BVDSS = 400 V RDS(on) typ ȍ HFS11N40 ID = 11.4 A 400V N-Channel MOSFET TO-220F FEATURES Originative New Design 1 Superior Avalanche Rugged Technology Robust Gate Oxide Technology 2 3 1.Gate 2. Drain 3. Source Very Low Intrinsic Capacitances Excellent Switching Characteristics Unrivalled Gate Charge : 35 nC (Typ.) Extended Safe Operating Area Lower RDS(ON) ȍ7\S#9GS=10V 100% Avalanche Tested Absolute Maximum Ratings Symbol TC=25 unless otherwise specified Parameter Value Units 400 V VDSS Drain-Source Voltage ID Drain Current – Continuous (TC = 25ఁ͚ 11.4* A Drain Current – Continuous (TC = 100ఁ͚ 7.2* A IDM Drain Current – Pulsed 45.6* A VGS Gate-Source Voltage ρ30 V EAS Single Pulsed Avalanche Energy (Note 2) 520 mJ IAR Avalanche Current (Note 1) 11.4 A EAR Repetitive Avalanche Energy (Note 1) 14.7 mJ dv/dt Peak Diode Recovery dv/dt (Note 3) 4.5 V/ns PD Power Dissipation (TC = 25ఁ͚ ͞ ͵ΖΣΒΥΖ͑ΒΓΠΧΖ͑ͣͦఁ 50 W TJ, TSTG Operating and Storage Temperature Range TL Maximum lead temperature for soldering purposes, 1/8” from case for 5 seconds (Note 1) 0.4 W/ఁ -55 to +150 ఁ 300 ఁ * Drain current limited by maximum junction temperature Thermal Resistance Characteristics Typ. Max. RșJC Symbol Junction-to-Case Parameter -- 2.5 RșJA Junction-to-Ambient -- 62.5 Units ఁ͠Έ క ΄Ͷ;ͺΈ͑Ͷ·͟Ͳ͡͝͵ΖΔ͑ͣͦ͡͡ HFS11N40 Dec 2005 Symbol Parameter unless otherwise specified Test Conditions Min Typ Max Units On Characteristics VGS RDS(ON) Gate Threshold Voltage VDS = VGS, ID = 250 Ꮃ 2.5 -- 4.5 V Static Drain-Source On-Resistance VGS = 10 V, ID = 5.7 A -- 0.38 0.48 ש VGS = 0 V, ID = 250 Ꮃ 400 -- -- V ID = 250 Ꮃ͑͝ΖΗΖΣΖΟΔΖΕ͑ΥΠͣͦఁ -- 0.41 -- ·͠ఁ VDS = 400 V, VGS = 0 V -- -- 1 Ꮃ VDS = 320 V, TC = 125ఁ -- -- 10 Ꮃ Off Characteristics BVDSS Drain-Source Breakdown Voltage ԩBVDSS Breakdown Voltage Temperature Coefficient /ԩTJ IDSS Zero Gate Voltage Drain Current IGSSF Gate-Body Leakage Current, Forward VGS = 30 V, VDS = 0 V -- -- 100 Ꮂ IGSSR Gate-Body Leakage Current, Reverse VGS = -30 V, VDS = 0 V -- -- -100 Ꮂ -- 1350 1750 Ꮔ -- 180 240 Ꮔ -- 30 39 Ꮔ -- 35 70 Ꭸ -- 120 240 Ꭸ -- 80 160 Ꭸ -- 80 160 Ꭸ -- 35 45 Οʹ -- 7 -- Οʹ -- 17 -- Οʹ Dynamic Characteristics Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance VDS = 25 V, VGS = 0 V, f = 1.0 MHz Switching Characteristics td(on) Turn-On Time tr Turn-On Rise Time td(off) Turn-Off Delay Time tf Turn-Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd VDS = 200 V, ID = 11.4 A, RG = 25 ש ͙ͿΠΥΖ͚͑ͥͦ͝ VDS = 320 V, ID = 11.4 A, VGS = 10 V ͙ͿΠΥΖ͚͑ͥͦ͝ Gate-Drain Charge Source-Drain Diode Maximum Ratings and Characteristics IS Continuous Source-Drain Diode Forward Current -- -- 11.4 ISM Pulsed Source-Drain Diode Forward Current -- -- 45.6 VSD Source-Drain Diode Forward Voltage IS = 11.4 A, VGS = 0 V -- -- 1.5 V trr Reverse Recovery Time -- 310 -- Ꭸ Qrr Reverse Recovery Charge IS = 11.4 A, VGS = 0 V diFGW $ȝV(Note 4) -- 2.3 -- ȝ& A Notes ; 