ETC HD151TS405SS

HD151TS405SS
Mother Board Clock Generator
for SiS 645/645DX/648/648DX/650/651/655/660 P4 Chipset
ADE-205-689C (Z)
Rev.3
Oct. 2002
Description
The HD151TS405 is a high-performance, low-skew, low-jitter, PC motherboard Clock generator. It is
specifically designed for SiS 645/645DX/648/648DX/650/651/655/660 Pentium®4 chip set.
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
1 memory clock up to 200 MHz (DDR200/266/333/400 Support).
2 differential pairs of current mode control CPU clock.
6 PCI clocks and 2 PCI_F clocks @3.3 V, 33.3 MHz typ.
2 copies of AGP clock @3.3V, 66.6 MHz typ.
2 Zclock @3.3 V, up to 133.3 MHz.
1 copy of 48 MHz for USB @3.3 V
24 MHz / 48 MHz selectable clock @3.3 V
3 copies of 14.318 MHz reference clock @3.3 V
Power save and clock stop function.
Programmable clock output skew control function.
I2CTM serial port programming.
Spread Spectrum modulation (–0.5% or ±0.25%).
48pin SSOP (300 mils).
Supports 3 × DDR DIMM application with clock buffer HD74CDCV851 (SSOP48pin)
Supports 2 × DDR DIMM Micro-ATX application with clock buffer HD74CDCV852 (SSOP28pin)
Ordering Information
Part Name
Package Type
Package Code
Package
Abbreviation
Taping
Abbreviation (Quantity)
HD151TS405SSEL
SSOP-48 pin

SS
EL (1,000 pcs / Reel)
Note: Please consult the sales office for the above package availability.
Note:
I2C is a trademark of Philips Corporation.
Pentium is registered trademark of Intel Corporation
HD151TS405SS
Key Specifications
•
•
•
•
•
•
Supply Voltages: VDD = 3.3 V ±5%
Clock cycle to cycle jitter = |250 ps|
CPU clock group Skew = 150 ps max
AGP clock group Skew = 175 ps max
PCI clock group Skew = 500 ps max
CPU(early) to PCI, AGP & ZCLK offset = 1 to 4 ns (typ. 2ns)
Rev.3, Oct. 2002, page 2 of 29
HD151TS405SS
Pin Arrangement
VDDREF 1
48 VDDSD
*FS0/REF0 2
47 SDCLK
*FS1/REF1 3
46 GNDSD
*FS2/REF2 4
45 CPU_STP#
GNDREF 5
44 CPU1T
X1 6
43 CPU1C
X2 7
42 VDDCPU
GNDZ 8
41 GNDCPU
ZCLK0 9
40 CPU0T
ZCLK1 10
39 CPU0C
38 IREF
VDDZ 11
PCI_STP# 12
37 GNDA
VDDPCI 13
36 VDDA
FS3*/PCI_F0 14
35 SCLK
FS4*/PCI_F1 15
34 SDATA
PCI0 16
33 PD#/VTT_PWRGD
PCI1 17
32 GNDAGP
GNDPCI 18
31 AGPCLK0
VDDPCI 19
30 AGPCLK1
PCI2 20
29 VDDAGP
PCI3 21
28 VDD48
PCI4 22
27 48MHz
PCI5 23
26 24_48MHz/MULTISEL*
GNDPCI 24
25 GND48
(Top view)
* Latch input / multi function pin.
Note:
FS0, 1, 2, 3, 4 = 120 kΩ Internal Pull-down.
PCI_STP#, MULTISEL, PD#, CPU_STP# = 120 kΩ Internal Pull-up.
Rev.3, Oct. 2002, page 3 of 29
HD151TS405SS
Block Diagram
3.3 V VDD48
GND48
3.3 V VDDA GNDA
7× 3.3V VDD
7×GND IREF
3× REF 3.3 (14.318 MHz)
XTAL
1/m1
14.318 MHz
Synthesizer
2× CPUCLK (HCSL)
(CPU PLL)
OSC
1× SDCLK 3.3
1/n1
SSC Modulator
CPU_STP#
PD#
*MULTISEL
*FS0, 1, 2, 3, 4
SDATA
SCLK
PCI_STP#
Mode Control
Logic
1/m2
Synthesizer
(48 MHz PLL)
1/n2
Note: Latched Input / Multi Function pin.
