HFS840 - SemiHow

BVDSS = 500 V
RDS(on) typ ȍ
HFS840
ID = 9.0 A
500V N-Channel MOSFET
TO-220F
FEATURES
‰ Originative New Design
1
‰ Superior Avalanche Rugged Technology
‰ Robust Gate Oxide Technology
2
3
1.Gate 2. Drain 3. Source
‰ Very Low Intrinsic Capacitances
‰ Excellent Switching Characteristics
‰ Unrivalled Gate Charge : 25 nC (Typ.)
‰ Extended Safe Operating Area
‰ Lower RDS(ON) ȍ7\S#9GS=10V
‰ 100% Avalanche Tested
Absolute Maximum Ratings
Symbol
TC=25୅ unless otherwise specified
Parameter
Value
Units
500
V
VDSS
Drain-Source Voltage
ID
Drain Current
– Continuous (TC = 25ఁ͚͑
9.0*
A
Drain Current
– Continuous (TC = 100ఁ͚͑
5.4*
A
IDM
Drain Current
– Pulsed
36*
A
VGS
Gate-Source Voltage
ρͤ͑͡
V
EAS
Single Pulsed Avalanche Energy
(Note 2)
360
mJ
IAR
Avalanche Current
(Note 1)
9.0
A
EAR
Repetitive Avalanche Energy
(Note 1)
13.5
mJ
dv/dt
Peak Diode Recovery dv/dt
(Note 3)
4.5
V/ns
PD
Power Dissipation (TC = 25ఁ͚͑
͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͞͵ΖΣΒΥΖ͑ΒΓΠΧΖ͑ͣͦఁ͑
44
W
TJ, TSTG
Operating and Storage Temperature Range
TL
Maximum lead temperature for soldering purposes,
1/8” from case for 5 seconds
(Note 1)
0.35
W/ఁ͑
-55 to +150
ఁ͑
300
ఁ͑
* Drain current limited by maximum junction temperature
Thermal Resistance Characteristics
Typ.
Max.
RșJC
Symbol
Junction-to-Case
Parameter
--
2.86
RșJA
Junction-to-Ambient
--
62.5
Units
ఁ͠Έ͑
క͑΄Ͷ;ͺ͹΀Έ͑΃Ͷ·͟Ͳ͢͝΄ΖΡ͑ͣ͑͢͢͡
HFS840
Sep 2011
Symbol
Parameter
unless otherwise specified
Test Conditions
Min
Typ
Max
Units
On Characteristics
VGS
RDS(ON)
Gate Threshold Voltage
VDS = VGS, ID = 250 Ꮃ͑
2.5
--
4.5
V
Static Drain-Source
On-Resistance
VGS = 10 V, ID = 4.5 A͑
--
0.7
0.85
‫͑ש‬
VGS = 0 V, ID = 250 Ꮃ͑
500
--
--
V
ID = 250 Ꮃ͑͝΃ΖΗΖΣΖΟΔΖΕ͑ΥΠͣͦఁ͑
--
0.57
--
·͠ఁ͑
VDS = 500 V, VGS = 0 V͑
--
--
1
Ꮃ͑
VDS = 400 V, TC = 125ఁ͑
--
--
10
Ꮃ͑
Off Characteristics
BVDSS
Drain-Source Breakdown Voltage
ԩBVDSS Breakdown Voltage Temperature
Coefficient
/ԩTJ
IDSS
Zero Gate Voltage Drain Current
IGSSF
Gate-Body Leakage Current,
Forward
VGS = 30 V, VDS = 0 V
--
--
100
Ꮂ͑
IGSSR
Gate-Body Leakage Current,
Reverse
VGS = -30 V, VDS = 0 V
--
--
-100
Ꮂ͑
--
1000
1300
Ꮔ͑
--
130
170
Ꮔ͑
--
20
26
Ꮔ͑
--
25
50
Ꭸ͑
--
60
120
Ꭸ͑
--
130
260
Ꭸ͑
--
90
180
Ꭸ͑
--
25
33
Οʹ͑
--
6
--
Οʹ͑
--
12
--
Οʹ͑
Dynamic Characteristics
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
VDS = 25 V, VGS = 0 V,
f = 1.0 MHz͑
Switching Characteristics
td(on)
Turn-On Time
tr
Turn-On Rise Time
td(off)
Turn-Off Delay Time
tf
Turn-Off Fall Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
VDS = 250 V, ID = 9.0 A,
RG = 25 ‫͑ש‬
͑
͙͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑͑ͿΠΥΖ͚͑ͥͦ͑͝
VDS = 400V, ID = 9.0 A,
VGS = 10 V
͙ͿΠΥΖ͚͑ͥͦ͑͝
Gate-Drain Charge
Source-Drain Diode Maximum Ratings and Characteristics
IS
Continuous Source-Drain Diode Forward Current
--
--
9.0
ISM
Pulsed Source-Drain Diode Forward Current
--
--
36
VSD
Source-Drain Diode Forward Voltage
IS = 9.0 A, VGS = 0 V
--
--
1.4
V
trr
Reverse Recovery Time
--
335
--
Ꭸ͑
Qrr
Reverse Recovery Charge
IS = 9.0 A, VGS = 0 V
diFGW $ȝV(Note 4)
--
