PT6301 5 x 7 Dot Character x 20-Digit x 2-Line Display Controller/Driver with Character RAM DESCRIPTION The PT6301 is a 5 × 7 dot matrix type vacuum fluorescent display tube controller driver IC which displays characters, numerics and symbols of a maximum of 20 digits × 2 lines. Dot matrix vacuum fluorescent display tube drive signals are generated by serial data sent from a micro-controller. A display system is easily realized by internal ROM and RAM for character display. PT6301 has low power consumption since it is made by CMOS process technology. Custom codes are provided on customer’s request. FEATURES • Logic power supply (VDD): 3.3V±10% or 5.0V±10% • VFD tube drive power supply (VDISP ): 30 to 60V • VFD driver output current(VFD driver output can be connected directly to the VFD tube. No pull-down resistor is required.) - Segment driver (SEGA1 to A35, SEGB1 to B35) Only one driver output is high: -5mA @ VDISP-4V (VDISP=50V, Tj=25℃) All the driver outputs are high: -350mA @ VDISP-4V (VDISP=50V, Tj=25℃) - Segment driver (ADA, ADB): -15mA @ VDISP-4V (VDISP=50V, Tj=25℃) - Grid driver (COM1 to 20): -40mA @ VDISP-4V (VDISP=50V, Tj=25℃) • Content of display SEGA1 to SEGA35 and ADA - CGROM_A 5 × 7 dots: 240 types (character data) - CGRAM_A 5 × 7 dots: 16 types (character data) - ADRAM_A 20 (display digit) × 1 bit (symbol data; can be used for a cursor.) - DCRAM_A 20 (display digit) × 8 bits (register for character data display) SEGB1 to SEGB35 and ADB - CGROM_B 5 × 7 dots: 240 types (character data) - CGRAM_B 5 × 7 dots: 16 types (character data) - ADRAM_B 20 (display digit) × 1 bit (symbol data; can be used for a cursor.) - DCRAM_B 20 (display digit) × 8 bits (register for character data display) • Display control function - Display digit: 1 to 20 digits - Display duty (brightness adjustment): 0/1024 to 960/1024 stages - All lights ON/OFF • 4 interfaces with microcontroller : DA, CS, CP, and RESET • Built-in oscillation circuit (external R & C) • Standby function Inhibiting the oscillator circuit provides low power consumption. • Built-in CIG testing circuit • Available in CIG package type Tel: 886-66296288‧Fax: 886-29174598‧ http://www.princeton.com.tw‧2F, 233-1, Baociao Road, Sindian, Taipei 23145, Taiwan PT6301 BLOCK DIAGRAM V1.2 2 March 2012 PT6301 APPLICATION CIRCUIT Notes: *1. The VDISP voltage depends on the fluorescent display tube used. Adjust the value of the constants R2 and ZD to the VDISP voltage used. *2. The value of R1 & C1 depend on PT6301 IC chip Supply voltage of VDD (R1=8.2KΩ, C1=39pF, when VDD=5V; R1=6.2KΩ, C1=39pF, when VDD=3.3V). V1.2 3 March 2012 PT6301 ORDER INFORMATION Valid Part Number PT6301 Package Type CIG Top Code - PIN CONFIGURATION V1.2 4 March 2012 PT6301 PIN DESCRIPTION Pin Name SEGA1 ~ SEGA35 SEGB1 ~ SEGB35 I/O Description Pin No. O VFD tube anode electrode drive output. Directly connected to fluorescent display tube and a pulldown resistor is not necessary. IOH > -5mA 48 ~ 82 COM1 ~ COM20 O ADA, ADB O V1.2 VDD L-GND VDISP D-GND - TEST I DO O DA I CP I CS I RESET I OSC I/O VFD tube grid electrode drive output. Directly connected to fluorescent display tube and a pulldown resistor is not necessary. IOH > -40mA VFD tube anode electrode drive output. Directly connected to fluorescent display tube and a pulldown resistor is not necessary. IOH > -15mA VDD, L-GND are power supplies for internal logic. VDISP, D-GND are power supplies for driving fluorescent tubes. Apply VDISP after VDD is applied. Use the same power supply for L-GND and D-GND. Test mode control pin “High” → Test mode enable “Low” → Test mode disable Data output pin for testing purpose only Serial data input (positive logic). Input from LSB. Shift clock input. Serial data is shifted on the rising edge of CP. Chip select input. Serial data transfer is disabled when CS pin is “H” level. Reset input. “Low” initializes