Rev.3, Oct. 2002, page 4 of 29
Clock
2× AGP 3.3
Divider
2× ZCLK 3.3
6× PCICLK 3.3
2× PCICLK_F 3.3
48 MHz 3.3
24/48 MHz 3.3
HD151TS405SS
Table1 Clock Frequency Function Table & I2C
Byte4 (bit2, 4, 5, 6 & 7)
SSC%
Byte9/bit0
Bit2 Bit7 Bit6 Bit5 Bit4
FS4
FS3
FS2
FS1
FS0
CPU
SDCLK
ZCLK
AGP
PCICLK
“1”
“0”
FSB DDR
0
0
0
0
0
0
66.67
66.67
66.67
66.67
33.33
–0.5%
±0.25%
1
0
0
0
0
1
100
100
66.67
66.67
33.33
–0.5%
±0.25%
400
200
2
0
0
0
1
0
100
200
66.67
66.67
33.33
–0.5%
±0.25%
400
400
3
0
0
0
1
1
100
133.33
66.67
66.67
33.33
–0.5%
±0.25%
400
266
4
0
0
1
0
0
100
100
133.33
66.67
33.33
–0.5%
±0.25%
400
200
5
0
0
1
0
1
133.4
133.4
133.4
66.7
33.35
–0.5%
±0.25%
533
266
6
0
0
1
1
0
133.4
166.75
133.4
66.7
33.35
–0.5%
±0.25%
533
333
7
0
0
1
1
1
133.33
200
133.33
66.67
33.33
–0.5%
±0.25%
533
400
8
0
1
0
0
0
100
133.33
133.33
66.67
33.33
–0.5%
±0.25%
400
266
9
0
1
0
0
1
100
166.67
62.5
62.5
33.33
–0.5%
±0.25%
400
333
10
0
1
0
1
0
111.17
166.75
133.4
66.7
33.35
–0.5%
±0.25%
11
0
1
0
1
1
100
200
133.33
66.67
33.33
–0.5%
±0.25%
400
400
12
0
1
1
0
0
100
133.33
100
66.67
33.33
–0.5%
±0.25%
13
0
1
1
0
1
133.33
133.33
100
66.67
33.33
–0.5%
±0.25%
14
0
1
1
1
0
100
166.67
125
62.5
33.33
–0.5%
±0.25%
400
333
15
0
1
1
1
1
133.4
166.75
111.17
66.7
33.35
–0.5%
±0.25%
16
1
0
0
0
0
133.4
133.4
66.7
51.31
33.35
–0.5%
±0.25%
17
1
0
0
0
1
111.17
166.75
66.7
66.7
33.35
–0.5%
±0.25%
18
1
0
0
1
0
133.4
166.75
83.38
51.31
33.35
–0.5%
±0.25%
19
1
0
0
1
1
166.75
166.75
133.34
66.7
33.35
–0.5%
±0.25%
666
333
20
1
0
1
0
0
100
133.33
66.67
50
33.33
–0.5%
±0.25%
21
1
0
1
0
1
133.33
100
66.67
66.67
33.33
–0.5%
±0.25%
533
200
22
1
0
1
1
0
133.33
133.33
66.67
66.67
33.33
–0.5%
±0.25%
533
266
23
1
0
1
1
1
133.33
166.67
66.67
66.67
33.33
–0.5%
±0.25%
533
333
24
1
1
0
0
0
111.17
133.4
133.4
66.7
33.35
–0.5%
±0.25%
25
1
1
0
0
1
133.33
100
133.33
66.67
33.33
–0.5%
±0.25%
533
200
26
1
1
0
1
0
100
140
140
58.33
35
–0.5%
±0.25%
27
1
1
0
1
1
120
150
150
66.67
33.33
–0.5%
±0.25%
28
1
1
1
0
0
133.33
133.33
133.33
57.14
33.33
–0.5%
±0.25%
29
1
1
1
0
1
100
133.33
133.33
50
33.33
–0.5%
±0.25%
30
1
1
1
1
0
100
133.33
80
50
33.33
–0.5%
±0.25%
31
1
1
1
1
1
133.33
200
66.67
66.67
33.33
–0.5%
±0.25%
533
400
Rev.3, Oct. 2002, page 5 of 29
HD151TS405SS
Table2 Outputs State at Power Down
INPUT
OUTPUTS
PD#
CPUT
CPUC
SDCLK
PCICLK
ZCLK
AGP
24/48 MHz 48 MHz
0
2 × IREF
Hi-Z
L
L
L
L
L
L
1
Run
Run
Run
Run
Run
Run
Run
Run
Table3 CPUCLK Outputs Specification
MULTISEL (pin26)
Board Target
Trace / Term Z
Reference R,
Iref = VDD / (3Rr)
Output Current Ioh Voh @Z
1
60 Ω
Rr = 475 1%
I_REF = 2.32 mA
6 × Iref
0.85 V @60 Ω
1
50 Ω
Rr = 475 1%
I_REF = 2.32 mA
6 × Iref
0.71 V @50 Ω
0
60 Ω
Rr = 475 1%
I_REF = 2.32 mA
4 × Iref
0.56 V @60 Ω
0
50 Ω
Rr = 475 1%
I_REF = 2.32 mA
4 × Iref
0.47 V @50 Ω
Rev.3, Oct. 2002, page 6 of 29
HD151TS405SS
I2C Controlled Register Bit Map
Byte0, 1, 2, 3 are reserved. All bits are default “1” at POWER ON.