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L=7mH, IAS=11.4A, VDD=50V, RG=25:, Starting TJ =25qC 3. ISD$GLGW$ȝV9DD%9DSS , Starting TJ =25 qC 4. Pulse Test : Pulse Width ȝV'XW\&\FOH 5. Essentially Independent of Operating Temperature క ΄Ͷ;ͺΈ͑Ͷ·͟Ͳ͡͝͵ΖΔ͑ͣͦ͡͡ HFS11N40 Electrical Characteristics TC=25 qC HFS11N40 Typical Characteristics Figure 1. On Region Characteristics Figure 2. Transfer Characteristics Figure 3. On Resistance Variation vs Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature 2400 Coss 1200 600 䈜㻌㻺㼛㼠㼑㻌㻧 1. VGS = 0 V 2. f = 1 MHz Crss VGS, Gate-Source Voltage [V] Ciss 1800 Capacitances [pF] 12 Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd VDS = 80V VDS = 200V 10 VDS = 320V 8 6 4 2 䈜㻌㻺㼛㼠㼑㻌㻦㻌㻵D = 11.4 A 0 -1 10 0 0 10 1 10 0 8 16 24 32 VDS, Drain-Source Voltage [V] QG, Total Gate Charge [nC] Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics 40 క ΄Ͷ;ͺΈ͑Ͷ·͟Ͳ͡͝͵ΖΔ͑ͣͦ͡͡ HFS11N40 Typical Characteristics (continued) Figure 8. On-Resistance Variation vs Temperature Figure 7. Breakdown Voltage Variation vs Temperature 12 Operation in This Area is Limited by R DS(on) 2 10 ID, Drain Current [A] 100 Ps 1 ms 10 ms 100 ms 1 10 DC 0 10 䈜㻌㻺㼛㼠㼑㼟㻌㻦 o 1. TC = 25 C o 2. TJ = 150 C 3. Single Pulse -1 10 0 10 1 2 10 8 6 4 2 0 25 -2 10 3 10 10 50 75 100 125 150 TC, Case Temperature [ 䉝㼉 VDS, Drain-Source Voltage [V] Figure 9. Maximum Safe Operating Area Figure 10. Maximum Drain Current vs Case Temperature D=0.5 0 10 Zș -&(t), Thermal Response ID, Drain Current [A] 10 0.2 䈜㻌㻺㼛㼠㼑㼟㻌㻦 1. Zș -&(t) = 2.5 䉝㻛㼃 㻌㻹㼍㼤㻚 2. Duty Factor, D=t1/t2 3. TJM - TC = PDM * Zș -&(t) 0.1 0.05 -1 10 0.02 PDM 0.01 t1 single pulse -2 10 -5 10 -4 10 -3 10 -2 10 t2 -1 10 0 10 1 10 t1, Square Wave Pulse Duration [sec] Figure 11. Transient Thermal Response Curve క ΄Ͷ;ͺΈ͑Ͷ·͟Ͳ͡͝͵ΖΔ͑ͣͦ͡͡ HFS11N40 Fig 12. Gate Charge Test Circuit & Waveform .ȍ 12V VGS Same Type as DUT Qg 200nF 10V 300nF VDS VGS Qgs Qgd DUT 3mA Charge Fig 13. Resistive Switching Test Circuit & Waveforms RL VDS VDS 90% VDD RG ( 0.5 rated VDS ) Vin DUT 10V 10% tr td(on) td(off) t on tf t off Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms BVDSS 1 EAS = ---- LL IAS2 -------------------2 BVDSS -- VDD L VDS VDD ID BVDSS IAS RG 10V ID (t) DUT VDS (t) VDD tp Time క ΄Ͷ;ͺΈ͑Ͷ·͟Ͳ͡͝͵ΖΔ͑ͣͦ͡͡ HFS11N40 Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms DUT + VDS _ IS L Driver RG VGS VGS ( Driver ) Same Type as DUT VDD • dv/dt controlled by RG • IS controlled by pulse period Gate Pulse Width D = -------------------------Gate Pulse Period 10V IFM , Body Diode Forward Current IS ( DUT ) di/dt IRM Body Diode Reverse Current VDS ( DUT ) Body Diode Recovery dv/dt Vf VDD Body Diode Forward Voltage Drop క ΄Ͷ;ͺΈ͑Ͷ·͟Ͳ͡͝͵ΖΔ͑ͣͦ͡͡ HFS11N40 Package Dimension {vTYYWm ±0.20 ±0.20 2.54±0.20 6.68±0.20 0.70±0.20 12.42±0.20 3.30±0.20 2.76±0.20 1.47max 9.75±0.20 15.87±0.20 ± ij 0 0.2 0.80±0.20 0.50±0.20 2.54typ 2.54typ క ΄Ͷ;ͺΈ͑Ͷ·͟Ͳ͡͝͵ΖΔ͑ͣͦ͡͡