all the functions. Initial status is as follows. • Address of each RAM ...address “00”H • Data of each RAM......... Content is undefined • Display digit....................20 digits • Brightness adjustment....0/1024 • All lights ON or OFF ......OFF mode Oscillation connection An oscillator circuit is formed by connecting an external resistor and capacitor at this pin. See Application circuit 5 13 ~ 47 11 ~ 2, 84 ~ 93 83, 12 97, 105 96, 106 1, 94 95, 107 98 99 100 101 102 103 104 March 2012 PT6301 FUNCTION DESCRIPTION COMMAND LIST NO. COMMAND 1 DCRAM_A Data Write MSB B B6 7 0 0 B 5 0 1ST BYTE B B3 4 1 * LSB MSB 2ND BYTE LSB B2 B1 B0 B7 B6 B5 B4 B3 B2 * * * C7 * * * * * * D9 C6 C30 C31 C32 C33 C34 * D8 C5 C25 C26 C27 C28 C29 * D7 C4 C20 C21 C22 C23 C24 * D6 C3 C15 C16 C17 C18 C19 * D5 C2 C10 C11 C12 C13 C14 * D4 C1 C5 C6 C7 C8 C9 * D3 C0 C0 C1 C2 C3 C4 C0 D2 C7 * * * * * * C6 C30 C31 C32 C33 C34 * C5 C25 C26 C27 C28 C29 * C4 C20 C21 C22 C23 C24 * C3 C15 C16 C17 C18 C19 * C2 C10 C11 C12 C13 C14 * C1 C5 C6 C7 C8 C9 * C0 C0 C1 C2 C3 C4 C0 2 CGRAM_A Data Write 0 0 1 0 X3 X2 X1 X0 3 5 6 7 8 9 ADRAM_A Data Write Display Duty Set Number of digits set All lights on/off Test Mode DCRAM_B Data Write 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 * * K3 * T3 * * * K2 * T2 * * D1 K1 H T1 * * D0 K0 L T0 * A CGRAM_B Data Write 1 0 1 0 X3 X2 X1 X0 B F ADRAM_B Data Write Standby Mode 1 1 0 1 1 1 1 1 * * * * * * * * B1 B0 2nd byte 3rd byte 4th byte 5th byte 6th byte 2nd byte 3rd byte 4th byte 5th byte 6th byte *: Don’t care Xn: Address specification for each RAM Cn: Character code specification for each RAM Dn: Display duty specification Kn: Number of digits specification Tn: Test mode specification H: All lights ON instruction L: All lights OFF instruction When data is written to RAM (DCRAM, CGRAM, ADRAM) continuously, addresses are internally incremented automatically. Therefore it is not necessary to specify the 1st byte to write RAM data for the 2nd and later bytes. Note: The test mode is used for inspection before shipment. It is not a user function. The user cannot use this command. Enter commands 1 to 3, 5 to 7, 9 to B, and F alone in the way described on the next page and the following pages. (The operation of this device cannot be guaranteed if other commands are used.) V1.2 6 March 2012 PT6301 POSITIONAL RELATIONSHIP BETWEEN SEGn AND ADn (one digit) C0 Co rr es pon ds to the 2 nd by te of the A DR AM _A data w rite c om m and. AD A C0 C1 C2 C3 C4 SE GA1 SE GA2 SE GA3 SE GA4 SE GA5 C5 C6 C7 C8 C9 SE GA6 SE GA7 SE GA8 SE GA9 SEGA 10 C 10 C11 C 12 C 13 C 14 S EGA11 SEGA 12 SEGA 13 SEGA 14 SEGA 15 C 15 C 16 C 17 C 18 C 19 SEGA 16 SEGA 17 SEGA 18 SEGA 19 SEGA 20 C 20 C 21 C 22 C 23 C 24 SEGA 21 SEGA 22 SEGA 23 SEGA 24 SEGA 25 C 25 C 26 C 27 C 28 C 29 SEGA 26 SEGA 27 SEGA 28 SEGA 29 SEGA 30 C 30 C 31 C 32 C 33 C 34 SEGA 31 SEGA 32 SEGA 33 SEGA 34 SEGA 35 Co rr es pon ds Co rr es pon ds Co rr es pon ds Co rr es pon ds Co rr es pon ds C0 to to to to to the the the the the 6 th by te of th e CG RA M_ A d ata wr ite c om ma nd. 5 th by te of th e CG RA M_ A d ata wr ite c om ma nd. 4 th by te of th e CG RA M_ A d ata wr ite c om ma nd. 3 rd b yte of the C G RAM _A da ta wri te co mm and . 2 nd by te of the CG R AM _A data w rite c om m and. Co rr es pon ds to the 2 nd by te of the A DR AM _B d ata wr ite c om ma nd. AD B C0 C1 C2 C3 C4 SE GB1 SE GB2 SE GB3 SE GB4 SE GB5 C5 C6 C7 C8 C9 SE GB6 SE GB7 SE GB8 SE GB9 SEGB 10 C 10 C11 C 12 C 13 C 14 S EGB11 SEGB 12 SEGB 13 SEGB 14 SEGB 15 C 15 C 16 C 17 C 18 C 19 SEGB 16 SEGB 17 SEGB 18 SEGB 19 SEGB 20 C 20 C 21 C 22 C 23 C 24 SEGB 21 SEGB 22 SEGB 23 SEGB 24 SEGB 25 C 25 C 26 C 27 C 28 C 29 SEGB 26 SEGB 27 SEGB 28 SEGB 29 SEGB 30 C 30 C 31 C 32 C 33 C 34 SEGB 31 SEGB 32 SEGB 33 SEGB 34 SEGB 35 Co rr es pon ds Co rr es pon ds Co rr es pon ds Co rr es pon ds Co rr es pon ds to to to to to the the the the the 6 th by te of th e CG RA M_ B da ta wri te co mm and . 