Byte4 CLK Frequency & SSC Control Register
Bit
Description
Contents
Default
7
CLK Freq. Control bit
(See Table1)
0
6
CLK Freq. Control bit
(See Table1)
0
5
CLK Freq. Control bit
(See Table1)
0
4
CLK Freq. Control bit
(See Table1)
0
3
Freq. Select Mode bit
0 = Freq. is selected by latched input FS0:4
2
1 = Freq. is selected by I C Byte4 bit2, 4–7
0
2
CLK Freq. Control bit
(See Table1)
0
1
SSC Enable bit
“1” = SSC OFF, “0” = SSC ON
0
0
Outputs (All outputs) enable bit
0 = Running
1 = Tristate all outputs
0
Contents
Default
Byte5 Multi Input-pin Read Back Register
Bit
Description
7
(Reserved bit)
0
6
(Reserved bit)
0
5
MULTISEL (pin26) Read back
X
4
FS4 (pin15) Read back
X
3
FS3 (pin14) Read back
X
2
FS2 (pin4) Read back
X
1
FS1 (pin3) Read back
X
0
FS0 (pin2) Read back
X
Rev.3, Oct. 2002, page 7 of 29
HD151TS405SS
I2C Controlled Register Bit Map (cont.)
Byte6 PCI_STP# & CPU_STP# Control Register
Bit
Description
7
(Reserved)
0
6
(Reserved)
0
5
PCI_STP# (pin12) Function
(PCI_F0 Control)
When this bit is “1”, PCI_F0 will be stopped by
PCI_STP# pin.
When this bit is “0”, PCI_F0 will not be controlled
by PCI_STP# pin. (PCI_F0 = free running)
0
4
PCI_STP# (pin12) Function
(PCI_F1 Control)
When this bit is “1”, PCI_F1 will be stopped by
PCI_STP# pin.
When this bit is “0”, PCI_F1 will not be controlled
by PCI_STP# pin. (PCI_F1 = free running)
0
3
CPU_STP# (pin45) Function
When this bit is “1”, CPU0T/0C will be stopped by 1
CPU_STP# pin.
CPU0T/0C will be “fixed Low” at CPU_STP# =
Low.
Default is “1” Clock Stop Mode.
When this bit is “0”, CPU0T/0C will not be
controlled by CPU_STP# pin.
(CPU0T/0C = free running)
(CPU0T/0C Control)
Contents
Default
2
CPU_STP# (pin45) Function
(CPU1T/1C Control)
When this bit is “1”, CPU1T/1C will be stopped by 0
CPU_STP# pin.
CPU1T/1C will be “fixed Low” at CPU_STP# =
Low.
When this bit is “0”, CPU1T/1C will not be
controlled by CPU_STP# pin.
(CPU1T/1C = free running)
Default is “0” Clock Free Running Mode.
1
CPU0T/0C output Enable
1 = Enable, 0 = Disable (Tristate)
1
0
CPU1T/1C output Enable
1 = Enable, 0 = Disable (Tristate)
1
Rev.3, Oct. 2002, page 8 of 29
HD151TS405SS
I2C Controlled Register Bit Map (cont.)
Byte7 PCI Clock Outputs Control Register
Bit
Description
Contents
Default
7
PCI_F1 (pin15) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
6
PCI_F0 (pin14) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
5
PCI5 (pin23) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
4
PCI4 (pin22) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
3
PCI3 (pin21) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
2
PCI2 (pin20) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
1
PCI1 (pin17) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
0
PCI0 (pin16) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
Byte8 Byte Vendor/Device ID Read Back Register
Bit
Description
Contents
Default
7
Vendor ID bit3
Hitachi = “1111”
1
6
Vendor ID bit2
1
5
Vendor ID bit1
1
4
Vendor ID bit0
1
3
Device ID bit3
0
2
Device ID bit2
0
1
Device ID bit1
0
0
Device ID bit0
1
Note: Don’t write to this byte.
Rev.3, Oct. 2002, page 9 of 29
HD151TS405SS
I2C Controlled Register Bit Map (cont.)
Byte9 Peripheral clocks Control Register
Bit
Description
Contents
Default
7
PD# (pin33) pin function enable
1 = Enable, 0 = PD# Disable
1
6
(Reserved)
5
48 MHz (pin27) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
4
24_48 MHz (pin26) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
3
24 MHz or 48 MHz Select
When this bit = “0”, pin26 outputs 24 MHz
When this bit = “1”, pin26 outputs 48 MHz
0
2
(Reserved)
0
1
(Reserved)
0
0
Spread spectrum control register
0
0: ±0.25% central spread.
The modulation rate is 33 kHz.
1: 0 to –0.5% down spread.
The modulation rate is 33 kHz.
1
Byte10 Clock Output Enable Register
Bit
Description
Contents
Default
7
SDCLK (pin47) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
6
REF2 (pin4) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
5
REF1 (pin3) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
4
REF0 (pin2) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
3
ZCLK1 (pin10) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
2
ZCLK0 (pin9) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
1
AGPCLK1 (pin30) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
0
AGPCLK0 (pin31) output enable
1 = Enable, 0 = Disable (DC Low fixed)
1
Rev.3, Oct. 2002, page 10 of 29
HD151TS405SS
I2C Controlled Register Bit Map (cont.)
