( Reverse )
Over current protection
Over current protection
L
L
L
L
L
L
L
Hi-Z
L
Hi-Z
L
Hi-Z
Under voltage
lock detect
Thermal shutdown
L
Input vs. Output Truth table 2 ( H1+ > H1 -, H2+ > H2 -, H3+ > H3 - = “ H ”, Don’t Care = “ X ” )
H1
H
H2
H
H3
H
L
L
L
Ver.2014-03-06
TSD UVLO ILIMIT VERR OSC
X
X
X
X
X
Ct
FR
UH
VH
WH
UL
VL
WL
FG
COMMENT
X
X
Hi-Z
Hi-Z
Hi-Z
L
L
L
Hi-Z
Error pattern Hole signal input
-9-
NJW4305A
■ TIMING CHART
1. Forward Rotation
Rotor Electrical Position (deg)
0
VCC
60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
24V
H1
H2
H3
L
FR
VERR
5V
OSC
Ct
0V
ILimit
0V
FG
UH
VH
WH
UL
VL
WL
Condition
- 10 -
Forward Rotation
Ver.2014-03-06
NJW4305A
2. Forward Rotation at PWM
Rotor Electrical Position (deg)
0
VCC
60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
24V
H1
H2
H3
FR
L
VERR
OSC
Ct
0V
ILimit
0V
FG
UH
VH
WH
UL
VL
WL
Condition
Ver.2014-03-06
Forward Rotation
Forward Rotation DUTY50%
Forward Rotation DUTY0%
- 11 -
NJW4305A
3. Change for Forward Rotate to Reverse Rotate
Rotor Electrical Position (deg)
0
VCC
60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
24V
100
110
010
011
001
001
001
101
100
110
010
011
001
101
100
110
H1
H2
H3
FR
VERR
5V
OSC
Ct
0V
ILimit
0V
FG
UH
VH
WH
UL
VL
WL
Local OSC
STOP(Brake)
Condition
Forward Rotation
Reverse Rotation
Brake Dead Time
- 12 -
Ver.2014-03-06
NJW4305A
4. Forward Rotation → Lock Detect
Rotor Electrical Position (deg)
0
VCC
60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
24V
100
110
010
011
001
001
001
001
001
001
001
001
001
101
100
110
H1
H2
H3
FR
VERR
5V
OSC
Ct
0V
Detect Abnormal Stop
ILimit
Lock Rereace
End Abnormal Stop
0V
FG
UH
VH
WH
UL
VL
WL
Forward Rotation
Abnormal Stop
Abnormal Stop
Abnormal Stop
Condition
Lock Detect
Ver.2014-03-06
Lock Detect
Forward Rotation
- 13 -
NJW4305A
5. Forward Rotation → UVLO
Rotor Electrical Position (deg)
0
VCC
60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
24V
H1
H2
H3
FR
VERR
L
5V
OSC
Ct
0V
ILimit
0V
FG
UH
VH
WH
UL
VL
WL
Condition
- 14 -
Forward Rotation
UVLO
Forward Rotation
Ver.2014-03-06
NJW4305A
6. Forward → THD
Rotor Electrical Position (deg)
0
VCC
60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
24V
H1
H2
H3
FR
VERR
L
5V
OSC
Ct
0V
ILimit
0V
FG
UH
VH
WH
UL
VL
WL
Forward Rotation
Ver.2014-03-06
TSD
Forward Rotation
- 15 -
NJW4305A
Technical Information
■ TYPICAL APPLICATION
< MOS FET Drive Circuit, PWM Control, Operating Voltage VCC=24V, Motor Voltage VMM=24V >
VMM
VDD
C1
+
RFG
C2
C3
FG Out
+
C4
GND
FG
VCC
RUH1
VREF
RVH1
RWH1
UVLO
UH
RUH2
VH
RVH2
TSD
3 Phase Motor
H1+
H
H1-
H2-
+
-
S
N
Rotor
Position
Decode
H2+
H
N
S
+
-
WH
RWH2
UL
RUL
VL
RVL
WL
RWL
H3+
H
H3-
+
-
18kHz Fix.