5 th by te of th e CG RA M_ B da ta wri te co mm and . 4 th by te of th e CG RA M_ B da ta wri te co mm and . 3 rd b yte of the C G RAM _B data wr ite c om m and. 2 nd by te of the CG R AM _B d ata wr ite c om man d. CO M n V1.2 7 March 2012 PT6301 DATA TRANSFER METHOD AND COMMAND WRITE METHOD Display control command and data are written by an 8-bit serial transfer. Write timing is shown in the figure below. Setting the CS pin to “Low” level enables a data transfer. Data is 8 bits and is sequentially input into the DA pin from LSB (LSB first). As shown in the figure below, data is read by the shift register at the rising edge of the shift clock, which is input into the CP pin. If 8-bit data is input, internal load signals are automatically generated and data is written to each register and RAM. Therefore it is not necessary to input load signals from the outside. Setting the CS pin to “High” disables data transfer. Data input from the point when the CS pin changes from “High” to “Low” is recognized in 8-bit units. t DOF F t CS H CS CP DA W he n data is wr itten to DC RAM * B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7 LS B LS B LS B 1s t by te M SB Co mm and a nd ad dr es s data 2n d by te M SB Ch ar ac te r c ode d ata 3r d by te M SB Cha rac ter co de da ta o f th e nex t add re ss Note: When data is written to RAM (DCRAM, ADRAM, CGRAM) continuously, addresses are internally incremented automatically. Therefore it is not necessary to specify the 1st byte to write RAM data for the 2nd and later bytes. RESET FUNCTION Reset is executed when the RESET pin is set to “L”, (when turning power on, for example) and initializes all functions. Initial status is as follows. Address of each RAM.......................address “00”H Data of each RAM.............................All contents are undefined Display digit ......................................20 digits Brightness adjustment ......................0/1024 All display lights ON or OFF..............OFF mode Segment output.................................All segment outputs go “Low” AD output..........................................All AD outputs go “Low” Be sure to execute the reset operation when turning power on and set again according to “Setting Flowchart” after reset. V1.2 8 March 2012 PT6301 DESCRIPTION OF COMMANDS AND FUNCTIONS 1 AND 9. DCRAM DATA WRITE (Write the character code of CGROM and CGRAM to DCRAM) DCRAM (Data Control RAM) has 20 address x 8-bit RAM to store character code of CGROM and CGRAM. Address 00H(0) to 13H(19) corresponds to COM1 to 20. The character code stored in DCRAM is CONVERTED TO A 5 x 7 dot matrix character pattern via CGROM or CGRAM. The DCRAM can store 20 characters. This command writes data from DCRAM address 00H. COMMAND FORMAT MSB B7 B6 B5 B4 B3 B2 0/1 0 0 1 * * Note: 0: Select DCRAM_A, 1: Select DCRAM_B 1st Byte (1st) 2nd Byte (2nd) MSB B7 B6 C7 C6 B5 C5 B4 C4 B3 C3 B2 C2 B1 * LSB B0 * Select DCRAM data write mode (RAM address is set to 00H automatically) B1 C1 LSB B0 C0 Specifies character code of CGRAM and CGROM (written into DCRAM address 00H) To specify the character code of CGROM and CGRAM continuously to the next address, specify only character code as follows. The address of DCRAM is automatically incremented. 