Byte11 Reserved Register
Bit
Description
Contents
Default
7
(Reserved)
0
6
(Reserved)
0
5
(Reserved)
1
4
(Reserved)
1
3
(Reserved)
1
2
(Reserved)
1
1
(Reserved)
1
0
(Reserved)
1
Byte12 Reserved Register
Bit
Description
Contents
Default
7
(Reserved)
0
6
(Reserved)
0
5
(Reserved)
0
4
(Reserved)
0
3
(Reserved)
0
2
(Reserved)
0
1
(Reserved)
0
0
(Reserved)
0
Byte13 PLL N Divide Ratio Control Register
Bit
Description
Contents
Default
7
(Reserved)
0
6
(Reserved)
0
5
(Reserved)
0
4
(Reserved)
0
3
(Reserved)
0
2
(Reserved)
0
1
PLL N Divider Control bit9
PLL N Divider Control bit9
0
0
PLL N Divider Control bit8
PLL N Divider Control bit8
0
Rev.3, Oct. 2002, page 11 of 29
HD151TS405SS
I2C Controlled Register Bit Map (cont.)
Byte14 PLL N Divide Ratio Control Register
Bit
Description
Contents
Default
7
PLL N Divider Control bit7
PLL N Divider Control bit7
0
6
PLL N Divider Control bit6
PLL N Divider Control bit6
0
5
PLL N Divider Control bit5
PLL N Divider Control bit5
0
4
PLL N Divider Control bit4
PLL N Divider Control bit4
0
3
PLL N Divider Control bit3
PLL N Divider Control bit3
0
2
PLL N Divider Control bit2
PLL N Divider Control bit2
0
1
PLL N Divider Control bit1
PLL N Divider Control bit1
0
0
PLL N Divider Control bit0
PLL N Divider Control bit0
0
Byte15 PLL M Divide Ratio Control Register
Bit
Description
Contents
Default
7
N & M divider enable bit
0: Byte4 (bit2, 4, 5, 6, 7)
1: N & M value will be
determined by Byte13, 14, 15
0
6
PLL M Divider Control bit6
PLL M Divider Control bit6
0
5
PLL M Divider Control bit5
PLL M Divider Control bit5
0
4
PLL M Divider Control bit4
PLL M Divider Control bit4
0
3
PLL M Divider Control bit3
PLL M Divider Control bit3
0
2
PLL M Divider Control bit2
PLL M Divider Control bit2
0
1
PLL M Divider Control bit1
PLL M Divider Control bit1
0
0
PLL M Divider Control bit0
PLL M Divider Control bit0
0
Note: Byte13, 14, 15 must be written when over clocking mode.
Byte16 Reserved Register
Bit
Description
7
(Reserved)
0
6
(Reserved)
0
5
(Reserved)
0
4
(Reserved)
0
3
(Reserved)
0
2
(Reserved)
0
1
(Reserved)
0
0
(Reserved)
0
Rev.3, Oct. 2002, page 12 of 29
Contents
Default
HD151TS405SS
I2C Controlled Register Bit Map (cont.)
Byte17 Reserved Register
Bit
Description
Contents
Default
7
(Reserved)
0
6
(Reserved)
0
5
(Reserved)
0
4
(Reserved)
0
3
(Reserved)
0
2
(Reserved)
0
1
(Reserved)
0
0
(Reserved)
0
Byte18 CPU Clock Skew Control Register
Bit
Description
Contents
Default
7
CPUT/C0 Skew Control bit3
0
6
CPUT/C0 Skew Control bit2
5
CPUT/C0 Skew Control bit1
4
CPUT/C0 Skew Control bit0
0000: Ahead 2000 ps 0001: Ahead 1500 ps
0010: Ahead 1000 ps 0011: Ahead 500 ps
0100: Ahead 0 ps (Default)
0101: Delay 500 ps 0110: Delay 1000 ps
0111: Delay 1500 ps 1000: Delay 2000 ps
3
CPUT/C1 Skew Control bit3
2
CPUT/C1 Skew Control bit2
1
CPUT/C1 Skew Control bit1
0
CPUT/C1 Skew Control bit0
0000: Ahead 2000 ps 0001: Ahead 1500 ps
0010: Ahead 1000 ps 0011: Ahead 500 ps
0100: Ahead 0 ps (Default)
0101: Delay 500 ps 0110: Delay 1000 ps
0111: Delay 1500 ps 1000: Delay 2000 ps
1
0
0
0
1
0
0
Rev.3, Oct. 2002, page 13 of 29
HD151TS405SS
I2C Controlled Register Bit Map (cont.)
