C3D06065E VRRM ==650650 VRRM V V Silicon Carbide Schottky Diode IF (ITF;C=135˚C) == 9.5 TC<135˚C 8.6AA Z-Rec Rectifier ® QcQc = 15 nC = nC Features • • • • • • • Package 650-Volt Schottky Rectifier Zero Reverse Recovery Current Zero Forward Recovery Voltage High-Frequency Operation Temperature-Independent Switching Behavior Extremely Fast Switching Positive Temperature Coefficient on VF TO-252-2 Benefits • • • • • Replace Bipolar with Unipolar Rectifiers Essentially No Switching Losses Higher Efficiency Reduction of Heat Sink Requirements Parallel Devices Without Thermal Runaway PIN 1 CASE PIN 2 Applications • • • Switch Mode Power Supplies Power Factor Correction Motor Drives Part Number Package Marking C3D06065E TO-252-2 C3D06065 Maximum Ratings (TC = 25˚C unless otherwise specified) Symbol Value Unit Test Conditions Note VRRM Repetitive Peak Reverse Voltage 650 V VRSM Surge Peak Reverse Voltage 650 V VDC DC Blocking Voltage 650 V Continuous Forward Current 20 9.5 6 A TC=25˚C TC=135˚C TC=157˚C IFRM Repetitive Peak Forward Surge Current 28 19 A TC=25˚C, tP = 10 ms, Half Sine Wave TC=110˚C, tP = 10 ms, Half Sine Wave IFSM Non-Repetitive Peak Forward Surge Current 63 49 A TC=25˚C, tp = 10 ms, Half Sine Wave TC=110˚C, tp = 10 ms, Half Sine Wave Fig. 8 IF,Max Non-Repetitive Peak Forward Surge Current 540 460 A TC=25˚C, tP = 10 µs, Pulse TC=110˚C, tP = 10 µs, Pulse Fig. 8 Power Dissipation 100 43 W TC=25˚C TC=110˚C Fig. 4 -55 to +175 ˚C IF Ptot TJ , Tstg 1 Parameter Operating Junction and Storage Temperature C3D06065E Rev. - Fig. 3 Electrical Characteristics Symbol Parameter Typ. Max. Unit Test Conditions Note VF Forward Voltage 1.5 2.0 1.7 2.4 V IF = 6 A TJ=25°C IF = 6 A TJ=175°C Fig. 1 IR Reverse Current 10 20 50 100 μA VR = 650 V TJ=25°C VR = 650 V TJ=175°C Fig. 2 QC Total Capacitive Charge 15 nC VR = 400 V, IF = 6 A di/dt = 500 A/μs TJ = 25°C Fig. 5 C Total Capacitance 295 28.5 25.5 pF VR = 0 V, TJ = 25°C, f = 1 MHz VR = 200 V, TJ = 25˚C, f = 1 MHz VR = 400 V, TJ = 25˚C, f = 1 MHz Fig. 6 EC Capacitance Stored Energy 2.3 μJ VR = 400 V Fig. 7 Note: 1. This is a majority carrier diode, so there is no reverse recovery charge. Thermal Characteristics Symbol RθJC Parameter Thermal Resistance from Junction to Case Typ. Unit Note 1.5 °C/W Fig. 9 Typical Performance 20 14 6 TJ = 25 °C TJ = 75 °C TJ = 125 °C IR (mA) 8 TJ = -55 °C Reverse Leakage Current, IRR (mA) 10 F Foward I Current, (A) IF (A) 12 TJ = 175 °C 4 2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 200 400 600 800 1000 1200 FowardVVoltage, (V) VF (V) F Figure 1. Forward Characteristics 2 C3D06065E Rev. - 16 TJ = 175 °C 12 TJ = 125 °C TJ = 75 °C 8 TJ = 25 °C TJ = -55 °C 4 0 0 100 200 300 400 500 600 700 800 900 1000 ReverseVVoltage, (V) VR (V) R Figure 2. Reverse Characteristics Typical Performance 70 120 10% Duty 20% Duty 