2nd Byte (3rd) MSB B7 B6 C7 C6 2nd Byte (4th) MSB B7 B6 C7 C6 B5 C5 B4 C4 B5 C5 B4 C4 B3 C3 B3 C3 B2 C2 B2 C2 B1 C1 LSB B0 C0 Specifies character code of CGRAM and CGROM (written into DCRAM address 01H) B1 C1 LSB B0 C0 Specifies character code of CGRAM and CGROM (written into DCRAM address 02H) : : 2nd Byte (21th) MSB B7 B6 C7 C6 B5 C5 B4 C4 B3 C3 B2 C2 B1 C1 LSB B0 C0 Specifies character code of CGRAM and CGROM (written into DCRAM address 13H) MSB LSB B7 B6 B5 B4 B3 B2 B1 B0 Specifies character code of CGRAM and CGROM C7 C6 C5 C4 C3 C2 C1 C0 (written into DCRAM address 00H) C0 (LSB) to C7 (MSB): Character code of CGROM and CGRAM (8 bits 256 characters) *: Don’t care. 2nd Byte (22th) COM POSITIONS AND DCRAM ADDRESSES DCRAM address (HEX) 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H V1.2 DCRAM address (HEX) 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H COM position COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 9 COM position COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 March 2012 PT6301 2 AND A. CGRAM DATA WRITE (Specifies the addresses of CGRAM and write character pattern data) CGRAM (Character Generator RAM) has 16 address x 35-bit RAM to store 5 x 7 dot matrix character patterns. A character pattern stored in CGRAM can be displayed by specifying the character code in a DCRAM. The address of CGRAM is assigned to 00H to 0FH. (All other addresses are CGROM addresses.) CGRAM can store 16 types of character patterns. COMMAND FORMAT 1st Byte (1st) MSB B7 B6 0/1 0 B5 B4 B3 B2 B1 LSB B0 1 0 X3 X2 X1 X0 Select CGRAM data write mode and specifies CGRAM address (Ex. Specifies CGRAM address 00H) Note: 0: Select CGRAM_A, 1: Select CGRAM_B MSB 2nd Byte (2nd) 3rd Byte (3rd) th 4 Byte (4th) B7 * LSB B6 C30 MSB B7 B6 * C31 MSB B7 B6 * C32 B5 C25 B5 C26 B5 C27 B4 C20 B4 C21 B4 C22 B3 C15 B3 C16 B3 C17 B2 C10 B2 C11 B2 C12 B0 C0 B1 C6 LSB B0 C1 Specifies 2nd column data (written into CGRAM address 00H) B1 C7 LSB B0 C2 Specifies 3rd column data (written into CGRAM address 00H) Specifies 4th column data (written into CGRAM address 00H) Specifies 5th column data (written into CGRAM address 00H) 5 Byte (5th) MSB B7 B6 * C33 B5 C28 B4 C23 B3 C18 B2 C13 B1 C8 LSB B0 C3 6th Byte (6th) MSB B7 B6 * C34 B5 C29 B4 C24 B3 C19 B2 C14 B1 C9 LSB B0 C4 th Specifies 1st column data (written into CGRAM address 00H) B1 C5 To specify the character pattern data continuously to the next address, specify only character pattern data as follows. The address of CGRAM is automatically incremented. Specification of an address is unnecessary. The 2nd to 6th byte (character pattern data) are regarded as one data item, so 200ns is sufficient for tDOFF time between bytes. V1.2 10 March 2012 PT6301 nd 2 Byte (7th) MSB B7 B6 * C30 B5 B4 B3 B2 B1 LSB B0 C25 C20 C15 C10 C5 C0 Specifies 1st column data (written into CGRAM address 01H) B1 C9 LSB B0 C4 Specifies 5th column data (written into CGRAM address 01H) : : th 6 Byte (11th) MSB B7 B6 * C34 B5 C29 B4 C24 B3 C19 B2 C14 X0 (LSB) to X3 (MSB): CGRAM address (4 bits 16 characters) C0 (LSB) to C34 (MSB): Character pattern data (35 bits: 35 outputs per character) *: Don’t care. CGRAM ADDRESSES AND CORRESPONDING CGROM ADDRESS HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F X3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 X2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 X1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 X0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 CGROM address RAM00 (00000000B) RAM01 (00000001B) RAM02 (00000010B) RAM03 (00000011B) RAM04 (00000100B) RAM05 (00000101B) RAM06 (00000110B) RAM07 (00000111B) RAM08 (00001000B) RAM09 (00001001B) RAM0A (00001010B) RAM0B (00001011B) RAM0C (00001100B) RAM0D (00001101B) RAM0E (00001110B) RAM0F (00001111B) Note: Refer to ROM code tables V1.2 11 March 2012 PT6301 3 AND B. ADRAM DATA WRITE (Writes symbol data) ADRAM (Additional Data RAM) has 20 address x 1-bit RAM to store symbol data. Address 00H(0) to 13H(19) corresponds to COM1 to 20. Symbol data stored in ADRAM is directly output without translation of CGROM and CGRAM. The ADRAM can store 1 type of symbol patterns per each digit. The terminal to which the contents of ADRAM are output can be used as a cursor. This command writes data from ADRAM address 00H. COMMAND FORMAT 1st Byte (1st) MSB B7 B6 0/1 0 B5 B4 B3 B2 B1 LSB B0 1 1 * * * * Select ADRAM data write mode (RAM address is set to 00H automatically) Note: 0: Select ADRAM_A, 1: Select ADRAM_B MSB 2nd Byte (2nd) LSB B7 B6 B5 B4 B3 B2 B1 B0 * * * * * * * C0 Sets symbol data (written into ADRAM address 00H) To specify symbol data continuously to the next address, specify only symbol data as follows. The address of ADRAM is automatically incremented. 