Byte19 SDCLK (Mem. Clock) skew Control Register
Bit
Description
Contents
Default
7
SDCLK (Memory Clock) Skew
Control bit3
0
6
SDCLK (Memory Clock) Skew
Control bit2
0000: Ahead 2000 ps 0001: Ahead 1500 ps
0010: Ahead 1000 ps 0011: Ahead 500 ps
0100: Ahead 0 ps(Default)
0101: Delay 500 ps 0110: Delay 1000 ps
0111: Delay 1500 ps 1000: Delay 2000 ps
5
SDCLK (Memory Clock) Skew
Control bit1
0
4
SDCLK (Memory Clock) Skew
Control bit0
0
3
(Reserved)
0
2
(Reserved)
0
1
(Reserved)
0
0
(Reserved)
0
1
Byte20 Reserved Register
Bit
Description
7
(Reserved)
0
6
(Reserved)
0
5
(Reserved)
0
4
(Reserved)
0
3
(Reserved)
0
2
(Reserved)
0
1
(Reserved)
0
0
(Reserved)
0
Rev.3, Oct. 2002, page 14 of 29
Contents
Default
HD151TS405SS
Byte21 Reserved Register
Bit
Description
Contents
Default
7
(Reserved)
0
6
(Reserved)
0
5
(Reserved)
0
4
(Reserved)
0
3
(Reserved)
0
2
(Reserved)
0
1
(Reserved)
0
0
(Reserved)
0
Byte22 CPU Clock PD# State Control Register
Bit
Description
Contents
Default
7
CPUCLKT/C0 state control at power 0: CPUCLKT0 outputs 2 × Iref current and
down mode.
CPUCLKC0 is tristate when PD# asserted.
1: Both CPUCLKT0 and CPUCLKC0 are tristate
when PD# asserted.
0
6
CPUCLKT/C1 state control at power 0: CPUCLKT1 outputs 2 × Iref current and
down mode.
CPUCLKC1 is tristate when PD# asserted.
1: Both CPUCLKT1 and CPUCLKC1 are tristate
when PD# asserted.
0
5
(Reserved bit)
0
4
(Reserved bit)
0
3
(Reserved bit)
0
2
(Reserved bit)
0
1
(Reserved bit)
0
0
(Reserved bit)
0
Rev.3, Oct. 2002, page 15 of 29
HD151TS405SS
Hitachi clock generator I2C Serial Interface Operation
1. Write mode
1.1 Controller (host) sends a start bit.
1.2 Controller (host) sends the write address D2 (h).
1.3 Hitachi clock generator will acknowledge (Hitachi clock gen. sends “Low”).
1.4 Controller (host) sends a begin byte M.
1.5 Hitachi clock generator will acknowledge (Hitachi clock gen. sends “Low”).
1.6 Controller (host) sends a byte count N.
1.7 Hitachi clock generator will acknowledge (Hitachi clock gen. sends “Low”).
1.8 Controller (host) sends data from byte M to byte M+N–1.
1.9 Hitachi clock generator will acknowledge each byte one at a time.
1.10 Controller (host) sends a stop bit.
1 bit
7 bits
Start bit
1 bit 1 bit
8 bits
1 bit
8 bits
1 bit
8 bits
Slave
R/W Ack Begin Byte = M Ack Byte Count = N Ack Byte M
address D2(h)
1 bit
8 bits
1 bit
8 bits
Ack
Byte M+1
Ack
Byte M+N–1
Rev.3, Oct. 2002, page 16 of 29
1 bit
1 bit
Ack Stop bit
HD151TS405SS
Hitachi clock generator I2C Serial Interface Operation (cont.)
2. Read mode
2.1 Controller (host) sends a start bit.
2.2 Controller (host) sends the write address D2 (h).
2.3 Hitachi clock generator will acknowledge (Hitachi clock gen. sends “Low”).
2.4 Controller (host) sends a begin byte M.
2.5 Hitachi clock generator will acknowledge (Hitachi clock gen. sends “Low”).
2.6 Controller (host) sends a restart bit.
2.7 Controller (host) sends the read address D3 (h).
2.8 Hitachi clock generator will acknowledge (Hitachi clock gen. sends “Low”).
2.9 Hitachi clock generator will send the byte count N.
2.10 Controller (host) will acknowledge.
2.11 Hitachi clock generator will send data from byte M to byte M+N–1.
2.12 When Hitachi clock generator sends the last byte, controller (host) will not acknowledge.
2.13 Controller (host) sends a stop bit.
1 bit
7 bits
Start bit
1 bit
8 bits
1 bit 1 bit
8 bits
1 bit
1 bit
7 bits
1 bit
Slave
R/W Ack Begin Byte = M Ack Restart bit Slave
R/W
address D2(h)
address D3(h)
1 bit
8 bits
Ack Begin Count = N Ack Byte M
1 bit
8 bits
1 bit
Ack Byte M+1 Ack
8 bits
1 bit
1 bit
Byte M+N–1 Not Ack Stop bit
Notes: 1. Hitachi clock generator is a slave/receiver, I2C component. It can read back the data stored in
the latches for the verification.
2. The data transfer rate supported by this clock generator is 100k bits/sec or less (standard
mode).
3. The input is operating at 3.3 V logic levels.
4. The data byte format is 8 bit bytes.
5. To simplify the clock generator I2C interface, the protocol is set to use only block-write from
the controller.
6. The bytes must be accessed in sequential order from lowest to highest byte with the ability to
stop after any complete byte has been transferred. The data is loaded until a stop sequence is
issued.
