ROHM UMF28N

UMF28N
Transistors
Power management (dual transistors)
UMF28N
2SA1774 and DTC124XE are housed independently in a UMT package.
zExternal dimensions (Unit : mm)
0.65
(1)
1.25
2.0
1.3
(3)
(2)
(5)
(6)
0.2
zFeatures
1) Power switching circuit in a single package.
2) Mounting cost and area can be cut in half.
0.65
UMF28N
(4)
zApplication
Power management circuit
0.1Min.
0.9
0to0.1
zStructure
Silicon epitaxial planar transistor
0.7
0.15
2.1
Each lead has same dimensions
ROHM : UMT6
EIAJ : SC-88
Abbreviated symbol : F28
zEquivalent circuit
(3)
(2)
DTr2
(1)
Tr1
R1
R2
(4)
(5)
(6)
R1=22kΩ
R2=47kΩ
zPackaging specifications
Type
UMF28N
UMT6
Package
F28
Marking
TR
Code
Basic ordering unit (pieces) 3000
1/4
UMF28N
Transistors
zAbsolute maximum ratings (Ta=25°C)
Tr1
Symbol
Limits
Unit
Collector-base voltage
VCBO
−60
V
Collector-emitter voltage
VCEO
−50
V
Emitter-base voltage
VEBO
−6
V
Parameter
Collector current
IC
−150
mA
Collector power dissipation
PC
150 (TOTAL)
mW
Junction temperature
Tj
150
°C
Storage temperature
Tstg
−55 to +150
°C
∗
∗ 120mW per element must not be exceeded.
DTr2
Parameter
Supply voltage
Input voltage
Symbol
Limits
VCC
50
VIN
−10 to +40
IO
100
Output current
100
IC(Max.)
PC
150(TOTAL)
Power dissipation
Tj
150
Junction temperature
Tstg
−55 to +150
Range of storage temperature
Unit
V
V
mA
mW
°C
°C
∗
∗ 120mW per element must not be exceeded.
Each terminal mounted on a recommended land.
zElectrical characteristics (Ta=25°C)
Tr1
Symbol
Min.
Typ.
Max.
Unit
Collector-base breakdown voltage
Parameter
BVCBO
−60
−
−
V
IC = −50µA
Collector-emitter breakdown voltage
BVCEO
−50
−
−
V
IC = −1mA
Emitter-base breakdown voltage
Conditions
BVEBO
−6
−
−
V
IE = −50µA
Collector cutoff current
ICBO
−
−
−0.1
µA
VCB = −60V
Emitter cutoff current
IEBO
−
−
−0.1
µA
VEB = −6V
VCE(sat)
−
−
−0.5
V
IC/IB = −50mA/−5mA
hFE
180
−
390
−
VCE = −6V, IC = −1mA
fT
−
140
−
MHz
Cob
−
4
5
pF
Symbol
VI(off)
VI(on)
VO(on)
II
IO(off)
GI
Min.
−
2.5
−
−
−
68
Typ.
−
−
0.1
−
−
−
Max.
0.4
−
0.3
0.36
0.5
−
Unit
V
mA
µA
−
Conditions
VCC=5V, IO=100µA
VO=0.3V, IO=2mA
IO=10mA, II=0.5mA
VI=5V
VCC=50V, VI=0V
VO=5V, IO=5mA
R1
R2/R1
fT
15.4
1.7
−
22
2.1
250
28.6
2.6
−
kΩ
−
MHz
−
−
VCE=10V, IE= −5mA, f=100MHz ∗
Collector-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
VCE = −12V, IE = 2mA, f = 100MHz
VCB = −12V, IE = 0A, f = 1MHz
DTr2
Parameter
Input voltage
Output voltage
Input current
Output current
DC current gain
Input resistance
Resistance ratio
Transition frequency
V
∗ Transition frequency of the device.
