RT9986 7-CH DC/DC Converter for DSC General Description Features The RT9986 is a complete power supply solution for digital still cameras and other handheld devices. It includes one synchronous step-up DC/DC converter with load disconnect, one selectable synchronous step-up/stepdown DC/DC converter, two synchronous step-down DC/ DC converters, one synchronous high voltage step-up DC/ DC converter, one inverting DC/DC converter, and one selectable synchronous high voltage step-up/currentsource for WLED. In addition, the RT9986 also includes one RTC_LDO, one voltage detector, and one System Reset. All power MOSFETs are addition in the RT9986. z CH2 Step-Up/Step-Down Auto-Selected by External Topology z Preset On/Off Sequence of CH1, CH2, CH3, CH4 (1 → 3 → 4 → 2) Preset On/Off Sequence of CH5, CH6 (5 → 6) The RT9986 is designed to fulfill the applications for DSC as follows : CH1 is a synchronous step-up output for motor or DSC system I/O power z z z z z z z CH2 is a selectable synchronous step-up/step-down output for motor or DSC system I/O power CH3 and CH4 are synchronous step-down outputs for DSP core and memory power supply CH5 is a synchronous high voltage step-up output for CCD bias power supply CH6 is an inverting output for negative CCD bias power supply CH7 is a selectable synchronous high voltage step-up/ current source for driving WLED The selectable step-up/step-down converter can be auto selected by external component topology. For the RT9986, all 7-CHs have built in internal compensation. The RT9986 also provides a transformerless inverting converter for supplying CCD power. For the low voltage synchronous step-up and step down converters, efficiency can be up to 95%. z z z All Channels with Internal Compensation All Power Switches Integrated All Step-Up Converter with Load Disconnect Step-Down DC/DC Converter ` Up to 95% Efficiency ` 100% (max) Duty Cycle Low Voltage Step-Up DC/DC Converter ` Adjustable Output Voltage ` Up to 95% Efficiency WLED Driver ` Auto-Selected by External Topology ` Current Source Mode with 30mA DC Current ` Step-Up Mode with LED Open Protection (OVP7) ` Direct PWM Dimming Control Fixed 2MHz Switching Frequency for CH1/2/3/4, Fixed 1MHz Switching Frequency for CH5/6/7 Small 32-Lead WQFN Package RoHS Compliant and Halogen Free Applications z z z Digital Still Camera PDA Portable Devices Marking Information 13= : Product Code 13=YM DNN YMDNN : Date Code The RT9986 provides comprehensive protection features including over current protection, thermal shutdown protection, over voltage protection, overload protection, and under voltage protection. DS9986-00 May 2011 www.richtek.com 1 RT9986 Ordering Information Pin Configurations RT9986 EN56 LX1 PVDD1 BAT LX6 PVDD2 LX2 EN1234 (TOP VIEW) Package Type QW : WQFN-32L 4x4 (W-Type) Note : Richtek products are : ` RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. ` Suitable for use in SnPb or Pb-free soldering processes. 32 31 30 29 28 27 26 25 FB1 VREF FB6 VOUT6 FB7 PVDD7 LX7 EN7 1 24 2 23 3 4 5 6 22 21 GND 20 19 33 7 18 8 17 FB2 SYSR RTCPWR VDDM LX5 PVDD5 FB5 RST 9 10 11 12 13 14 15 16 LX4 PVDD4 FB4 VCHK VNEG FB3 PVDD3 LX3 Lead Plating System G : Green (Halogen Free and Pb Free) WQFN-32L 4x4 www.richtek.com 2 DS9986-00 May 2011 RT9986 Typical Application Circuit For 2AA 21 C1 1µF 29 VBAT C2 4.7µF L5 10µH VBAT PVDD1 VDDM FB1 BAT 20 18 FB5 4 VOUT6 -7V C18 10µF x 2 C15 1nF R11 66.5k L6 10µH 28 LX6 3 R12 10.5k C16 0.1µF 2 13 C17 0.1µF D5 FB6 VREF FB7 FB2 24 25 EN1234 32 EN56 OFF 12 VCHK RTCPWR R14 10k R15 100k 3.3V DS9986-00 May 2011 17 23 R3 470k C6 10µF x 2 R4 150k LX2 26 L2 2.2µH LX3 16 FB3 VBAT C5 4.7µF PVDD3 15 5V C7 4.7µF L3 2.2µH 2.5V R5 768k 14 C8 10µF R6 360k PVDD4 10 LX4 9 8 EN7 ON VBAT 3.3V C22 4.7pF VNEG 7 LX7 6 PVDD7 5 5V C3 4.7µF PVDD2 27 R10 26.1k D1 5V C4 10µF x 2 L1 2.2µH LX5 C12 27pF R9 287k R1 470k R2 88.7k LX1 31 19 PVDD5 C13 10µF x 2 1 C21 4.7pF RT9986 C14 4.7µF 15V 30 FB4 11 5V or VBAT C9 10µF L4 2.2µH 1.8V R7 470k C10 10µF R8 374k RTCPWR RST GND 22 C11 Super Cap 33 (Exposed Pad) SYSR www.richtek.com 3 RT9986 For Li-ion 21 C1 1µF 29 VBAT C2 4.7µF L5 10µH VBAT PVDD1 VDDM FB1 BAT 20 L1 2.2µH LX5 LX2 26 C12 27pF R9 287k 18 FB5 FB2 L2 2.2µH D1 -7V C18 10µF x 2 C15 1nF L6 10µH R11 66.5k 28 LX6 3 R12 10.5k C16 0.1µF 2 13 C17 0.1µF L7 10µH VBAT FB6 VREF 3.3V C22 10pF 24 PVDD2 27 PVDD3 15 LX3 16 FB3 PVDD7 FB4 11 5 8 EN7 25 EN1234 32 EN56 12 R15 100k 3.3V www.richtek.com 4 17 