ROHM EMZ2_1

EMZ2 / UMZ2N / IMZ2A
Transistors
Power management (dual transistors)
EMZ2 / UMZ2N / IMZ2A
zExternal dimensions (Unit : mm)
(5)
(6)
0.5
IMZ2A
(5)
(6)
Each lead has same dimensions
ROHM : EMT6
(2)
UMZ2N
(1)
(3)
(3)
(2)
(6)
(4)
(5)
Tr1
(1)
(6)
0.2
(4)
Tr2
Tr1
(5)
Tr2
1.25
zAbsolute maximum ratings (Ta = 25°C)
Junction temperature
Storage temperature
Tj
Tstg
PC
0.7
50
−6
7
−150
150
150 (TOTAL)
300 (TOTAL)
0.1Min.
V
V
V
mA
mW
150
°C
−55 to +150
°C
∗1
∗2
ROHM : UMT6
EIAJ : SC-88
Each lead has same dimensions
IMZ2A
(3)
(4)
(5)
per element must not be exceeded.
∗12 120mW
∗ 200mW per element must not be exceeded.
−50
(1)
VEBO
IC
Tr2
60
(2)
Emitter-base voltage
Collector current
Collector power EMZ2, UMZ2N
dissipation
IMZ2A
Tr1
−60
0to0.1
VCBO
VCEO
2.1
Unit
(6)
Collector-base voltage
Collector-emitter voltage
Limits
0.15
Symbol
0.3
Parameter
2.0
(4)
1.3
(1)
0.65
(2)
0.65
(3)
(1)
0.95 0.95
1.9
2.9
EMZ2 / UMZ2N
(2)
1.2
1.6
0.13
zEquivalent circuits
(3)
(4)
0.5 0.5
1.0
1.6
EMZ2
0.22
zFeature
1) Both a 2SA1037AK chip and 2SC2412K chip in a
EMT or UMT or SMT package.
1.6
EMZ2
UMZ2N
IMZ2A
EMT6
Z2
UMT6
Z2
SMT6
Z2
T2R
TR
T108
8000
3000
3000
0.8
0.15
0.3to0.6
ROHM : SMT6
EIAJ : SC-74
0to0.1
Part No.
Package
Marking
Code
Basic ordering unit (pieces)
1.1
2.8
zPackage, marking, and packaging specifications
Each lead has same dimensions
Rev.A
1/4
EMZ2 / UMZ2N / IMZ2A
Transistors
zElectrical characteristics (Ta=25°C)
Tr1 (PNP)
Parameter
Collector-base breakdown voltage
Collector-emitter breakdown voltage
Emitter-base breakdown voltage
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
Symbol
Min.
Typ.
Max.
Unit
BVCBO
BVCEO
−
−
−
−
−
−
−
−0.1
V
V
V
µA
IC = −50µA
IC = −1mA
−
VCE(sat)
−60
−50
−6
−
−
−
−
−0.1
−0.5
µA
V
VEB = −6V
IC/IB = −50mA/−5mA
hFE
120
−
560
−
fT
−
140
−
MHz
Cob
−
4
5
pF
Symbol
Min.
Typ.
Max.
Unit
BVCBO
BVCEO
60
50
−
−
−
−
V
V
IC = 50µA
IC = 1mA
BVEBO
−
−
−
−
−
−
0.1
0.1
0.4
560
V
µA
µA
IE = 50µA
VCB = 60V
VEB = 7V
hFE
7
−
−
−
120
fT
−
180
−
MHz
Cob
−
2
3.5
pF
BVEBO
ICBO
IEBO
∗ Transition frequency of the device.
Conditions
IE = −50µA
VCB = −60V
VCE = −6V , IC = −1mA
VCE = −12V , IE = 2mA , f = 100MHz
VCB = −12V , IE = 0A , f = 1MHz
∗
Tr2 (NPN)
Parameter
Collector-base breakdown voltage
Collector-emitter breakdown voltage
Emitter-base breakdown voltage
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
ICBO
IEBO
VCE(sat)
∗ Transition frequency of the device.
V
−
Conditions
IC/IB = 50mA/5mA
VCE = 6V , IC = 1mA
VCE = 12V , IE = −2mA , f = 100MHz
VCB = 12V , IE = 0A , f = 1MHz
∗
zElectrical characteristics curves
PNP Tr
−10
−5
−2
−1
−0.5
−0.2
−0.1
−10
VCE= −6V
−0.2 −0.4 −0.6 −0.8 −1.0 −1.2 −1.4 −1.6
BASE TO EMITTER VOLTAGE : VBE (V)
Fig.1 Grounded emitter propagation
characteristics
−35.0
Ta=25˚C
−31.5
−28.0
−8
−24.5
−21.0
−6
−17.5
−14.0
−4
−10.5
−7.0
−2
−3.5µA
0
−0.4
−0.8
−1.2
IB=0
−1.6
−2.0
COLLECTOR TO MITTER VOLTAGE : VCE (V)
Fig.2 Grounded emitter output
characteristics (I)
−100
COLLECTOR CURRENT : IC (mA)
−20
Ta=100˚C
25˚C
−40˚C
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : Ic (mA)
−50
−80
−60
Ta=25˚C
−500
−450
−400
−350
−300
−250
−200
−150
−40
−100
−20
−50µA
IB=0
0
−1
−2
−3
−4
−5
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.3 Grounded emitter output
characteristics (II)
Rev.A
2/4
EMZ2 / UMZ2N / IMZ2A
500
VCE= −5V
−3V
−1V
Ta=25˚C
Ta=100˚C
25˚C
DC CURRENT GAIN : hFE
200
100
−40˚C
200
100
50
50
Ta=25˚C
−0.5
−0.2
IC/IB=50
−0.1
20
10
−0.05
−0.2 −0.5 −1
−2
−5 −10 −20
−0.2 −0.5 −1
−50 −100
−0.5
−0.2
Ta=100˚C
25˚C
−40˚C
−0.1
−0.05
−0.2 −0.5 −1
−2
1000
TRANSITION FREQUENCY : fT (MHz)
lC/lB=10
−5 −10 −20
−0.2 −0.5 −1
−50 −100
500
200
100
50
0.5
1
2
5
10
20
50
100
EMITTER CURRENT : IE (mA)
Fig.7 Collector-emitter saturation
voltage vs. collector current (II)
−5 −10 −20
−50 −100
Fig.6 Collector-emitter saturation
voltage vs. collector current (I)
Ta=25˚C
VCE= −12V
COLLECTOR CURRENT : IC (mA)
−2
COLLECTOR CURRENT : IC (mA)
Fig.5 DC current gain vs.