2nd Byte (3rd) 2nd Byte (4th) MSB B7 B6 * * MSB B7 B6 * * B5 B4 B3 B2 B1 * * * * * B5 B4 B3 B2 B1 * * * * * LSB B0 C0 LSB B0 C0 Sets symbol data (written into ADRAM address 01H) Sets symbol data (written into ADRAM address 02H) : : 2nd Byte (21th) 2nd Byte (22th) MSB B7 B6 * * MSB B7 B6 B5 B4 B3 B2 B1 * * * * * B5 B4 B3 B2 * * * * * * C0: Symbol data (1 bit: 1-symbol data per digit) LSB B0 C0 LSB B0 B1 * C0 Sets symbol data (written into ADRAM address 13H) Sets symbol data (re-written into ADRAM address 00H) *: Don’t care. COM POSITIONS AND ADRAM ADDRESSES ADRAM address (HEX) 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H V1.2 ADRAM address (HEX) 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H COM position COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 12 COM position COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 March 2012 PT6301 DISPLAY DUTY SET (Writes display duty value to duty cycle register) Display duty adjusts brightness in 1024 stages using 10-bit data. When power is turned on or when the RESET signal is input, the duty cycle register value is “0”. Always execute this instruction before turning the display on, then set a desired duty value. COMMAND FORMAT MSB 1st Byte (1st) LSB B7 B6 B5 B4 B3 B2 B1 B0 0 1 0 1 * * D1 D0 MSB 2nd Byte (2nd) Select display duty set mode and set duty value (lower 2 bits) LSB B7 B6 B5 B4 B3 B2 B1 B0 D9 D8 D7 D6 D5 D4 D3 D2 Sets duty value (upper 8 bits) D0 (LSB) to D9 (MSB): Display duty data (10 bits: 1024 stages) *: Don’t care RELATION BETWEEN SETUP DATA AND CONTROLLED COM DUTY HEX D9 D8 D7 D6 D5 D4 D3 D2 000 0 0 0 0 0 0 0 0 001 0 0 0 0 0 0 0 0 002 0 0 0 0 0 0 0 0 : 3BE 1 1 1 0 1 1 1 1 3BF 1 1 1 0 1 1 1 1 3C0 1 1 1 1 0 0 0 0 3C1 1 1 1 1 0 0 0 0 : 3FF 1 1 1 1 1 1 1 1 *The state when power is turned on or when RESET signal is input. D1 0 0 1 D0 0 1 0 1 1 0 0 0 1 0 1 1 1 COM duty 0/1024 1/1024 2/1024 : 958/1024 959/1024 960/1024 960/1024 : 960/1024 DISPLAY DUTY OUTPUT TIMING Example: COM1 Solid line: For display duty is 960/1024 Doted line: For display duty is 64/1024 96 0/10 24 CO M 1 64 /102 4 SE G A (B ) 1 to 35 A DA (B ) V1.2 13 March 2012 PT6301 NUMBER OF DIGIT SET (Writes the number of display digit to the display digit register) This command can set the number of display digit between 5 to 20 digits using 4-bit data. When power is tuned on or when a RESET signal is input, the number of digit register value is “0”. Always execute this instruction to change the number of digit before turning the display on. COMMAND FORMAT MSB 1st Byte (1st) LSB B7 B6 B5 B4 B3 B2 B1 B0 0 1 1 0 K3 K2 K1 K0 Select the number of digit set mode and specifies the number of digit value K0 (LSB) to K3 (MSB): the Number of digit data (4 bits: 5 to 20 digits) *: Don’t care. RELATION BETWEEN SETUP DATA AND CONTROLLED COM The number of digit HEX K0 of COM 0 0 0 0 0 COM1 to 20 8 0 1 1 0 0 0 COM1 to 5 9 1 2 0 1 0 0 COM1 to 6 A 0 3 1 1 0 0 COM1 to 7 B 1 4 0 0 1 0 COM1 to 8 C 0 5 1 0 1 0 COM1 to 9 D 1 6 0 1 1 0 COM1 to 10 E 0 7 1 1 1 0 COM1 to 11 F 1 *The state when power is turned on or when RESET signal is input. HEX K0 K1 K2 K3 K1 K2 K3 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 The number of digit of COM COM1 to 12 COM1 to 13 COM1 to 14 COM1 to 15 COM1 to 16 COM1 to 17 COM1 to 18 COM1 to 19 ALL DISPLAY LIGHTS ON/OFF SET (Turns all display lights ON or OFF) All display lights ON mode is used primarily for display resting. (The display duty during ON mode is the value of the duty cycle