FR
Dead
Tim e
FR Local
Oscillator
ILIMIT
OSC
Saw
Os cillator
COSC
VERR
CVERR
GND
PWM Logic
+
-
ILIMIT
Lock
Detect
+
-
Lowpass Filter
Ct
Cct
- 16 -
Ver.2014-03-06
NJW4305A
Technical Information
■ FUNCTION DESCRIPTIONS
VICMH
1. Hall Signal Input (H1+, H1-, H2+, H2-, H3+, H3- Pin)
1-1: Using Hall Device
These pins are hall device input pin.
3.5V
These are connected to input differential amplifier
(hall amplifier) with hall device input pin.
When the Hall input level becomes "H" or "L" at the same
time of three-phase, the outputs (WL, VL, UL, WH, VH,
UH) become OFF.
The Rotor Position decode circuit judges like following
0V
that the voltage level is “H” at H + > H – and “L” at
H + < H -.
The hall amplifier has the input hysteresis voltage of
The hall signal peak value must not exceed
50mV (max). You should input the amplitude greater than
VICMIH.
100mVp-p with considering the margin.
At this time, the hall signal peak value must not exceed
the input common-mode input voltage range VICMIH. It should be used the hall bias resistance of same value at
VCC and GND side. Some noise might overlap to the hall signal based on the GND level fluctuations by phase
current change or the unbalance of an output signal course, etc. When the malfunction of the output chattering
etc. occurs, it should connect between the positive pin and the negative pin with filter capacitor in range of from
1nF to 100nF.
1-2: Using Hall IC
This products is a usage hall device, but can use a hall ICs. But please add the voltage conversion circuit such
as the figure because it is necessary to adapt the output amplitude of hall IC to the input voltage range of the IC.
H1 is High, please set R3, R4 at the time of high so that the voltage ov VH1+ is as follows 3.5V.
< Hall IC – Hall Device Exchange Circuit >
12V
R3
12kΩ
Hall IC
R1
30kΩ
H1
Signal Amplitude
NJW4305A
3.4V
H1+
1.6V (H1-)
About 0V
R4
4.7kΩ
Ver.2014-03-06
R2
4.7kΩ
Time : t
- 17 -
NJW4305A
Technical Information
2. Output Block (WL, VL, UL / WH, VH, UH Pin)
2-1: Output for Lower Arm (120º Excitation Output + ON/OFF Output )
It is an output pin that can drive directly Nch FET gate for three-phase motor lower arm. The phase switching
signal is output that generated by the hall signal.
The output interrupter switch is built in. The PWM function by VERR/OSC, Protection function by Ct pin and
OCP by ILIMIT are operating to the lower arm. Moreover, the voltage clamp circuit that prevents the excess
voltage input to an external Nch FET gate is built in.
The output series resistance is suppressing the transient current and/or vibration at the time of switching. In case
of using 3A to 5A class MOS FET, you should consider the resistance value in the range of 100Ω to 1,000Ω.
2-2: Output Upper Arm (120º Excitation Output )
It is an output pin that can drive directly Pch FET gate for three-phase motor upper arm. The phase switching
signal is output that generated by the hall signal. Because these are open-drain configuration, pull-up resistor is
required.
The upper arm output is different from the lower arm output, and the output interrupter switch is not built in.
You should consider gate output series resistor value in the range from 100Ω to 1,000Ω as with the lower arm.
And you should set pull-up resistor that ensures sufficient VGS.
3. Forward / Reverse Function Switching (FR Pin)
It is the pin that a motor forward / reverse function switching. It can switch the phase excitation sequence by the FR
input logic. As a result, the direction where the motor is rotated can be switched. The sequence at the time of a motor
rotation switching is shown below and the internal oscillator controls it. In addition, an internal oscillator is fixed with
18kHz, and becomes operation of normal rotation reversal at the 4th clock.