30% Duty 50% Duty 70% Duty DC 60 80 40 (W) PP Tot(W) TOT IF(peak) (A) IF (A) 50 100 30 60 40 20 20 10 0 25 50 75 100 125 150 0 175 25 50 75 T ˚C TCC(°C) 150 175 C Figure 4. Power Derating 350 Conditions: TJ = 25 °C Conditions: TJ = 25 °C Ftest = 1 MHz Vtest = 25 mV 300 20 250 Capacitance C (pF) (pF) CapacitiveQCharge, (nC) QC (nC) C 125 ˚C TTC (°C) Figure 3. Current Derating 25 100 15 10 200 150 100 5 50 0 0 100 200 300 400 500 600 700 ReverseVVoltage, (V) VR (V) R Figure 5. Total Capacitance Charge vs. Reverse Voltage 3 C3D06065E Rev. - 0 0 1 10 100 (V) VR (V) ReverseVVoltage, R Figure 6. Capacitance vs. Reverse Voltage 1000 Typical Performance 1,000 6 IIFSM (A) (A) 4 FSM 3 C Capacitance StoredE Energy, µJ) (mJ) EC (µ 5 100 TJ = 25 °C TJ = 110 °C 2 1 0 0 100 200 300 400 500 600 10 10E-6 700 ReverseVVoltage, (V) VR (V) 0.5 0.3 0.1 100E-3 0.05 0.02 SinglePulse 0.01 10E-3 1E-3 1E-6 10E-6 100E-6 1E-3 Time, tp (s) T (Sec) 10E-3 Figure 9. Transient Thermal Impedance 4 C3D06065E Rev. - 10E-3 Figure 8. Non-repetitive peak forward surge current versus pulse duration (sinusoidal waveform) Figure 7. Capacitance Stored Energy Thermal Resistance (oC/W) Thermal Resistance (˚C/W) 1E-3 tp (s) Time, tp (s) R 1 100E-6 100E-3 1 Package Dimensions POS Package TO-252-2 * Inches Millimeters Min Max Min Max A .250 .289 6.350 7.341 B .197 .215 5.004 5.461 C .027 .050 .686 1.270 D* .270 .322 6.858 8.179 E .178 .182 4.521 4.623 F .025 .045 .635 1.143 G 44˚ 46˚ 44˚ 46˚ H .380 .410 9.652 10.414 J .090 TYP 2.286 TYP K 6˚ 8˚ 6˚ 8˚ 2.388 L .086 .094 2.184 M .018 .034 .457 .864 N .035 .050 .889 1.270 P .231 .246 5.867 6.248 Q 0.00 .005 0.00 .127 R R0.010 TYP R0.254 TYP S .017 .023 .432 .584 T .038 .045 .965 1.143 U .021 .029 .533 .737 Note: * Tab “D” may not be present Recommended Solder Pad Layout TO-252-2 Part Number Package Marking C3D06065E TO-252-2 C3D06065 Note: Recommended soldering profiles can be found in the applications note here: http://www.cree.com/power_app_notes/soldering 5 C3D06065E Rev. - Diode Model Diode Model CSD04060 Vf T = VT + If*RT VT= 0.965 + (Tj * -1.3*10-3) RT= 0.096 + (Tj * 1.06*10-3) VfT = VT + If * RT VT = 0.96 + (TJ * -1.1*10-3) RT = 0.07 + (TJ * 7.4*10-4) VT RT Note: Tj = Diode Junction Temperature In Degrees Celsius, valid from 25°C to 175°C Notes • RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. • REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. • This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems. Related Links • • • Cree SiC Schottky diode portfolio: http://www.cree.com/diodes C3D Spice models: http://response.cree.com/Request_Diode_model SiC MOSFET and diode reference designs: http://response.cree.com/SiC_RefDesigns Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 6 C3D06065E Rev. - Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power