register.) All display lights OFF mode is primarily used for display blink and to prevent malfunction when power is turned on. (All the segment output are “Low”, but COM outputs are still driving.) COMMAND FORMAT MSB 1st Byte (1st) LSB B7 B6 B5 B4 B3 B2 B1 B0 0 1 1 1 * * H L Selects all display lights ON or OFF mode H, L: Display operation data *: Don’t care. SET DATA AND DISPLAY STATE OF SEG AND AD L 0 1 0 1 V1.2 H 0 0 1 1 Display state of SEG and AD Normal display Sets all outputs to Low Sets all outputs to High Sets all outputs to High (The state when power is turned on or when RESET is input) 14 March 2012 PT6301 F. STAND-BY MODE (Turning off all display-lights and stopped oscillation function) This mode turns off all display-lights (fixing COM at “Low”) and stops oscillation function. This completely stops the internal operation of the PT6301 and attains low power consumption of VDD and VDISP. Note: If the RESET signal is input while the stand-by mode in progress, the stand-by mode is released and all states are initialized. COMMAND FORMAT MSB 1st Byte (1st) LSB B7 B6 B5 B4 B3 B2 B1 B0 1 1 1 1 * * * * Selects the stand-by mode *: Don’t care. RELEASING THE STAND-BY MODE The timing to release the stand-by mode is shown below. The stand-by mode is released at the falling edge of CS. (The internal oscillation starts) When the oscillation becomes stable, the data input is enabled. (Return CS to “High” before entering data) After the stand-by mode is released, all display-lights are turned off. Release the all display-lights OFF mode to turn on the display-lights. Da ta inpu t CS m or e th an 20 0ns CP m or e th an 20 0ns B0 B1 B2 B3 B4 B5 B6 B7 LS B Sta nd- by sta te (O s ci lla tion s top) OSC F ir s t by te M SB N o rm all y op er atio n ( A ll ou tput ar e "Low ") O s ci llati on s tate O s ci llati on s tar ts V1.2 15 March 2012 PT6301 SETTING FLOWCHART (Power applying included) POWER-OFF FLOWCHART Display operation mode Turn off VDISP Turn off VDD V1.2 16 March 2012 PT6301 COMMAND WRITE METHOD AND DATA TRANSFER METHOD FOR TEST MODE BASIC FLOW FOR TEST MODE Test flow is shown as the following chart. Detailed data format for each test are explained in the following pages. TEST MODE LIST TEST Mode 1 TEST Mode 2 TEST Mode 3 TEST Mode 4 TEST Mode 5 MSB 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 LSB 1 0 1 0 1 0 1 1 0 0 Oscillation stop with all output “Low” Oscillation stop with all output “High” Driver circuit check mode DCRAM/ADRAM/DIGIT data output mode CGRAM/CGROM data output mode TEST MODE 1. OSCILLATION STOP WITH ALL OUTPUT “LOW” In this test, you can confirm that all the driver output signals are changed to “L”. Also, you can measure the static IDO and static IDISP without oscillation. COMMAND FORMAT MSB 1st Byte (1st) LSB B7 B6 B5 B4 B3 B2 B1 B0 1 0 0 0 0 0 0 1 Selects TEST Mode 1 STATUS OF OUTPUT SIGNALS COM1 to 20: All “L” ADA, ADB: All “L” SEGA1 to 35, SEGB1 to 35: All “L” DO: “L” TEST FLOW V1.2 17 March 2012 PT6301 TEST MODE 2. OSCILLATION STOP WITH ALL OUTPUT “HIGH” In this test, you can confirm that all the driver output signals are changed to “H”. Also, you can measure the static IDO and static IDISP without oscillation. COMMAND FORMAT MSB 1st Byte (1st) LSB B7 B6 B5 B4 B3 B2 B1 B0 1 0 0 0 0 0 1 0 Selects TEST Mode 2 STATUS OF OUTPUT SIGNALS COM1 to 20: All “H” ADA, ADB: All “H” SEGA1 to 35, SEGB1 to 35: All “H” DO: “H” TEST FLOW TEST MODE 3. DRIVER CIRCUIT CHECK MODE In this mode, all driver outputs can be directly controlled by input data. Driver control data are input by serial transfer from DA pin after TEST mode 3 is selected. Data input method is same as normal operation. COMMAND FORMAT 1st Byte (1st) MSB B7 B6 1 0 B5 B4 B3 B2 B1 LSB B0 0 0 0 0 1 1 Selects TEST Mode 3 STATUS OF OUTPUT SIGNALS COM1 to 20: Changed by input data ADA, ADB: Changed by input data SEGA1 to 35, SEGB1 