7. At power-on, all registers are set to a default condition, as shown.
Rev.3, Oct. 2002, page 17 of 29
HD151TS405SS
Absolute Maximum Ratings
Item
Symbol
Ratings
Unit
Supply voltage
VDD
–0.5 to 4.6
V
Input voltage
VI
–0.5 to 5.5
V
–0.5 to 4.6
V
1
Conditions
SCLK, SDATA
Output voltage *
VO
–0.5 to VDD +0.5 V
Input clamp current
IIK
–50
mA
VI < 0
Output clamp current
IOK
–50
mA
VO < 0
Continuous output current
IO
±50
mA
VO = 0 to VDD
0.7
W
–65 to +150
°C
Maximum power dissipation
at Ta = 55°C (in still air)
Storage temperature
Notes:
Tstg
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage
to the device. These are stress ratings only, and functional operation of the device at these or
any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute maximum rated conditions for extended periods may affect device
reliability.
1. The input and output negative voltage ratings may be exceeded if the input and output clamp
current ratings are observed.
Recommended Operating Conditions
Item
Symbol
Min
Typ
Max
Unit Conditions
Supply voltage
VDD
3.135
3.3
3.465
V
–0.3
—
VDD+0.3
V
DC input signal voltage
High level input voltage
VIH
2.0
—
VDD+0.3
V
Low level input voltage
VIL
–0.3
—
0.8
V
Operating temperature
Ta
0
—
70
°C
Rev.3, Oct. 2002, page 18 of 29
HD151TS405SS
Pin Descriptions
Pin name
No.
Type
Description
GND
5,8,18,24,25 Ground
32,41,46
GND pins
VDD
1,11,13,19,28 Power
29,42,48
Power supplies pins. Nominal 3.3 V.
VDDA
36
Power
Power supply for PLL core.
GNDA
37
Power
Power supply for PLL core.
CPUT [1:0]
44,40
OUTPUT
“True” clocks of differential pair CPUCLK. These pins are
HCSL outputs.
CPUC [1:0]
43,39
OUTPUT
“Complementary” clocks of differential pair CPUCLK. These
pins are HCSL outputs.
SDCLK
47
OUTPUT
3.3 V Memory clock outputs.
CPU_STP#
45
INPUT
CPUCLK STOP pin.
This asynchronous input halts CPU, SDRAM and AGP clocks at
logic “0” level when driven low, the stop selection can be
programmed through I2C. 120 kΩ internal pulled-up.
PCI_F0
14
OUTPUT
Free running PCI clock 3.3 V output.
INPUT
Latch input multi function pin for frequency select.
This pin is internal pull-down to GND.
OUTPUT
Free running PCI clock 3.3 V output.
INPUT
Latch input multi function pin for frequency select.
This pin is internal pull-down to GND.
(*FS3)
PCI_F1
15
(*FS4)
PCICLK [5:0]
16,17,20,21 OUTPUT
22,23
3.3 V PCI clock outputs.
PCI_STP#
12
INPUT
PCICLK stop pin. Stops PCICLKs at logic “0” level when input
low, the stop selection can be programmed through I2C.
120 kΩ internal pulled-up.
ZCLK [1:0]
9,10
OUTPUT
Hyper Zip clock outputs.
Rev.3, Oct. 2002, page 19 of 29
HD151TS405SS
Pin Descriptions (cont.)
Pin name
No.
Type
Description
REF0
2
OUTPUT
14.318 MHz reference clock.
INPUT
Latch input multi function pin for frequency select.
This pin is internal pull-down to GND.
OUTPUT
14.318 MHz reference clock
INPUT
Latch input multi function pin for frequency select.
This pin is internal pull-down to GND.
OUTPUT
14.318 MHz reference clock.
INPUT
Latch input multi function pin for frequency select.
This pin is internal pull-down to GND.
OUTPUT
SIO clock output. Default is 24 MHz.
This pin’s output frequency is able to change for 48 MHz by I2C
register.
INPUT
Latch input multi function pin for CPUCLK ’s output current
setting.
This pin is internal pull-up.
(*FS0)
REF1
3
(*FS1)
REF2
4
(*FS2)
24_48MHz
26
(*MULTISEL)
AGPCLK0
31
OUTPUT
AGP clock output.
AGPCLK1
30
OUTPUT
AGP clock output.
VTT_PWRGD/
PD#
33
INPUT
Power down pin. All circuits will be powered down.
(Output state of each outputs are shown in page6 Table2.)
Asynchronous active low input pin used to power down the
device into low power state. The internal clocks are disabled
and VCO and the crystal are stopped. The latency of power
down will not be greater than 3ms.
48 MHz
27
OUTPUT
3.3 V, 48 MHz USB clock output.
X1
6
INPUT
XTAL input.
X2
7
OUTPUT
XTAL output.
SDATA
34
INPUT
Data input for I2C logic.
This pin is internal pull-up to VDD by 120 kΩ resistor.
SCLK
35
INPUT
Clock input for I2C logic.