FR
CLK
Upper Arm
Lower Arm
L
Based on a turn value
L
Based on a turn value
L
L
L
L
L
L
Dead
Time
Brake
Dead
Time
Dead
Time
Brake
Dead
Time
4. FG Output (FG Pin)
It is the pin that outputs the pulse at the cycle proportional to the rotation of a motor. This pin is open-drain output of
7V absolute maximum rating. This pin should be pull-up with resistor to power supply that is 5V or more.
This pin should be pull-up with resistor to power supply that is 5V or more. Do not connect this pin to power supply
(VCC) or power supply for motor (VMM).
- 18 -
Ver.2014-03-06
NJW4305A
Technical Information
5. Oscillation Block (VERR, OSC Pin)
The PWM function is successively compared the DC
voltage (VVERR) that is input to the VERR and the triangular
wave (sawtooth wave) voltage (VOSC) generated from COSC
connected with OSC.
As a result, the lower arm output is turned on at VVERR>VOSC.
The PWM frequency (fOSC) is determined by the following
elements that are charging/discharging to COSC. :
The triangular wave peak voltage (VPOSC), the bottom voltage
(VBOSC), the charge current (ICHGOSC), and the discharge
current (IDCHGOS). It is possible to approximate from the
relation of ICHGOSC≪IDCHGOSC by the following formula.
The COSC recommended value is from 330pF to 2200pF.
ITEM
Oscillation Frequency
VOSC
fOSC=1/(tCHGOSC+tDCHGOSC)
VPOSC
VBOSC
Time : t
t CHGOSC
t DCH GOSC
SYMBOL
FORMULA
fOSC
fOSC  35  106 / COSC
It is possible to use the direct PWM input that inputs duty controlled logic signal to VERR, and chopping driving the
lower arm output. In this case, it should be biased to the OSC pin voltage with approx 2V (between 1V and 3V).
In case of the ON duty is light at the time of the PWM signal is input to the VERR pin, the switching (power) device
saturation and/or the ON resistance reduction might become insufficient. As the result, the switching device might
cause unexpected heat.
You should confirm that external power device ASO having sufficient margin to your application.
Ex.: In cases of VERR=2.2V Fixed setting
When the pull-up voltage is 5V, it should be pulled-up to approx 1.8kΩ.
When the pull-up voltage is 12V, it should be pulled-up to approx 6.2kΩ.
The output ON is when VERR is 2.2V or more.
Signal Amplitude
5.0V
(12V)
1.8kΩ
(6.2kΩ)
5.0V
NJW4305A
VERR Input Signal
OSC
About 0V
Time : t
1.44kΩ
VERR
OSC Voltage : About 2.2V
Output Signal
(UL, VL, WL)
Time : t
Ver.2014-03-06
- 19 -
NJW4305A
Technical Information
6. Lock Protection Circuit / Lock Protection Locked Time, Lock Protection Release Time (Ct Pin)
This pin is the setting pin for Lock Protection Time. It connects to capacitor (CCt).
Under normal conditions the Ct pin feeds charge current (ICHGCt) through CCt. However, while the motor rotation the
Ct is fast discharging CCt according to the edge timing of the FG signal. Therefore, the minute shape saw-tooth
waveform appears as shown in the following figure at Ct pin. This Ct pin voltage VCt is approx 0V.
When the hall signal is stopped after the motor locked, the fast discharge is lost and VCt rises gradually. When the VCt
reaches lock protection H level voltage (VHCt), the low-side output (WL, VL, UL) becomes turned off (lock protection).
The lock protection locked time (tDCt1) is defined the following: the time from the ICHGCt charge start time to the output
OFF.
When the VCt reaches the VHCt once, the Ct pin is discharged by discharge current (IDCHGCt), and the VCt pin voltage
gradually comes down. The lock protection is released when VCt falls below lock protection L level voltage (VLCt), and
returns to normal output (auto release).
The lock protection release time (tRCt) is defined the following: the time from the CCt discharge start time to the output
OFF is released. Even if output OFF is released, CCt begins the charging again when the hall signal is not input with
the motor locked. As a result, when VCt exceeds VHCt, it becomes output OFF.