to 35: Changed by input data DO: Undefined TEST FLOW INPUT DATA FORMAT 92-bit data are written to DA pin. First bit COM <20:11> 10-bit V1.2 ADA 1bit SEGA <35:1> 35-bit 18 SEGB <35:1> 35-bit ADB 1bit Last bit COM <1:10> 10-bit March 2012 PT6301 TEST MODE 4. DCRAM/ADRAM/DIGIT DATA OUTPUT MODE In this mode, contents of DCRAM and ADRAM for each digit can be confirmed. DCRAM and ADRAM for each digit must be set before entering TEST mode 4. COMMAND FORMAT 1st Byte (1st) MSB B7 B6 1 0 B5 0 B4 0 B3 0 B2 1 B1 0 LSB B0 0 Selects TEST Mode 4 STATUS OF OUTPUT SIGNALS COM1 to 20: All “L” ADA, ADB: All “L” SEGA1 to 35, SEGB1 to 35: All “L” DO: Data Out TEST FLOW OUTPUT DATA FORMAT 92-bit data digits are read from DO pin. First bit Digit COM <20:11> 10-bit V1.2 ADRAM_A DCRAM_A <1:8> Null DCRAM_B <8:1> ADRAM_B 1bit 8-bit 54-bit 8-bit 1bit 19 Last bit Digit COM <1:10> 10-bit March 2012 PT6301 TEST MODE 5. CGRAM/CGROM DATA OUTPUT MODE In this mode, content of CGRAM and CGROM can be confirmed. CGRAM must be set before entering TEST mode 5. COMMAND FORMAT 1st Byte (1st) MSB B7 B6 1 0 B5 B4 B3 B2 B1 LSB B0 0 0 0 1 0 1 Selects TEST Mode 5 STATUS OF OUTPUT SIGNALS COM1 to 20: All “L” ADA, ADB: All “L” SEGA1 to 35, SEGB1 to 35: All “L” DO: Data Out TEST FLOW OUTPUT DATA FORMAT 92-bit data per character are read from DO pin. First bit Null 11-bit V1.2 Last bit CGRAM_A <35:1> or CGROM_A <35:1> 35-bit CGRAM_B <35:1> or CGROM_B <35:1> 35-bit 20 Null 11-bit March 2012 PT6301 ABSOLUTE MAXIMUN RATINGS Parameter Supply voltage (1) Supply voltage (2) Input voltage Operating temperature Storage temperature Symbol VDD VDISP VIN Topr Tstg IO1 IO2 Output current IO3 IO4 Condition COM1 to COM16 ADA, ADB SEGA1 to SEGA35, SEGB1 to SEGB35 DO Rating -0.3 to +6.5 -0.3 to +70 -0.3 to VDD+0.3 -40 to +85 -65 to +150 -50 to 2.0 -25 to 2.0 Unit V V V ℃ ℃ mA mA -15 to 2.0 mA -2 to 2.0 mA RECOMMENDED OPERATING CONDITIONS Parameter Supply voltage (1) Symbol VDD Supply voltage (2) VDISP Operating frequency fosc Frame frequency Junction temperature fFR Tj V1.2 Condition When the power supply voltage is 5V (typ.) When the power supply voltage is 3.3V (typ.) VDD=5.0V, C=39pF, R=8.2KΩ, Tj=25℃ VDD=3.3V, C=39pF, R=6.2KΩ, Tj=25℃ DIGIT=1 to 20, oscillation, Tj=25℃ - 21 Min. Typ. Max. 4.5 5.0 5.5 3.0 3.3 3.6 30 3.0 3.0 146 -40 4.0 4.0 195 - 60 5.0 5.0 215 +125 Unit V V MHz Hz ℃ March 2012 PT6301 DC CHARACTERISTICS (Unless otherwise specified, VDD=5.0V±10%, VDISP=30 to 60V, Tj=-40 to +125℃) Parameter High level input voltage Low level input voltage High level input current Low level input current High level output voltage Low level output voltage Current consumption (1) Current consumption (2) Symbol Applied Pin Condition Min. Typ. Max. Unit VIH *1 - 0.8VDD - - V VIL *1 - - - 0.2VDD V IIH *1 VDO=VIN=5.0V -1.0 - +1.0 μA IIL *1 VDO=5.0V, VIN=0.0V -1.0 - +1.0 μA VOH1 VOH2 COM1 to 20 ADA, ADB SEGA1 to 35, SEGB1 to 35 DO *2 DO VDD VDISP=50V, IOH1=-40mA, Tj=25℃ VDISP=50V, IOH2=-15mA, Tj=25℃ VDISP-4 VDISP-4 - - V V VDISP=50V, IOH3=-5mA, Tj=25℃ VDISP-4 - - V VDD=5.0V, IOH4=-400μA VDISP=50V, IOL1=+1mA,Tj=25℃ VDD=5.0V, IOL2=+400μA VDD=5.0V, fosc=4.0MHz All output lights on All output lights off fosc=4.0MHz, (Typ: Tj=25℃) no load (Max. Tj=85℃) Stand-by mode (Typ.: Tj=25℃) (Max. Tj=85℃) VDD-0.3 - - 2.0 0.3 6 1 V V V mA mA - 1.0 15.0 μA - 1.0 1.0 μA - 1.0 10.0 μA VOH3 VOH4 VOL1 VOL2 IDO1 IDISP1 IDISP2 VDISP IDD VDD IDISP VDISP (Unless otherwise specified, VDD=3.3V±10%, VDISP=30 to 60V, Tj=-40 to +125℃) Parameter High level input voltage Low level input voltage High level input current Low level input current High level output voltage Low level output voltage Current consumption (1) Current consumption (2) Symbol Applied Pin Condition Min. Typ. Max. Unit VIH *1 - 0.8VDD - - V VIL *1 - - - 0.2VDD V IIH *1 VDO=VIN=3.3V -1.0 - +1.0 μA IIL *1 VDO=3.3V, VIN=0.0V -1.0 - +1.0 μA