collector current (II)
Fig.4 DC current gain vs.
collector current (I)
−1
VCE= −6V
−5 −10 −20 −50 −100
−2
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : IC (mA)
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
−1
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE
: Cib (pF)
DC CURRENT GAIN : hFE
500
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
Transistors
20
Ta=25˚C
f=1MHz
IE=0A
IC=0A
Cib
10
Co
b
5
2
−0.5
−1
−2
−5
−10
−20
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE : VEB (V)
Fig.9 Collector output capacitance vs.
collector-base voltage
Emitter inputcapacitance vs.
emitter-base voltage
Fig.8 Gain bandwidth product vs.
emitter current
NPN Tr
10
2
1
25°C
−55°C
5
0.5
0.2
0.1
0
COLLECTOR CURRENT : IC (mA)
20
Ta=100°C
COLLECTOR CURRENT : IC (mA)
VCE=6V
0.50mA
mA
0.45 A
0.40m
0.35mA
Ta=25°C
80
0.30mA
0.25mA
60
0.20mA
0.15mA
40
0.10mA
20
0.05mA
IB=0A
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
BASE TO EMITTER VOLTAGE : VBE (V)
Fig.10 Grounded emitter propagation
characteristics
0
0.4
0.8
1.2
1.6
2.0
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.11 Grounded emitter output
characteristics ( Ι )
10
COLLECTOR CURRENT : IC (mA)
100
50
30µA
Ta=25°C
27µA
8
24µA
21µA
6
18µA
15µA
12µA
4
9µA
6µA
2
3µA
0
0
4
8
IB=0A
12
16
20
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.12
Grounded emitter output
characteristics ( ΙΙ )
Rev.A
3/4
EMZ2 / UMZ2N / IMZ2A
VCE=5V
3V
1V
200
100
50
20
0.5 1
2
5
10 20
25°C
200
−55°C
100
50
20
10
0.2
50 100 200
2
5
10 20
50 100 200
COLLECTOR CURRENT : IC (mA)
Fig.13 DC current gain vs.
collector current ( Ι )
Fig.14 DC current gain vs.
collector current ( ΙΙ )
0.5
IC/IB=10
0.2
Ta=100°C
25°C
−55°C
0.1
0.05
0.02
0.01
0.2
0.5 1
2
5
10
20
50 100 200
0.5
0.1
0.05
0.02
0.01
Ta=25°C
f=1MHz
IE=0A
IC=0A
5
2
Co
b
1
0.2
0.5
1
2
5
10
20
50
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.19
5
10
20
Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
IC/IB=50
20
10
0.1
0.05
0.02
0.01
0.2
0.5 1
2
5
10
20
50 100 200
Ta=25°C
VCE=6V
500
200
100
50
−0.5 −1
50 100
−2
−5
−10 −20
−50 −100
EMITTER CURRENT : IE (mA)
Fig.17 Collector-emitter saturation
voltage vs. collector current (ΙΙ)
BASE COLLECTOR TIME CONSTANT : Cc·rbb' (ps)
20
Cib
2
0.2
COLLECTOR CURRENT : IC (mA)
Fig.16 Collector-emitter saturation
voltage vs. collector current ( Ι )
10
0.5 1
Ta=25°C
Fig.15 Collector-emitter saturation
voltage vs. collector current
Ta=100°C
25°C
−55°C
0.2
0.5
COLLECTOR CURRENT : IC (mA)
IC/IB=50
0.2
COLLECTOR CURRENT : IC (mA)
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE : Cib (pF)
0.5 1
COLLECTOR CURRENT : IC (mA)
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
10
0.2
VCE=5V
Ta=100°C
TRANSITION FREQUENCY : fT (MHz)
500
Ta=25°C
DC CURRENT GAIN : hFE
DC CURRENT GAIN : hFE
500
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
Transistors
Fig.18 Gain bandwidth product vs.
emitter current
Ta=25°C
f=32MHZ
VCB=6V
200
100
50
20
10
−0.2
−0.5
−1
−2
−5
−10
EMITTER CURRENT : IE (mA)
Fig.20 Base-collector time constant
vs. emitter current
Rev.A
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.1