23 5V or VBAT C9 4.7µF L4 2.2µH 1V R7 23.2k C10 10µF FB7 RTCPWR R14 10k C8 10µF R8 93.1k R13 10 RTCPWR 1.8V R5 470k R6 374k 7 LX7 C20 1µF OFF VBAT C7 4.7µF L3 2.2µH 14 LX4 9 ON VBAT C6 4.7µF PVDD4 10 6 D3 D4 C5 10µF R3 470k R4 150k VNEG C19 1µF D2 VBAT C4 4.7µF R10 26.1k 4 VOUT6 5V C3 10µF x 2 R1 470k R2 88.7k LX1 31 19 PVDD5 C13 10µF x 2 1 C21 4.7pF RT9986 C14 4.7µF 15V 30 GND 22 C11 Super Cap 33 (Exposed Pad) VCHK RST SYSR DS9986-00 May 2011 RT9986 Timing Diagram Timing Diagram for CH1 to CH4 VDDM = Max (BAT, PVDD1) User define EN1234 3.5ms CH1 VOUT CH3 VOUT 3.5ms 3.5ms Wait until FB3 < 0.1V 3.5ms CH4 VOUT Wait until FB4 < 0.1V Wait until FB2 < 0.1V CH2 VOUT CH5 and CH6 Power Sequence The power on sequence is : When EN56 goes high, CH5 will turn on first. After 10ms, CH6 will turn on. The power off sequence is : When EN56 goes low, CH6 will turn off first and VOUT6 will be internally pulled to GND. When VOUT6 > −0.12V, CH6 discharging completes and then CH5 turns off. Finally, the whole IC shuts down. Power On Sequence : CH5 HV Step-Up 15V → CH6 INV −7V Power Off Sequence : CH6 INV −7V → CH5 HV Step-Up 15V EN56 CH5 VOUT CH6 VOUT DS9986-00 May 2011 10ms Discharge by internal N-MOSFET Constant Current Pre-Charge. 10ms Wait until VOUT6 close to 0V www.richtek.com 5 RT9986 Functional Pin Description Pin No. Pin Name Pin Function 1 FB1 Feedback Input Pin of CH1. 2 VREF 1.8V Reference Output Pin. 3 FB6 Feedback Input Pin of CH6. 4 VOUT6 5 FB7 6 PVDD7 7 LX7 8 EN7 Sense Input Pin of CH6 Inverting Output Node. Feedback input pin of CH7 in step-up mode or current sink pin of CH7 in current source mode. Power Output Pin of CH7. Switch Node of CH7 in Step-Up Mode. LX7 initial voltage determines CH7 operation mode. Enable Pin of CH7 and PWM Dimming Signal Input Pin. 9 LX4 Switch Node of CH4. 10 PVDD4 Power Input Pin of CH4. 11 FB4 Feedback Input Pin of CH4. 12 VCHK Sense Pin of Voltage Detector. 13 VNEG Output Pin of Negative Regulator. 14 FB3 Feedback Input Pin of CH3. 15 PVDD3 Power Input Pin of CH3. 16 LX3 Switch Node of CH3. 17 RST Voltage Detector Open Drain Output Pin. 18 FB5 Feedback Input Pin of CH5. 19 PVDD5 Power Output Pin of CH5. 20 LX5 Switch Node of CH5. 21 VDDM 22 RTCPWR 23 SYSR IC Analog Power Pin. Internal Control Circuit Power Pin. That must connect to a bypass capacitor for better noise rejection. System Reset Open-Drain Output Pin. 24 FB2 Feedback Input Pin of CH2. 25 26 EN1234 LX2 27 PVDD2 28 LX6 Enable Pin of CH1, CH2, CH3, CH4. Switch Node of CH2. Power Input Pin for Step-Down of CH2. Power Output Pin for Step-Up of CH2. Switch Node of CH6. 29 BAT Battery Power Pin. 30 PVDD1 Power Output Pin of CH1. 31 LX1 Switch Node of CH1. 32 EN56 Enable Pin of CH5, CH6. Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum thermal dissipation. 33 (Exposed pad) GND www.richtek.com 6 DS9986-00 May 2011 RT9986 Function Block Diagram VDDM PVDD5 VDDM BAT Body Diode Control UVLO CH5 C-Mode Step-Up PWM LX5 Soft-Start BAT UVLO VDDI PVDD1 VDDM FB5 1.25V REF + VDDM BAT Body Diode Control CH1 C-Mode Step-Up CH6 Inverting BAT LX1 - LX6 VNEG FB1 + 0.8V REF VOUT6 PVDD2 VDDM + FB6 0.6V REF - 1.8V REF VREF Body Diode Control CH2 C-Mode Step-Up or Step-Down VDDM BAT LX2 PVDD7 BAT - FB2 + 0.8V REF VDDM PVDD3 + LX7 Body Diode Control CH7 C-Mode Step-Up or Current Source + PWM Dimming + Mode Selector FB7 CH3 C-Mode Step-Down 0.25V REF 30mA(max.) LX3 EN7 EN1234 EN56 + Power On/Off Sequence Control Logic Block FB3 0.8V REF VDDM PVDD4 RTCPWR CH4 C-Mode Step-Down VCHK RST Voltage Detector LX4 VDDM SYSR SYS_Reset GND DS9986-00 May 2011 FB4 + FB2 VDDI RTC_LDO W/ Body Diode Control 0.8V REF RTCPWR www.richtek.com 7 RT9986 Absolute Maximum Ratings z z z z z z z z z z z z z (Note 1) Supply Input Voltage, VDDM, BAT --------------------------------------------------------------------- −0.3V to 6V VOUT6 -------------------------------------------------------------------------------------------------------- −10V to 0.3V LX1, LX2, LX3, LX4 ----------------------------------------------------------------------------------------- −0.3V to 6V PVDD5, LX5 ------------------------------------------------------------------------------------------------- −0.3V to 24V PVDD7, LX7 ------------------------------------------------------------------------------------------------- −0.3V to 17V LX6 ------------------------------------------------------------------------------------------------------------- (BAT − 