This pin is internal pull-up to VDD by 120 kΩ resistor.
IREF
38
IN
A fixed resistor provides a reference current for the differential
HCSL clock outputs.
Note: FS [4:0] & MULTISEL Input logic levels are latched an internal power-on reset. Use 10 kΩ resistor to
program logic High to VDD or GND for logic low.
Rev.3, Oct. 2002, page 20 of 29
HD151TS405SS
DC Electrical Characteristics / Serial Input Port
Ta = 0°C to 70°C, VDD = 3.3 V
Item
Symbol Min
Input Low Voltage
VIL
Input High Voltage
VIH
2.0
Input Current
II
–50
Input capacitance
CI
Note:
Typ *1
Max
Unit
0.8
V
Test Conditions
V
+50
µA
VI = 0 V or 3.465 V,
VDD = 3.465 V
10
pF
SDATA & SCLK *2
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions.
2. Target of design, not 100% tested in production.
AC Electrical Characteristics / Serial Input port
Item
Symbol
SCLK Frequency
FSCLK
Min
Typ
Max
Unit Test Conditions Notes
100
kHz
Normal Mode
Start Hold Time
tSTHD
4.0
µs
SCLK Low Time
tLOW
4.7
µs
SCLK High Time
tHIGH
4.0
µs
Data Setup Time
tDSU
250
ns
Data Hold Time
tDHD
300
ns
Rise Time
tr
1000
ns
SDATA & SCLK
0.8 V to
2.0 V
Fall Time
tf
300
ns
SDATA & SCLK
2.0 V to
0.8 V
Stop Setup Time
tSTSU
4.0
µs
BUS Free Time between
Stop & Start Condition
tSPF
4.7
µs
Note: Target of design, not 100% tested in production.
Rev.3, Oct. 2002, page 21 of 29
HD151TS405SS
DC Electrical Characteristics / SDCLK
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 20 pF
Item
Symbol Min
Output voltage
VOH
Output Current
3.1
Unit Test Conditions
V
IOH = –1 mA, VDD = 3.3 V
VOL
50
mV
IOL = 1 mA, VDD = 3.3 V
IOH
–22
mA
VOH = 2.0 V
mA
VOL = 0.8 V
IOL
Note:
Typ *1 Max
25
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions.
AC Electrical Characteristics / SDCLK
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 20 pF
Item
Symbol
Min
Cycle to cycle jitter
tCCS
–250
Slew rate
tSL
1.0
Typ
Max
Unit Test Conditions Notes
250
ps
V/ns
Clock Duty Cycle
45
50
55
%
SDCLK to CPU Clock
Skew
–2.0
0
2.0
ns
Output Impedance
30
Notes: Target of design, not 100% tested in production.
1. Difference of cycle time between two adjoining cycles.
2. SDCLK Skew control register is default “0100”.
Rev.3, Oct. 2002, page 22 of 29
Ω
133 MHz, Fig1
*1
0.4 V to
2.4 V
*2
HD151TS405SS
DC Electrical Characteristics / CPUCT/C HCSL Clock
Ta = 0°C to 70°C, VDD = 3.3 V
Item
Symbol Min
Output voltage
VO
Output Current
IO
Output resistance
Typ *1 Max
1.2
I(nom)
3000
Unit Test Conditions
V
mA
VDD = 3.3 V *2
Ω
VO = 1.2 V
Notes: Target of design, not 100% tested in production.
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions
2. I(nom) is output current(Ioh) shown in Page6 Table3.
AC Electrical Characteristics / CPUT/C HCSL Clock
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 2 pF, Rref = 475 Ω, 6 × Iref
Item
Symbol
Min
Cycle to cycle jitter
tCCS
–250
CPU Group Skew
(CPU clock out to CPU
clock out)
tskS
Rise time
tr
Fall time
tf
Typ
Max
Unit Test Conditions Notes
250
ps
150
ps
175
700
ps
VO = 0.14 V to
0.56 V
175
700
ps
VO = 0.14 V to
0.56 V
Clock Duty Cycle
47
50
53
%
CPU (early) to AGP Skew
1.0
2.0
4.0
ns
CPU (early) to PCI Skew
1.0
2.0
4.0
ns
CPU (early) to ZCLK
Skew
1.0
2.0
4.0
ns
0.55 ×
Voh
V
Cross point voltage
Vcross
0.45 ×
Voh
133 MHz
*1
100/133 MHz
Notes: Target of design, not 100% tested in production.
1. Difference of cycle time between two adjoining cycles.
Rev.3, Oct. 2002, page 23 of 29
HD151TS405SS
DC Electrical Characteristics / PCI Clock
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 30 pF
Item
Symbol Min
Output voltage
VOH
Output current
3.1
Unit Test Conditions
V
IOH = –1 mA, VDD = 3.3 V
VOL
50
mV
IOL = 1 mA, VDD = 3.3 V
IOH
–22
mA
VOH = 2.0 V
mA
VOL = 0.8 V
IOL
Note:
Typ *1 Max
25
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions.