The lock protection re-locked time (tDCt2) is defined the following: the time of until lock protection is re-operating.
It is attention that the definition is different from the lock protection locked time (tDCt1).
After that, the lock protection and an auto release are repeated for every tRCt and tDCt2 until FG signal is generated.
The tDCt1/tDCt2/tRCt can be calculated by the following formulas. You should consider the CCt in the range of 0.1μF to
10μF.
ITEM
Lock Protection
Locked Time
Lock Protection
Re-locked Time
Lock Protection
Release Time
SYMBOL
FORMULA
tDCt1
tDCt  VHCt  CCt / ICHGCt = 0.523  106  CCt
tDCt2
tDCt1  (VHCt-VLCt)  CCt / ICHGCt = 0.369  106  CCt
tRCt
tRCt  (VHCt-VLCt)  CCt / IDCHGCt = 3.69  106  CCt
Rotate 1
FG
Rotate Stop
Motor Lock
Time : t
Auto Release
V Ct
V HCt
V LCt
Time : t
t DCt1
Rotate 2 ( Low Speed than Rotate 1 )
FG
t RCt
t DCt2
Rotate Stop
Motor Lock
Time : t
Auto Release
V Ct
V HCt
V LCt
Time : t
tDCt1
- 20 -
tRCt
tDCt2
Ver.2014-03-06
NJW4305A
Technical Information
At the during rotation 1 in the left figure, VCt waveform becomes a sawtooth waveform of approx 0V as described above.
The during rotation 2 figure shows a case of slower status than at the during rotation 1 condition.
And it shows the saw tooth waveform peak rises.
When it is made extremely low-speed on the velocity changeable application etc., the FG signal edge timing might
become long.
As a result, VCt might rise and the lock protection circuit malfunctions. To avoid the lock protection malfunction, you
should consider Ct discharge circuit adding or value adjustment of Ct.
Moreover, when the Ct pin is connected to GND, this lock protection function is canceled.
< Low-speed Lock Protection Operation Avoidance Circuit >
It is Ct discharge circuit with the FG signal output. For example in the speed control application, the hall signals input
timing becomes long at low speed time. Therefore, Ct voltage peak level rises and the lock protection circuit operates
early.
The Vct rise is suppressed by extending the rapid discharge time of Cct with the differentiation circuit by C1 and R1
and the comparator.
VREF(5V)
NJW4305A
RFG
R2
C1
D1
FG-OUT
FG
FG-IN
R1
R3
CT
CCt
7. Over Current Detect Circuit (ILIMIT Pin)
When the voltage that exceeds the detection voltage VDETLIM=0.28V typ. input to ILIMIT, all the lower arm output (UL,
VL, WL) level is in “L” all. By flowing the resistor to match the source current of the lower arm of the external FET
input to ILIMIT terminal voltages developed , and such a configuration can detect an overcurrent occurs in either r
phase . ILIMIT will return as a trigger by local oscillator (typical frequency 18kHz) . This behavior is independent of
the Hall signal, internal signal as rock protection and PWM signal from the VERR/OSC pins. If the speed of the
motor is controlled by the duty signal input by external circuit to VERR, note that it can not output returns with
the trigger by local oscillator , to stop the motor, therefore ILIMIT can be operated once.
Since not only the winding current of the motor ,spike current of the number 100ns about caused by the charging
and discharging of the parasitic capacitance of the external FET flows , short surge pulses are frequently entered the
ILIMIT to RILIMIT. When the behavior of the ILIMIT comparator reacts to short pulses of them, there is the PWM
pulse missing, causing a reduction of torque and/or rotation speed of the motor.
By adding an RC low-pass filter to ILIMIT, it is possible to avoid the effects of such surge pulses.
The product of C and R, I set the output voltage V of the RC circuit does not exceed VDETLIM.
RC condition give the following:
Ver.2014-03-06
- 21 -
NJW4305A
R C 
t
 V
ln 1  DETLIM
vi




Vi is the pulse voltage generated in the RILIMIT, t is
the duration. ln means the natural logarithm.