14V) to (BAT + 0.3V) Other Pins ---------------------------------------------------------------------------------------------------- −0.3V to 6V Power Dissipation, PD @ TA = 25°C WQFN 32L 4x4 ---------------------------------------------------------------------------------------------- 3.590W Package Thermal Resistance (Note 2) WQFN 32L 4x4, θJA ---------------------------------------------------------------------------------------- 27.8°C/W WQFN 32L 4x4, θJC ---------------------------------------------------------------------------------------- 7°C/W Junction Temperature -------------------------------------------------------------------------------------- 150°C Lead Temperature (Soldering, 10 sec.) ---------------------------------------------------------------- 260°C Storage Temperature Range ----------------------------------------------------------------------------- −65°C to 150°C ESD Susceptibility (Note 3) HBM (Human Body Mode) ------------------------------------------------------------------------------- 2kV MM (Machine Mode) --------------------------------------------------------------------------------------- 200V Recommended Operating Conditions z z z (Note 4) VDDM --------------------------------------------------------------------------------------------------------- 2.7V to 5.8V Junction Temperature Range ----------------------------------------------------------------------------- −40°C to 125°C Ambient Temperature Range ----------------------------------------------------------------------------- −40°C to 85°C Electrical Characteristics (VDDM = VBAT = 3.3V, TA = 25°C, unless otherwise specified) Parameter Supply Input Voltage BAT Startup Voltage Symbol Test Conditions VST BAT UVLO Threshold BAT Falling BAT UVLO Hysteresis VDDM OVP Threshold VDDM Rising VDDM OVP Hysteresis VDDM UVLO Threshold VDDM Rising VDDM UVLO Hysteresis Min Typ Max Unit 1.5 -- -- V -- 1.3 -- V -- 0.2 -- V 5.85 6 6.15 V -- −0.25 -- V 2.2 2.4 2.6 V -- 0.3 -- V Supply Current Shutdown Supply Current (IBAT + IVDDM) CH1 Synchronous Step-Up Supply Current into VDDM CH2 Synchronous Step-Up or Step-Down Supply Current into VDDM CH3 Synchronous Step-Down Supply Current into VDDM IOFF All EN pins = 0, VBAT = 3.3V -- 10 20 μA IQ1 Non switching, VEN1234 = 3.3V -- -- 800 μA IQ2 Non switching, VEN1234 = 3.3V -- -- 800 μA IQ3 VEN1234 = 3.3V -- -- 800 μA To be continued www.richtek.com 8 DS9986-00 May 2011 RT9986 Parameter Test Conditions Min Typ Max Unit IQ4 Non switching, VEN1234 = 3.3V -- -- 800 μA IQ5 Non switching, VEN56 = 3.3V -- -- 800 μA IQ6 Non switching, VEN56 = 3.3V -- -- 800 μA IQ7b Non switching, VEN7 = 3.3V -- -- 800 μA IQ7c VEN7 = 3.3V, VLX7 = 0V -- -- 800 μA 1800 2000 2200 kHz CH7 in Step-Up mode 900 1000 1100 kHz CH1 Maximum Duty Cycle (Step-Up) VFB1 = 0.75V 80 83 86 % CH2 Maximum Duty Cycle (Step-Up) VFB2 = 0.75V 80 83 86 % VFB2 = 0.75V -- -- 100 % VFB3 = 0.75V -- -- 100 % CH4 Synchronous Step-Down Supply Current into VDDM CH5 Synchronous Step-Up Supply Current into VDDM CH6 (Inverting) Supply Current into VDDM CH7 (WLED) in Step-Up Mode Supply Current into VDDM CH7 (WLED) in Current Source Mode Supply Current into VDDM Oscillator Symbol CH1, 2, 3, 4 Operation Frequency fOSC CH5, 6, 7 Operation Frequency fOSC2 CH2 Maximum Duty Cycle (Step-Down) CH3 Maximum Duty Cycle (Step-Down) CH4 Maximum Duty Cycle (Step-Down) CH5 Maximum Duty Cycle (Step-Up) VFB4 = 0.75V -- -- 100 % VFB5 = 1.15V 91 93 97 % CH6 Maximum Duty Cycle (Inverting) VFB6 = 0.7V 91 93 97 % CH7 Maximum Duty Cycle (Step-Up) VFB7 = 0.15V 91 93 97 % 0.788 0.8 0.812 V 1.237 1.25 1.263 V 0.59 0.6 0.61 V 0.237 0.25 0.263 V 28.5 -- 30 -- 31.5 0.3 mA V 1.782 1.8 1.818 V 0μA < I REF < 200μA -- -- 10 mV VPVDD1 = 3.3V -- 200 300 VPVDD1 = 3.3V VPVDD2 = 3.3V -2.2 -- 150 3 200 250 4 300 VPVDD2 = 3.3V -- 150 250 Feedback, Regulation Voltage Feedback Regulation Voltage @ FB1, FB2, FB3, FB4 Feedback Regulation Voltage @ FB5 VFB5 Feedback Regulation Voltage @ FB6 VFB6 (Inverting) Feedback Regulation Voltage @ FB7 VFB7 Output Current (CS Mode) Dropout Voltage @ FB7 (CS Mode) VREF Output Voltage VLX7 = 0V VREF VREF Load Regulation Power Switch CH1 On-Resistance P-MOSFET N-MOSFET CH1 Current Limitation (Step-Up) P-MOSFET CH2 On Resistance N-MOSFET RDS(ON)1 ILIM1 RDS(ON)2 mΩ A mΩ CH2 Current Limitation (Step-Down) ILIM2_D 1.2 1.6 2 A CH2 Current Limitation (Step-Up) ILIM2_U 2.2 3 4 A To be continued DS9986-00 May 2011 www.richtek.com 9 