AC Electrical Characteristics / PCI Clock
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 30 pF
Item
Symbol
Min
Cycle to cycle jitter
tCCS
–250
Typ
PCI Group Skew
tskS
(PCI clock out to PCI clock
out)
Slew rate
tSL
Clock Duty Cycle
Output Impedance
Max
Unit Test Conditions Notes
250
ps
33.3 MHz, Fig1
500
ps
Rising edge
@1.5 V to 1.5 V
Fig.2
1.0
45
V/ns
50
55
30
Notes: Target of design, not 100% tested in production.
1. Difference of cycle time between two adjoining cycles.
Rev.3, Oct. 2002, page 24 of 29
%
Ω
*1
0.4 V to
2.4 V
HD151TS405SS
DC Electrical Characteristics / AGP Clock & ZCLK
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 20 pF
Item
Symbol Min
Output voltage
VOH
Output current
3.1
Unit Test Conditions
V
IOH = –1 mA, VDD = 3.3 V
VOL
50
mV
IOL = 1 mA, VDD = 3.3 V
IOH
–22
mA
VOH = 2.0 V
mA
VOL = 0.8 V
IOL
Note:
Typ *1 Max
25
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions.
AC Electrical Characteristics / AGP Clock & ZCLK
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 20 pF
Item
Symbol
Min
Cycle to cycle jitter
tCCS
–500
AGP Group Skew &
ZCLK Group Skew
tskS
Slew rate
tSL
Clock Duty Cycle
Output Impedance
Typ
Max
Unit Test Conditions Notes
500
ps
66.6 MHz, Fig1
175
ps
Rising edge
@1.5 V to 1.5 V
Fig.2
1.0
45
V/ns
50
55
30
*1
0.4 V to
2.4 V
%
Ω
Notes: Target of design, not 100% tested in production.
1. Difference of cycle time between two adjoining cycles.
Rev.3, Oct. 2002, page 25 of 29
HD151TS405SS
DC Electrical Characteristics / 48 MHz, 24_48 MHz & REF Clock
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 20 pF
Item
Symbol Min
Output voltage
VOH
Output Current
3.1
Unit Test Conditions
V
IOH = –1 mA, VDD = 3.3 V
VOL
50
mV
IOL = 1 mA, VDD = 3.3 V
IOH
–22
mA
VOH = 2.0 V
mA
VOL = 0.8 V
IOL
Note:
Typ *1 Max
16
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions.
AC Electrical Characteristics / 48 MHz, 24_48 MHz & REF Clock
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 20 pF
Item
Symbol
Min
Cycle to cycle jitter
tCCS
–500
Slew rate
tSL
0.5
Clock Duty Cycle
Output Impedance
45
Typ
Max
Unit Test Conditions Notes
500
ps
V/ns
50
55
40
Notes: Target of design, not 100% tested in production.
1. Difference of cycle time between two adjoining cycles.
Rev.3, Oct. 2002, page 26 of 29
%
Ω
48 MHz, Fig1
*1
0.4 V to
2.4 V
HD151TS405SS
Clock Out
tcycle n+1
tcycle n
t CCS = (tcycle n) - (tcycle n+1)
Figure1 Cycle to Cycle Jitter (3.3 V Single Ended Clock Output)
Clock Outx
1.5 V
Clock Outy
1.5 V
tskS
Figure2 Output Clock Skew (3.3 V Single Ended Clock Output)
RS = 33.2 Ω
ZLT = ZLC = 50 Ω
CPUCLKT
LT
TS405
RS = 33.2 Ω
CPUCLKC
RI(ref) =
475 Ω
LC
RP =
49.9 Ω
RP =
49.9 Ω
CL = 2 pF
CL = 2 pF
Figure3 Load Circuit for CPUCLKT/C
Rev.3, Oct. 2002, page 27 of 29
HD151TS405SS
Package Dimensions
Unit: mm
15.85 ± 0.3
25
1
24
0.635
0.25 ± 0.1
Rev.3, Oct. 2002, page 28 of 29
0.15
0.13 M
0.10 Min
0.78 Max
0.15 ± 0.05
2.65 Max
7.50 ± 0.3
48
10.40 ± 0.4
1.45
0˚ - 10˚
0.60 ± 0.2
HD151TS405SS
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: (03) 3270-2111 Fax: (03) 3270-5109
URL
http://www.hitachisemiconductor.com/
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe Ltd.
Electronic Components Group
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00
Singapore 049318
Tel : <65>-6538-6533/6538-8577
Fax : <65>-6538-6933/6538-3877
URL : http://semiconductor.hitachi.com.sg
Hitachi Europe GmbH
Electronic Components Group
Dornacher Str 3
D-85622 Feldkirchen
Postfach 201, D-85619 Feldkirchen
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road
Hung-Kuo Building
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://semiconductor.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon Hong Kong
Tel : <852>-2735-9218
Fax : <852>-2730-0281
URL : http://semiconductor.hitachi.com.hk
Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.
Colophon 7.0
Rev.3, Oct. 2002, page 29 of 29