In order to obtain the RC value, it is assigned to vi
the amplitude of the surge pulse, t the duration and
VDETLIM the target value with standard minimum and some margin in this equation. Adjust R and C as appropriate
while cheking the actual equipment.
Example: VDETLIM = 0.22 [V] minimum standard and 0.03[V] margin, vi = 1 [V], for t = 1 [μs]
Ans.:
RC>4.02E-6
It is available in a combination such as R=4.3kohm, C=1nF.
* Constant setting of other
<Filter capacitor of the power supply>
In order to reduce the influence to the Hall bias current, be installed capacitors C1 and C2 suppress variations i
In VDD near the Hall bias resistors.
C3 and C4 capacitors to suppress the fluctuation of the VMM by the motor winding current are also in
consideration of the current loop, the wiring length to GND and the VMM do not be long carelessly.
- 22 -
Ver.2014-03-06
NJW4305A
■ ELECTRICAL CHARACTERISTICS EXAMPLES
< GENERAL >
Quiescent Current1 vs. Ambient Temperature
< GENERAL >
Quiescent Current1 vs. Ambient Temperature
VCC=12V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
VCC=24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
5.0
Quiescent Current2 : ICC2 [mA]
Quiescent Current1 : ICC1 [mA]
5.0
4.5
4.0
3.5
3.0
2.5
2.0
4.5
4.0
3.5
3.0
2.5
2.0
-50
-25
0
25
50
75 100 125 150
Ambient Temperature : Ta [ºC]
-50
< UNDER VOLTAGE LOCK OUT BLOCK >
UVLO Detect Voltage vs. Ambient Temperature
Ta=25ºC, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
VCC Decreasing, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
7.2
UVLO Detect Voltage : V DUVLO [V]
4.0
Quiescent Current : ICC [mA]
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
< GENERAL >
Quiescent Current vs. Supply Voltage
4.5
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
7
6.8
6.6
6.4
6.2
6
0
5
10
15
20
25
30
Supply Voltage : VCC [V]
35
40
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
< UNDER VOLTAGE LOCK OUT BLOCK >
UVLO Hysteresis Voltage Range vs. Ambient Temperature
VCC Increasing, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
VCC =24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
UVLO Hysteresis Voltage Range : ΔVUVLO [V]
< UNDER VOLTAGE LOCK OUT BLOCK >
UVLO Recovery Voltage vs. Ambient Temperature
7.2
UVLO Recovery Voltage : VRUVLO [V]
-25
7
6.8
6.6
6.4
6.2
6
0.3
0.25
0.2
0.15
0.1
0.05
0
-50
Ver.2014-03-06
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
- 23 -
NJW4305A
< LOCK DETECT BLOCK >
H Level Voltage vs. Ambient Temperature
< LOCK DETECT BLOCK >
L Level Voltage vs. Ambient Temperature
VCC=24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=ILIMIT=0V, VERR=5V, OSC=1V
VCC=24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=ILIMIT=0V, VERR=5V, OSC=1V
3.60
1.20
3.55
1.15
L Level Voltage : VLCt [V]
H Level Voltage : VHCt [V]
■ ELECTRICAL CHARACTERISTICS EXAMPLES
3.50
3.45
3.40
3.35
3.30
3.25
1.10
1.05
1.00
0.95
0.90
0.85
3.20
0.80
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
< LOCK DETECT BLOCK >
Lock Charge Current vs. Ambient Temperature
< LOCK DETECT BLOCK >
Lock Discharge Current vs. Ambient Temperature
VCt=0V2.5V, VCC=24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=ILIMIT=0V, VERR=5V, OSC=1V