2/4
UMF28N
Transistors
zElectrical characteristics curves
Tr1
-5
-2
-1
-0.5
-0.2
-28.0
-24.5
-21.0
-6
-17.5
-14.0
-4
-10.5
-7.0
-2
-3.5µA
0
-0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6
-500
-450
-400
-350
-300
-80
-250
-60
-200
-150
-40
-100
-20
-0.4
-0.8
-1.2
-1.6
-50µA
IB = 0
-2.0
-40°C
100
50
VCE = -6V
-0.5
-1
-2
-5
-10 -20
-50 -100
-0.2
COLLECTOR CURRENT : IC (mA)
-1
-2
-5
-10 -20
-0.5
-0.2
Ta = 100°C
25°C
-40°C
-0.1
-0.05
-0.5
-1
-2
-5
-10
-20
-50 -100
COLLECTOR CURRENT : IC (mA)
Fig.7 Collector-emitter saturation
voltage vs. collector current ( ΙΙ )
TRANSITION FREQUENCY : fT (MHz)
lC/lB = 10
-50 -100
-0.5
-0.2
IC/IB = 50
20
-0.1
10
-0.05
-0.2
Ta = 25°C
VCE = -12V
200
100
50
1
2
5
10
20
50
EMITTER CURRENT : IE (mA)
Fig.8 Gain bandwidth product vs.
emitter current
-1
-2
-5
-10
-20
-50 -100
Fig.6 Collector-emitter saturation
voltage vs. collector current ( Ι )
500
0.5
-0.5
COLLECTOR CURRENT : IC (mA)
Fig.5 DC current gain vs. collector
current ( ΙΙ )
1000
-1
-5
Ta = 25°C
COLLECTOR CURRENT : IC (mA)
Fig.4 DC current gain vs. collector
current ( Ι )
-0.2
-0.5
-4
-1
100
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE
: Cib (pF)
-0.2
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
DC CURRENT GAIN : hFE
25°C
100
-3
Fig.3 Grounded emitter output
characteristics ( ΙΙ )
Ta = 100°C
200
-2
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.2 Grounded emitter output
characteristics ( Ι )
500
200
-1
0
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
VCE = -5V
-3V
-1V
Ta = 25°C
50
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
Ta = 25°C
IB = 0
Fig.1 Grounded emitter propagation
characteristics
DC CURRENT GAIN : hFE
-100
-31.5
-8
BASE TO EMITTER VOLTAGE : VBE (V)
500
-35.0
Ta = 25°C
COLLECTOR CURRENT : IC (mA)
-10
-0.1
-10
VCE = −6V
Ta = 100°C
25°C
-20
−40°C
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : Ic (mA)
-50
20
Ta = 25°C
f = 1MHz
IE = 0A
IC = 0A
Cib
10
Co
b
5
2
-0.5
-1
-2
-5
-10
-20
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.9 Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
3/4
UMF28N
Transistors
DTr2
10m
5m
VO=0.3V
OUTPUT CURRENT : Io (A)
INPUT VOLTAGE : VI(on) (V)
50
20
10
Ta=−40°C
25°C
100°C
5
2
1
500m
200m
100m
100µ 200µ
500µ 1m
2m
5m 10m 20m
50m 100m
OUTPUT CURRENT : IO (A)
VO=5V
500
Ta=100°C
25°C
−40°C
2m
1m
500µ
Ta=100°C
25°C
−40°C
200µ
100µ
50µ
20µ
10µ
5µ
2µ
1µ
0
200
100
50
20
10
5
2
0.5
1.0
1.5
2.0
2.5
3.0
INPUT VOLTAGE : VI(off) (V)
Fig.1 Input voltage vs. output current
(ON characteristics)
1
1k
VCC=5V
DC CURRENT GAIN : GI
100
Fig.2 Output current vs. input voltage
(OFF characteristics)
1
100µ 200µ
500µ 1m
2m
5m 10m 20m
50m 100m
OUTPUT CURRENT : IO (A)
Fig.3 DC current gain vs. output
current
lO/lI=20
OUTPUT VOLTAGE : VO(on) (V)
500m
Ta=100°C
25°C
−40°C
200m
100m
50m
20m
10m
5m
2m
1m
100µ 200µ
500µ 1m
2m
5m 10m 20m
50m 100m
OUTPUT CURRENT : IO (A)
Fig.4 Output voltage vs. output
current
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.1