RT9986 Parameter CH3 On Resistance Symbol P-MOSFET N-MOSFET CH3 Current Limitation (Step-Down) CH4 On Resistance P-MOSFET N-MOSFET CH4 Current Limitation (Step-Down) CH5 On Resistance P-MOSFET N-MOSFET CH5 Current Limitation of N-MOSFET CH6 On Resistance of P-MOSFET CH6 Current Limitation of P-MOSFET P-MOSFET CH7 On Resistance N-MOSFET CH7 Current Limitation of N-MOSFET Protection Over Voltage Protection of PVDD1 and PVDD2 Over Voltage Protection of PVDD5 Min Typ Max VPVDD3 = 3.3V -- 300 400 VPVDD3 = 3.3V -- 300 400 1.2 1.6 2 VPVDD4 = 3.3V -- 300 400 VPVDD4 = 3.3V -- 300 400 1.2 1.6 2 VPVDD5 = 16V -- 0.8 1 VPVDD5 = 3.3V -- 0.6 0.8 0.9 1.2 1.6 A RDS(ON)6 -- 0.5 0.7 Ω ILIM6 1 1.5 2 A VPVDD7 = 10V -- 3 -- VPVDD7 = 3.3V -- 0.9 1.1 Ω 0.6 0.8 1 A 5.85 6 6.15 V 20 21 22 V -- −13 -- V 14.3 15 16 V -- VBAT −0.8V -- V 0.35 0.4 0.45 V 0.5 0.6 0.7 V 1.1 1.2 1.3 V 0.65 0.7 0.75 V 1.05 1.1 1.15 V 0.69 0.74 0.79 V -- 100 -- ms 1.3 -- -- -- -- 0.4 RDS(ON)3 Test Conditions ILIM3 RDS(ON)4 ILIM4 RDS(ON)5 ILIM5 RDS(ON)7 ILIM7 Over Voltage Protection of VOUT6 Over Voltage Protection of PVDD7 (Step-Up Mode) CH1, CH2 Step-Up Under Voltage Protection of PVDD1 and PVDD2 At VFBx < 0.4V after soft-start ends At VFB5 < 0.6V after soft-start ends At VFB6 > 1.2V after soft-start end At VFBx < 0.7V after fault delay (100ms) At VFB5 < 1.1V after fault delay (100ms) At VFB6 > 0.74V after fault delay (100ms) CH1/2/3/4 Under Voltage Protection CH5 Under Voltage Protection CH6 Under Voltage Protection CH1/2/3/4 Over Load Protection CH5 Over Load Protection CH6 Over Load Protection Protection Fault Delay Unit mΩ A mΩ A Ω Control Logic-High EN1234, EN56, EN7 Input Threshold Voltage Logic-Low LX7 Input Threshold Voltage V Logic-High High to Select Step-Up Mode 1 -- -- Logic-Low Low to Select CS Mode -- 0.25 -- -- 2 6 μA -- 32 -- ms EN1234, EN56, EN7 Sink Current EN7 Low Time for Shutdown tSHDN V To be continued www.richtek.com 10 DS9986-00 May 2011 RT9986 Parameter Symbol Test Conditions Min Typ Max Unit 125 160 -- °C -- 20 -- °C 0.709 0.72 0.731 V SYSR, FB2 Hysteresis -- 40 -- mV SYSR Rising Delay Time -- 10 -- ms Thermal Protection Thermal Shutdown TSD Thermal Shutdown Hysteresis ΔTSD System Reset SYSR, FB2 Regulation Threshold for SYSR to go low SYSR Sink Capability VSYSR = 0.5V 4 -- -- mA Voltage Detector Voltage Detector Reset Threshold (VCHK < Threshold Æ RST = L) Voltage Detector Reset Hysteresis VCHK Falling 1.57 1.6 1.63 V -- 16 -- mV Standby Current VVCHK = 3V -- 2 4 μA 35 55 75 ms RST Rising Delay Time RST Sink Capability RTC LDO VRST = 0.5V, VVCHK = 1.5V 4 -- -- mA Standby Current Regulated Output Voltage @ RTCPWR Max Output Current (Current Limit) VDDM = 4.2V -- 5 8 μA IOUT = 0mA 3.1 3.2 3.3 V VDDM = 4.2V 60 130 200 mA IOUT = 50mA -- -- 1000 IOUT = 10mA -- -- 150 IOUT = 3mA -- -- 60 Dropout Voltage mV Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. θJA is measured in natural convection at TA = 25°C on a high-effective thermal conductivity four-layer test board of JEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad of the package. Note 3. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions. DS9986-00 May 2011 www.richtek.com 11 RT9986 Typical Operating Characteristics CH1 Step-Up Efficiency vs. Output Current CH1 Step-Up Efficiency vs. Output Current 100 100 90 90 VBAT VBAT VBAT VBAT VBAT VBAT 70 60 50 = = = = = = VBAT VBAT VBAT VBAT VBAT VBAT 80 4.5V 4.2V 3.9V 3.6V 3.3V 3V Efficiency (%) Efficiency (%) 80 40 30 70 60 50 10 40 30 10 VOUT = 5V, L = 2.2μH, COUT = 10μF x 2 VOUT = 3.3V, L = 2.2μH, COUT = 10μF x 2 0 0 10 100 10 1000 100 Output Current (mA) CH2 Step-Down Efficiency vs. Output Current 100 100 90 90 VBAT VBAT VBAT VBAT VBAT VBAT VBAT 70 60 50 40 = = = = = = = 80 3.6V 3.3V 3V 2.7V 2.5V 2.2V 1.8V Efficiency (%) 80 1000 Output Current (mA) CH2 Step-Up Efficiency vs. Output Current Efficiency (%) 3V 2.7V 2.5V 2.2V 2V 1.8V 20 20 30 20 VBAT VBAT VBAT VBAT VBAT VBAT 70 60 50 40 = = = = = = 3.4V 3.7V 3.9V 4.2V 4.5V 5V 30 20 10 10 VOUT = 5V, L = 2.2μH, COUT = 10μF x 2 0 VOUT = 3.3V, L = 2.2μH, COUT = 10μF 0 10 100 1000 10 Output Current (mA) 100 90 90 60 50 40 = = = = = = = 80 2.7V 3V 3.3V 3.6V 3.9V 4.2V 4.5V Efficiency (%) VBAT VBAT VBAT VBAT VBAT VBAT VBAT 70 1000 CH4 Step-Down Efficiency vs. Output Current 100 80 100 Output Current (mA) CH 3 Step-Down Efficiency vs. Output Current Efficiency (%) = = = = = = 30 VBAT VBAT VBAT VBAT VBAT VBAT VBAT 70 60 50 40 30 = = = = = = = 1.8V 