2.95
--
ȝ&
A
Notes ;
1. Repetitive Rating : Pulse width limited by maximum junction temperature
2. L=8mH, IAS=9.0A, VDD=50V, RG=25:, Starting TJ =25qC
3. ISD”$GLGW”$ȝV9DD”%9DSS , Starting TJ =25 qC
4. Pulse Test : Pulse Width ”ȝV'XW\&\FOH”
5. Essentially Independent of Operating Temperature
క͑΄Ͷ;ͺ͹΀Έ͑΃Ͷ·͟Ͳ͢͝΄ΖΡ͑ͣ͑͢͢͡
HFS840
Electrical Characteristics TC=25 qC
HFS840
Typical Characteristics
Figure 1. On Region Characteristics
Figure 2. Transfer Characteristics
Figure 3. On Resistance Variation vs
Drain Current and Gate Voltage
Figure 4. Body Diode Forward Voltage
Variation with Source Current
and Temperature
2000
Ciss
Coss
1000
500
* Note ;
1. VGS = 0 V
2. f = 1 MHz
Crss
VDS = 100V
VGS, Gate-Source Voltage [V]
1500
Capacitances [pF]
12
Ciss = Cgs + Cgd (Cds = shorted)
Coss = Cds + Cgd
Crss = Cgd
10
VDS = 250V
VDS = 400V
8
6
4
2
* Note : ID = 9.0 A
0
10-1
0
100
101
0
5
10
15
20
25
VDS, Drain-Source Voltage [V]
QG, Total Gate Charge [nC]
Figure 5. Capacitance Characteristics
Figure 6. Gate Charge Characteristics
30
క͑΄Ͷ;ͺ͹΀Έ͑΃Ͷ·͟Ͳ͢͝΄ΖΡ͑ͣ͑͢͢͡
HFS840
Typical Characteristics
(continued)
Figure 8. On-Resistance Variation
vs Temperature
Figure 7. Breakdown Voltage Variation
vs Temperature
10
Operation in This Area
is Limited by R DS(on)
10 Ps
8
101
100
ID, Drain Current [A]
100 Ps
1 ms
10 ms
100 ms
DC
10-1
* Notes :
1. TC = 25 oC
10-2
100
6
4
2
2. TJ = 150 oC
3. Single Pulse
101
102
0
25
103
50
75
100
125
150
TC, Case Temperature [oC]
VDS, Drain-Source Voltage [V]
Figure 9. Maximum Safe Operating Area
Figure 10. Maximum Drain Current
vs Case Temperature
D=0.5
ZTJC(t), Thermal Response
ID, Drain Current [A]
102
100
0.2
0.1
0.05
-1
10
PDM
0.02
* Notes :
1. ZTJC(t) = 2.86 oC/W Max.
2. Duty Factor, D=t1/t2
3. TJM - TC = PDM * ZTJC(t)
0.01
t1
single pulse
10-2 -5
10
10-4
10-3
10-2
t2
10-1
100
101
t1, Square Wave Pulse Duration [sec]
Figure 11. Transient Thermal Response Curve
క͑΄Ͷ;ͺ͹΀Έ͑΃Ͷ·͟Ͳ͢͝΄ΖΡ͑ͣ͑͢͢͡
HFS840
Fig 12. Gate Charge Test Circuit & Waveform
.ȍ
12V
VGS
Same Type
as DUT
Qg
200nF
10V
300nF
VDS
VGS
Qgs
Qgd
DUT
3mA
Charge
Fig 13. Resistive Switching Test Circuit & Waveforms
RL
VDS
VDS
90%
VDD
RG
( 0.5 rated VDS )
Vin
DUT
10V
10%
tr
td(on)
td(off)
t on
tf
t off
Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms
BVDSS
1
EAS = ---- LL IAS2 -------------------2
BVDSS -- VDD
L
VDS
VDD
ID
BVDSS
IAS
RG
10V
ID (t)
DUT
VDS (t)
VDD
tp
Time
క͑΄Ͷ;ͺ͹΀Έ͑΃Ͷ·͟Ͳ͢͝΄ΖΡ͑ͣ͑͢͢͡
HFS840
Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms
DUT
+
VDS
_
IS
L
Driver
RG
VGS
VGS
( Driver )
Same Type
as DUT
VDD
• dv/dt controlled by RG
• IS controlled by pulse period
Gate Pulse Width
D = -------------------------Gate Pulse Period
10V
IFM , Body Diode Forward Current
IS
( DUT )
di/dt
IRM
Body Diode Reverse Current
VDS
( DUT )
Body Diode Recovery dv/dt
Vf
VDD
Body Diode
Forward Voltage Drop
క͑΄Ͷ;ͺ͹΀Έ͑΃Ͷ·͟Ͳ͢͝΄ΖΡ͑ͣ͑͢͢͡
HFS840
Package Dimension
{vTYYWmG
±0.20
±0.20
2.54±0.20
6.68±0.20
0.70±0.20
12.42±0.20
3.30±0.20
2.76±0.20
1.47max
9.75±0.20
15.87±0.20
±
ij
0
0.2
0.80±0.20
0.50±0.20
2.54typ
2.54typ
క͑΄Ͷ;ͺ͹΀Έ͑΃Ͷ·͟Ͳ͢͝΄ΖΡ͑ͣ͑͢͢͡