VOH1 VOH2 COM1 to 20 ADA, ADB SEGA1 to 35, SEGB1 to 35 DO *2 DO VDD VDISP=50V, IOH1=-40mA, Tj=25℃ VDISP=50V, IOH2=-15mA, Tj=25℃ VDISP-4 VDISP-4 - - V V VDISP=50V, IOH3=-5mA, Tj=25℃ VDISP-4 - - V VDD=3.3V, IOH4=-400μA VDISP=50V, IOL1=+1mA,Tj=25℃ VDD=3.3V, IOL2=+400μA VDD=3.3V, fosc=4.0MHz VDD-0.3 - - 2.0 0.3 4 V V V mA - - 1 mA - 1.0 15.0 μA - 1.0 1.0 μA - 1.0 10.0 μA VOH3 VOH4 VOL1 VOL2 IDO1 IDISP1 IDISP2 VDISP IDD VDD IDISP VDISP All output lights on All output lights off (Typ: Tj=25℃) (Max. Tj=85℃) Stand-by mode (Typ.: Tj=25℃) (Max. Tj=85℃) fosc=4.0MHz no load Notes: 1. *1=CS, CP, DA, RESET 2. *2=SEGA1 to 35, SEGB1 to 35, ADA, ADB, COM1 to 20 V1.2 22 March 2012 PT6301 AC CHARACTERISTICS (Unless otherwise specified, VDD=5.0V/3.3V±10%, VDISP=30 to 60V, Tj=-40 to +125℃) Parameter Symbol Condition CP frequency fc CP pulse width tCW DA setup time tDS DA hold time tDH CS setup time tCSS CS hold time tCSH Oscillation state CS wait time tCSW Data processing time tDOFF Oscillation state When RESET signal is input from RESET pulse width tWRES microcontroller etc. externally DA wait time tRSOFF tR tR=20 to 80% CI=100pF All output slew rate tF tF=80 to 20% V1.2 23 Min. 200 200 200 200 8 200 4 Max. 2.0 - Unit MHz ns ns ns ns μs ns μs 200 - ns 200 - 2.0 2.0 μs μs March 2012 PT6301 TIMING DIAGRAM Symbol VIH VIL VDD=3.3V±10% 0.8VDD 0.2VDD VDD=5.0V±10% 0.8VDD 0.2VDD DATA TIMING RESET TIMING HIGH VOLTAGE OUTPUT TIMING DIGIT OUTPUT TIMING (for 20-digit display, at a duty of 960/1024) V1.2 24 March 2012 PT6301 ROM CODE PT6301-001 (EUROPEAN) V1.2 25 March 2012 PT6301 PT6301-002 (KATAKANA) V1.2 26 March 2012 PT6301 PAD CONFIGURATION Chip size: X=2.50mm, Y=10.14mm Chip thickness: 280μm PAD size - Driver output: X=90μm, Y=60μm (SEGA1 to 35, SEGB1 to 35, ADA, ADB, COM1 to 20) - Logic input/output: X=90μm, Y=65μm (DA, CS, CP, RESET, OSC0, DO, TEST) - Power: X=90μm, Y=80μm (VDD, L-GND, VDISP, D-GND) Alignment Mark; V1.2 27 March 2012 PT6301 PAD LOCATION (unit: μm) V1.2 Pad No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Pad Name VDISP COM10 COM9 COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 ADB SEGB1 SEGB2 SEGB3 SEGB4 SEGB5 SEGB6 SEGB7 SEGB8 SEGB9 SEGB10 SEGB11 SEGB12 SEGB13 SEGB14 SEGB15 SEGB16 SEGB17 SEGB18 SEGB19 SEGB20 SEGB21 SEGB22 SEGB23 SEGB24 SEGB25 SEGB26 SEGB27 SEGB28 SEGB29 SEGB30 SEGB31 SEGB32 SEGB33 SEGB34 SEGB35 SEGA1 SEGA2 SEGA3 SEGA4 SEGA5 SEGA6 SEGA7 28 X 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 Y 4900 4615 4495 4375 4255 4135 4015 3895 3775 3655 3535 3415 3105 3015 2925 2835 2745 2655 2565 2475 2385 2295 2205 2115 2025 1935 1845 1755 1665 1575 1485 1395 1305 1215 1125 1035 945 855 765 675 585 495 405 315 225 135 45 -45 -135 -225 -315 -405 -495 -585 March 2012 PT6301 Pad No. 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 Alignment Alignment V1.2 Pad Name SEGA8 SEGA9 SEGA10 SEGA11 SEGA12 SEGA13 SEGA14 SEGA15 SEGA16 SEGA17 SEGA18 SEGA19 SEGA20 SEGA21 SEGA22 SEGA23 SEGA24 SEGA25 SEGA26 SEGA27 SEGA28 SEGA29 SEGA30 SEGA31 SEGA32 SEGA33 SEGA35 SEGA35 ADA COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 VDISP D-GND L-GND VDD TEST DO DA CP CS RESET OSC VDD L-GND D-GND 29 X 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 -1110 -1110 -1110 -1110 -1110 -1110 -1110 -1110 -1110 -1110 -1110 -1110 -1110 -1115 -1115 Y -675 -765 -855 -945 -1035 -1125 -1215 -1305 -1395 -1485 -1575 -1665 -1755 -1845 -1935 -2025 -2115 -2205 -2295 -2385 -2475 -2565 -2655 -2745 -2835 -2925 -3015 -3105 -3415 -3535 -3655 -3775 -3895 -4015 -4135 -4255 -4375 -4495 -4615 -4900 -4860 -4655 -3015 -2385 -1575 -765 45 855 1665 2475 3015 4655 4860 4955 -4955 March 2012 PT6301 IMPORTANT NOTICE Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied. Princeton Technology Corp. 2F, 233-1, Baociao Road, Sindian, Taipei 23145, Taiwan Tel: 886-2-66296288 Fax: 886-2-29174598 http://www.princeton.com.tw V1.2 30 March 2012