2.5V 3V 3.3V 3.6V 4.2V 4.5V 20 20 10 VOUT = 1.8V, L = 2.2μH, COUT = 10μF 10 VOUT = 1V, L = 2.2μH, COUT = 10μF 0 0 10 100 Output Current (mA) www.richtek.com 12 1000 10 100 1000 Output Current (mA) DS9986-00 May 2011 RT9986 CH5 Step-Up Efficiency vs. Output Current 90 90 70 60 50 40 30 20 10 VOUT VBAT = 4.5V VBAT = 4.2V VBAT = 3.9V VBAT = 3.6V VBAT = 3.3V VBAT = 3V VBAT = 2.7V VBAT = 2.5V VBAT = 2.2V VBAT = 2V = 16V, L = 10μH, COUT = 10μF x 2 0 0.001 Inverting Efficiency (%) 100 80 Efficiency (%) CH6 Inverting Efficiency vs. Output Current 100 80 70 60 50 40 30 20 10 VOUT 0 0.01 0.1 VBAT = 4.2V VBAT = 3.9V VBAT = 3.6V VBAT = 3.3V VBAT = 3V VBAT = 2.7V VBAT = 4.5V VBAT = 2.5V VBAT = 2.2V VBAT = 2V = −8V, L = 10μH, COUT = 10μF x 2 1 10 Output Current (A) 100 Output Current (mA) CH7 Efficiency vs. Input Voltage CH1 Step-Up Output Voltage vs. Output Current 100 5.20 90 5.15 Output Voltage (V) Efficiency (%) 80 70 60 50 40 30 VBAT = 3V 5.10 5.05 VBAT = 4.5V 5.00 4.95 4.90 20 4.85 10 IOUT = 25mA, L = 10μH, COUT = 1μF VOUT = 5V 0 4.80 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 0 100 Input Voltage (V) 300 400 500 600 Output Current (mA) CH1 Step-Up Output Voltage vs. Output Current CH2 Step-Up Output Voltage vs. Output Current 5.10 3.35 VBAT = 1.8V 5.08 Output Voltage (V) 3.33 Output Voltage (V) 200 VBAT = 3.2V 3.31 3.29 VBAT = 3V 5.06 VBAT = 4.2V 5.04 5.02 3.27 VOUT = 3.3V VOUT = 5V 5.00 3.25 0 100 200 300 400 Output Current (mA) DS9986-00 May 2011 500 600 0 100 200 300 400 500 600 Output Current (mA) www.richtek.com 13 RT9986 CH2 Step-Down Output Voltage vs. Output Current CH3 Step-Down Output Voltage vs. Output Current 1.830 3.36 1.825 Output Voltage (V) Output Voltage (V) 3.34 VBAT = 4.5V VBAT = 5V 3.32 3.30 3.28 1.820 1.815 VBAT = 3V VBAT = 4.5V 1.810 1.805 VOUT = 3.3V 3.26 VOUT = 1.8V 1.800 0 100 200 300 400 500 0 600 100 200 Output Current (mA) 400 500 600 Output Current (mA) CH4 Step-Down Output Voltage vs. Output Current CH5 Step-Up Output Voltage vs. Output Current 16.3 1.006 1.004 16.2 Output Voltage (V) Output Voltage (V) 300 VBAT = 4.5V VBAT = 2.7V VBAT = 3V 1.002 1.000 0.998 0.996 VBAT = 3.4V VBAT = 4.5V 16.1 16.0 15.9 0.994 VOUT = 16V VOUT = 1V 15.8 0.992 0 100 200 300 400 500 0 600 20 40 60 80 100 Output Current (mA) Output Current (mA) Power On Sequence CH6 Inverting Efficiency vs. Output Current Output Voltage (V) -8.190 VBAT = 2.7V VBAT = 3.4V VBAT = 4.5V -8.195 VOUT_CH1 (5V/Div) VOUT_CH2 (2V/Div) -8.200 -8.205 VOUT = −8V VOUT_CH3 (2V/Div) VOUT_CH4 (2V/Div) VBAT = 3.7V -8.210 0 20 40 60 80 100 Time (2.5ms/Div) Output Current (mA) www.richtek.com 14 DS9986-00 May 2011 RT9986 Power On Sequence Power Off Sequence VOUT_CH1 (5V/Div) VOUT_CH5 (10V/Div) VOUT_CH2 (2V/Div) VOUT_CH6 (5V/Div) VOUT_CH3 (2V/Div) VOUT_CH4 (2V/Div) VBAT = 3.7V VBAT = 3.7V Time (1ms/Div) Time (5ms/Div) Power Off Sequence CH1 Output Voltage Ripple VOUT_CH5 (10V/Div) LX1 (2V/Div) VOUT_CH6 (5V/Div) VOUT_CH1_ac (10mV/Div) VBAT = 3.7V, VOUT = 5V, IOUT = 400mA, L = 2.2μH, COUT = 10μF x 2 VBAT = 3.7V Time (2.5ms/Div) Time (500ns/Div) CH2 Output Voltage Ripple CH3 Output Voltage Ripple LX2 (2V/Div) LX3 (2V/Div) VOUT_CH2_ac (2mV/Div) VOUT_CH3_ac (5mV/Div) VBAT = 3.7V, VOUT = 3.3V, IOUT = 400mA, L = 2.2μH, COUT = 10μF Time (500ns/Div) DS9986-00 May 2011 VBAT = 3.7V, VOUT = 1.8V, IOUT = 400mA, L = 2.2μH, COUT = 10μF Time (500ns/Div) www.richtek.com 15 RT9986 CH5 Output Voltage Ripple CH4 Output Voltage Ripple LX4 (2V/Div) LX5 (10V/Div) VOUT_CH4_ac (5mV/Div) VOUT_CH5_ac (10mV/Div) VBAT = 3.7V, VOUT = 1V, IOUT = 400mA, L = 2.2μH, COUT = 10μF VBAT = 3.7V, VOUT = 16V, IOUT = 30mA, L = 10μH, COUT = 10μF Time (500ns/Div) Time (1μs/Div) CH6 Output Voltage Ripple CH1 Load Transient Response LX6 (10V/Div) IOUT (100mA/Div) VOUT_CH6_ac (10mV/Div) V OUT_CH1_ac (100mV/Div) VBAT = 3.7V, VOUT = −8V, IOUT = 50mA, L = 10μH, COUT = 10μF x 2 VBAT = 3.7V, VOUT = 5V, IOUT = 0 to 300mA, L = 2.2μH, COUT = 10μF x 2 Time (1μs/Div) Time (1ms/Div) CH2 Load Transient Response CH3 Load Transient Response IOUT (100mA/Div) IOUT (100mA/Div) V OUT_CH2_ac (50mV/Div) V OUT_CH3_ac (50mV/Div) VBAT = 3.7V, VOUT = 3.3V, IOUT = 0 to 300mA, L = 2.2μH, COUT = 10μF Time (1ms/Div) www.richtek.com 16 VBAT = 3.7V, VOUT = 1.8V, IOUT = 0 to 300mA, L = 2.2μH, COUT = 10μF Time (1ms/Div) DS9986-00 May 2011 RT9986 CH5 Load Transient Response CH4 Load Transient Response IOUT (20mA/Div) IOUT (100mA/Div) V OUT_CH4_ac (20mV/Div) V OUT_CH5_ac (50mV/Div) VBAT = 3.7V, VOUT = 1V, IOUT = 0 to 300mA, L = 2.2μH, COUT = 10μF Time (1ms/Div) VBAT = 3.7V, VOUT = 16V, IOUT = 10 to 30mA, COUT = 10μF Time (1ms/Div) CH6 Load Transient Response IOUT (20mA/Div) V OUT_CH6_ac (20mV/Div) VBAT = 3.7V, VOUT = −8V, IOUT = 15 to 50mA, COUT = 10μF x 2 Time (1ms/Div) DS9986-00 May 2011 www.richtek.com 17 RT9986 Application Information The RT9986 is a multiple output power supply system for digital still cameras and other small handheld devices. It includes six DC/DC converters as well as one WLED driver, one RTC LDO, one voltage detector, and one system reset. The WLED works in either current source mode or stepup mode. System Reset : Accurate voltage detector for checking CH2 output voltage status. CH1 : Step-up synchronous current mode DC/DC converter with internal power MOSFETs and compensation network. The P-MOSFET body can be controlled to disconnect the load. CH1 : Synchronous Step-Up DC/DC Converter CH2 : Step-up or step-down synchronous current mode DC/DC converter with internal power MOSFETs and compensation network. External circuit topology automatically determines whether CH2 is in step-up or step-down mode. During step-up mode, the P-MOSFET body can be controlled to disconnect the load if input voltage is not higher than the VBAT . CH3 : Step-down synchronous current mode DC/DC conv erter wit h int ernal power MOSFETs and compensation network. CH4 : Step-down synchronous current mode DC/DC conv erter wit h int ernal power MOSFETs and compensation network. CH5 : Step-up synchronous current mode DC/DC converter with internal power MOSFET and compensation network. The P-MOSFET body can be controlled to disconnect the load. CH6 : Asynchronous inverting current mode DC/DC converter with internal power MOSFET and compensation network. CH7 : A WLED driver operating in either current source mode or synchronous step-up mode with internal power MOSFET and compensation network. Operation mode is determined by LX7 initial voltage The P-MOSFET body in step-up mode can be controlled to disconnect the load disconnected. CH1 to CH4 operate in PWM mode with 2MHz, while CH5 to CH7 operate in PWM mode with 1MHz switching frequency. Voltage Detector : A general, low quiescent current voltage detector for monitoring status of a node voltage such as for RTC_LDO output or others. CH1 is a synchronous step-up converter which can be used for motor power. The converter operates at fixed frequency and PWM current mode. The converter integrates internal MOSFETs, compensation network and synchronous rectifier for up to 95% efficiency. The output voltage can be set by the following equation : VOUT_CH1 = (1 + R1 / R2) x VFB1 where VFB1 is 0.8V typically. CH2 : Synchronous Step-Up / Step-Down Selectable DC/DC Converter CH2 is a synchronous step-up / step-down auto-select converter, typically for system I/O power. In either stepup or step-down, the converter operates in fixed frequency PWM mode, Continuous Current Mode (CCM), and Discontinuous Current Mode (DCM) with internal MOSFETs, compensation network and synchronous rectifiers for up to 95% efficiency. Step-Up : In step-up mode, CH2 also disconnects the load from its input power node and discharges output node of CH2 when it is turned off. Step-Down : In step-down mode, the CH2 converter can be operated at 100% maximum duty cycle to extend the input operating voltage range. When the input voltage is close to the output voltage, the converter enters low dropout mode. The output voltage can be set by the following equation : VOUT_CH2 = (1 + R3 / R4) x VFB2 where VFB2 is 0.8V typically. RTC_LDO : A 3.1V output LDO with low quiescent current and high output voltage accuracy. www.richtek.com 18 DS9986-00 May 2011 RT9986 CH3 : Synchronous Step-Down DC/DC Converter CH3 operates in fixed frequency PW M mode with integrated internal MOSFETs and compensation network. The CH3 step-down converter can be operated at 100% maximum duty cycle to extend battery operating voltage range. When the input voltage is close to the output voltage, the converter enters low dropout mode with low output ripple. The output voltage can be set by the following equation : to FB6, 1.2V equals to (VREF − VFB6) and 0.6V is VFB6 typical. Reference Voltage The RT9986 provides a precise 1.8V reference voltage, VREF, with souring capability of 100µA. Connect a 0.1µF ceramic capacitor from the VREF pin to GND. Reference voltage is