VCt=3.8V2.5V,VCC=24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=ILIMIT=0V, VERR=5V, OSC=1V
10
0.9
Lock Discharge Current : IDCHGCt [μA]
Lock Charge Current : ICHGCt [μA]
-25
9
8
7
6
5
4
0.8
0.7
0.6
0.5
0.4
0.3
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
< LOCK DETECT BLOCK >
Lock Charge Discharge Current Ratio vs. Ambient Temperature
Lock Charge Discharge Current Ratio :
ICHGCt/IDCHGt
VCC=24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=ILIMIT=0V, VERR=5V, OSC=1V
13
12
11
10
9
8
7
-50
- 24 -
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
Ver.2014-03-06
NJW4305A
■ ELECTRICAL CHARACTERISTICS EXAMPLES
< HALL AMP BLOCK >
< HALL AMP BLOCK >
Input Bias Current vs. Ambient Temperature
Hysteresis Voltage Range vs. Ambient Temperature
H1+=1V, H1-=3V, MEAS:IH1+, VCC=24V, H3+=3V, H2+=1V,
H2-=H3-=2V, FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
50
1.8
45
1.6
Input Bias Current : IBIH [μA]
Hysteresis Voltage Range :
ΔVHYSH [mV]
MEAS:VH1+, VCC=24V, H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
40
35
30
25
20
15
1.0
0.8
0.6
0.2
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
< HIGH SIDE OUTPUT BLOCK >
High Side Output Voltage vs. Ambient Temperature
< HIGH SIDE OUTPUT BLOCK >
High Side Leak Current vs. Ambient Temperature
H1+=H3+=1V, H2+=3V, UH=50mA, MEAS:VUH, VCC=24V,
H1-=H2-=H3-=2V, FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
UH=36V, MEAS:IUH, VCC=24V, H1+=H2+=H3+=3V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
1.0
High Side Leak Current : IOLEAKH [μA]
1.2
High Side Output Voltage : VOLH [V]
1.2
0.4
10
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.2
0.0
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
< LOW SIDE OUTPUT BLOCK >
Low Side Output Voltage1 vs. Ambient Temperature
< LOW SIDE OUTPUT BLOCK >
Low Side Output Voltage vs. Ambient Temperature
VCC=12V, UL=-50mA, MEAS: VUL, H1+=H3+=3V, H2+=1V,
H1-=H2-=H3-=2V, FR=0V, VERR=3.5V, OSC=1V, CT=ILIMIT=0V
VCC=24V, UL=-50mA, MEAS: VUL, H1+=H3+=3V, H2+=1V,
H1-=H2-=H3-=2V, FR=0V, VERR=3.5V, OSC=1V, CT=ILIMIT=0V
13
Low Side Output Voltage : VOHL2 [V]
13
Low Side Output Voltage1 : VOHL1 [V]
1.4
12
11
10
9
8
7
6
5
12
11
10
9
8
7
6
5
-50
Ver.2014-03-06
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
- 25 -
NJW4305A
■ ELECTRICAL CHARACTERISTICS EXAMPLES
< LOW SIDE OUTPUT BLOCK >
Low Side Output L Voltage vs. Ambient Temperature
< LOW SIDE OUTPUT BLOCK >
Low Side Clamp Voltage vs. Ambient Temperature
VCC=24V, H1+=1V, H2+=H3+=3V, UL=150mA, MEAS:VUL,
H1-=H2-=H3-=2V, FR=0V, VERR=5V, OSC=1V, CT=ILIMIT=0V
VCC=36V, UL=-0.1mA, MEAS:VUL, IH1+=H3+=3V, H2+=1V,
H1-=H2-=H3-=2V, FR=0V, VERR=3.5V, OSC=1V, CT=ILIMIT=0V
13
Low Side Clamp Voltage : VOCLL [V]
Low Side Output L Voltage : VOLL [V]
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
11
10
9
8
7
6
5
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
< FG OUTPUT BLOCK >
Output Voltage vs. Ambient Temperature
< FG OUTPUT BLOCK >
Leak Current vs. Ambient Temperature
FG=10mA, VCC=24V, H1+=H2+=H3+=3V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
H1+=1V, FG=5V, VCC=24V, H2+=H3+=3V, UL=150mA,
H1-=H2-=H3-=2V, FR=CT=ILIMIT=0V, VERR=5V, OSC=1V
0.60
0.6
0.50
0.5
Leak Current : IOLEAKFG [μA]
Output Voltage : VOFG [V]
12
0.40
0.30
0.20
0.10
0.4
0.3
0.2
0.1
0.00
0.0
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
< OVER CURRENT DETECT BLOCK >
Detect Voltage vs. Ambient Temperature
< OVER CURRENT DETECT BLOCK >
Input Bias Current vs. Ambient Temperature
VCC=24V, H1+=H2+=H3+=3V, H1-=H2-=H3-=2V,
FR=CT=0V, VERR=5V, OSC=1V
VCC=24V, H1+=H2+=H3+=3V, H1-=H2-=H3-=2V, FR=CT=ILIMIT=0V,
VERR=5V, OSC=1V
2.0
0.31
Input Bias Current : IBLIM [μA]
Detect Voltage : VDETLIM [V]
1.8
0.30
0.29
0.28
0.27
0.26
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.25
0.0
-50
- 26 -
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
Ver.2014-03-06
NJW4305A
< ERROR AMP BLOCK >
Input Bias Current vs. Ambient Temperature
< OSCILLATOR BLOCK >
Saw Wave Peak Voltage vs. Ambient Temperature
VERR=0V, VCC=24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, OSC=1V
VCC =24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V
2.0
3.30
1.8
3.25
Saw Wave Peak Voltage : VPOSC [V]
Input Bias Current : IBVERR [μA]
■ ELECTRICAL CHARACTERISTICS EXAMPLES
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
3.20
3.15
3.10
3.05
3.00
2.95
2.90
2.85
2.80
2.75
0.0
2.70
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
VCC =24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V, OSC=0V->2.5V
120
1.20
OSC Charge Current : ICHGOSC [μA]
Saw Wave Bottom Voltage : VBOSC [V]
VCC =24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V
1.10
1.05
1.00
0.95
0.90
0.85
110
100
0.80
90
80
70
60
50
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
< OSCILLATOR BLOCK >
Oscillation Frequency vs. Ambient Temperature
< OSCILLATOR BLOCK >
OSC Discharge Current vs. Ambient Temperature
Cosc=1000pF, VCC =24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V
VCC =24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
FR=CT=ILIMIT=0V, VERR=5V, OSC=5V->2.5V
2.0
Oscillation Frequency : fOSC [kHz]
50
1.8
OSC Discharge Current :
IDCHGOSC [mA]
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
< OSCILLATOR BLOCK >
OSC Charge Current vs. Ambient Temperature
< OSCILLATOR BLOCK >
Saw Wave Bottom Voltage vs. Ambient Temperature
1.15
-25
1.6
1.4
1.2
1.0
0.8
45
40
35
30
25
20
15
0.6
10
-50
Ver.2014-03-06
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
- 27 -
NJW4305A
< CONTROL INPUT BLOCK >
H Level Input Current vs. Ambient Temperature
< CONTROL INPUT BLOCK >
L Level Input Current vs. Ambient Temperature
FR=5V, VCC=24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
CT=ILIMIT=0V, VERR=5V, OSC=1V
FR=0V, VCC=24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
CT=ILIMIT=0V, VERR=5V, OSC=1V
100
0.6
90
0.5
L Level Input Current : ILIN [μA]
H Level Input Current : IHIN [μA]
■ ELECTRICAL CHARACTERISTICS EXAMPLES
80
70
60
50
40
0.4
0.3
0.2
0.1
0.0
-0.1
30
-0.2
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
< CONTROL INPUT BLOCK >
Pull Down Resistance vs. Ambient Temperature
Pull Down Resistance : RIN [kΩ]
150
FR=5V, VCC=24V, H1+=H3+=3V, H2+=1V, H1-=H2-=H3-=2V,
CT=ILIMIT=0V, VERR=5V, OSC=1V
140
130
120
110
100
90
80
70
60
50
-50
- 28 -
-25
0
25 50 75 100 125 150
Ambient Temperature : Ta [ºC]
Ver.2014-03-06
NJW4305A
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
Ver.2014-03-06
- 29 -