enabled by pulling EN6 to logic-high. Furthermore, this reference voltage is internally pulled to GND at shutdown. VOUT_CH3 = (1 + R5 / R6) x VFB3 where VFB3 is 0.8V typically. CH4 : Synchronous Step-Down DC/DC Converter CH4 operates at fixed frequency PWM mode with integrated internal MOSFETs and compensation network. The CH4 step-down converter can be operated at 100% maximum duty cycle to extend battery operating voltage range. When the input voltage is close to the output voltage, the converter enters low dropout mode with low output ripple. The output voltage can be set by the following equation: VOUT_CH4 = (1 + R7 / R8) x VFB4 where VFB4 is 0.8V typically. CH5 : Synchronous Step-Up DC/DC Converter CH5 is a high voltage synchronous step-up converter for CCD positive power. The converter operates at fixed frequency PWM mode, CCM, DCM, and PSM (pulse skip mode) with integrated internal MOSFETs, compensation network and load disconnect function. CH7 : WLED Driver CH7 is a WLED driver that can operate in either current source mode or synchronous step-up mode, as determined by LX7's initial voltage level. Table 1. CH7 WLED setting CH7 Operating Mode Current Source LX7 < 0.25V Synchronous Step-Up > 1V When CH7 works in current source mode, it sinks an accurate LED current modulated by EN7 high duty such that it is easily dimmed from 0mA to 30mA. If CH7 works in synchronous step-up mode, it integrates synchronous step-up mode with an internal MOSFET and internal compensation to output a voltage up to 15V. The LED current is set via an external resistor and controlled via the PWM duty on the EN7 pin. Regardless of the mode, holding EN7 low for more than 32ms will turn off CH7. In addition, CH7 will be turned on until the CH2 soft-start is finished. The output voltage can be set by the following equation: CH7 WLED Current Dimming Control VOUT_CH5 = (1 + R9 / R10) x VFB5 If CH7 is in synchronous step-up mode, the WLED current is set by an external resistor. If CH7 is in current source mode, the sink current into the FB7 pin is 30mA typically when EN7 is high. Regardless of the mode, dimming is always controlled by the duty of pulse-width modulated signal on the EN7 pin. The PWM dimming duty must be over 10%. where VFB5 is 1.25V typically. CH6 : INV DC/DC Converter This converter integrates an internal P-MOSFET with internal compensation and needs an external Schottky diode to provide CCD negative power supply. The output voltage can be set by the following equation : VOUT_CH6 = −(R11 / R12) x (1.2V) + 0.6V where R11 and R12 are the feedback resistors connected DS9986-00 May 2011 The average current through WLED can be set by the following equations : ILED (mA) = [250mV / R (W)] x Duty (%) (for step-up mode) or ILED (mA) = 30mA x Duty (%) (for current source mode) www.richtek.com 19 RT9986 R is the current sense resistor from FB7 to GND and Duty is the duty of the PWM dimming signal into EN7 pin. Dimming frequency range is from 1kHz to 100kHz but 2kHz to 20kHz should be avoided to prevent distraction from audio noise. VDDM Bootstrap To support bootstrap function, the RT9986 includes a power selection circuit which selects between BAT and PVDD1 to create the internal node voltage VDDI and VDDM. VDDM is the power of all the RT9986 control circuits and must be connected to an external decoupling capacitor by way of the VDDM pin. The VDDI is the power input of the RTC LDO. The output PVDD1 of CH1 can bootstrap VDDM and VDDI. The RT9986 includes UVLO circuits to monitor VDDM and BAT voltage status. RTC LDO The RT9986 provides a 3.1V output LDO for real time clock. The LDO features low quiescent current (5µA) and high output voltage accuracy. This LDO is always on, even when the system is shut down. For better stability, is it recommended to connect a 0.1µF to the RTCPWR pin. The RTC LDO includes pass transistor body diode control to avoid the RTCPWR node from back-charging into the input node VDDI. System Reset The RT9986 also provides a system voltage detector to monitor system power status via FB2. If FB2 level is lower than 90% setting, the open drain output pin SYSR will pull down. When FB2 level is higher than 95% setting, the SYSR pin will go high after 10ms. Voltage Detector The RT9986 provides a voltage detector to detect the voltage status at the VCHK pin. The input power of the voltage detector is RTCPWR and the detector is always on. 55ms after VCHK voltage > 1.616V, the open drain output /RST will be pulled high. If VCHK < 1.6V, the /RST pin will be pulled down to GND immediately. Power On/Off Sequence for CH1 to CH4 EN1234 will turn on/off CH1 to CH4 in preset sequence. When EN1234 goes high, CH1 will turn on first. 3.5ms after CH1 is turned on, CH3 will turn on. 3.5ms after CH3 is turned on, CH4 will turn on. 3.5ms after CH4 is turned on, CH2 will turn on. CH1 to CH4 Power Off Sequence is : When EN1234 goes low, CH2 will turn off first and internally discharge output. When FB2 < 0.1V, CH4 will turn off and also internally discharge output via the LX4 pin. When FB4 < 0.1V, CH3 will turn off and internally discharge output via the LX3 pin. Likewise, when FB3 < 0.1V, CH1 will turn off and discharge output. After FB1 < 0.1V, CH1 to 4 shutdown sequence will be completed. Thermal Considerations For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula : PD(MAX) = (TJ(MAX) − TA) / θJA where TJ(MAX) is the maximum junction temperature, TA is the ambient temperature, and θJAis the junction to ambient thermal resistance. For recommended operating condition specifications of the RT9986, the maximum junction temperature is 125°C and TA is the ambient temperature. The junction to ambient thermal resistance, θJA, is layout dependent. For WQFN32L 4x4 packages, the thermal resistance, θJA, is 27.8°C/ W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at TA = 25°C can be calculated by the following formula : PD(MAX) = (125°C − 25°C) / (27.8°C/W) = 3.59W for WQFN-32L 4x4 package The maximum power dissipation depends on the operating ambient temperature for fixed T J(MAX) and thermal resistance,θJA. For the RT9986 package, the derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation. CH1 to CH4 Power On Sequence is: www.richtek.com 20 DS9986-00 May 2011 RT9986 Maximum Power Dissipation (W) 4.0 Layout Consideration Four-Layers PCB 3.6 For the best performance of the RT9986, the following PCB layout guidelines must be strictly followed. 3.2 2.8 2.4 } Place the input and output capacitors as close as possible to the input and output pins respectively for good filtering. } Keep the main power traces as wide and short as possible. } The switching node area connected to LX and inductor should be minimized for lower EMI. } Place the feedback components as close as possible to the FB pin and keep these components away from the noisy devices. } Connect the GND and Exposed Pad to a strong ground plane for maximum thermal dissipation and noise protection. 2.0 1.6 1.2 0.8 0.4 0.0 0 25 50 75 100 125 Ambient Temperature (°C) Figure 1. Derating Curves for RT9986 Packages Place the feedback components as close as possible to the FB pin and keep away from noisy devices. C3 VOUT_CH1 GND C21 R2 BAT LX6 PVDD2 LX2 EN1234 GND L2 L6 PVDD1 C4 C5 GND R3 R4 C22 Connect the Exposed Pad to a ground plane. GND L1 LX1 LX6 R1 VBAT VOUT_CH2 EN56 GND VBAT C6 C2 32 31 30 29 28 27 26 25 C16 C18 R11 C15 R12 VOUT_CH6 FB2 VREF 2 23 SYSR FB6 3 22 RTCPWR VOUT6 4 21 VDDM FB7 5 20 LX5 PVDD7 6 19 PVDD5 LX7 7 18 FB5 EN7 8 17 RST GND C10 R8 C9 10 11 12 13 14 15 16 FB3 PVDD3 LX3 L4 VOUT_CH4 9 VNEG GND VCHK C19 33 FB4 C20 R7 L5 C1 C14 D2 L7 R13 24 PVDD4 D4 D3 1 LX4 D1 GND VBAT FB1 C12 R10 GND VOUT_CH3 C8 GND Input/Output capacitors must be placed as close as possible to the Input/Output pins. R9 L3 C7 VBAT C13 VOUT_CH5 R5 R6 LX should be connected to Inductor by wide and short trace, keep sensitive components away from this trace Figure 2. PCB Layout Guide DS9986-00 May 2011 www.richtek.com 21 RT9986 Protection type BAT Table 2. Protection Items Threshold (typical) Refer to Electrical Protection methods spec IC Shutdown Delay time CH2 Step-Up VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low UVLO BAT < 1.3V IC Shutdown. No-delay OVP VDDM > 6V Automatic reset at VDDM < 5.75V 100ms UVLO VDDM < 2.4V IC Shutdown. No-delay Current Limit N-MOSFET Current > 3A N-MOSFET off, P-MOSFET off. Automatic reset at next clock 100ms cycle. PVDD1 OVP PVDD1 > 6V N-MOSFET off, P-MOSFET off. No-delay PVDD1 UVP PVDD1 < (BAT − 0.8V) or PVDD1 < 1.28V after N-MOSFET off, P-MOSFET off. 100ms soft-start end. VDDM power reset or all enable pins set to low FB1 UVP FB1 < 0.4V after soft-start end. VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM CH1 Step-Up Reset method N-MOSFET off, P-MOSFET off. No-delay FB1 Over FB1 < 0.7V Load (OL) IC Shutdown when OL occur each cycle until 100ms. Current Limit N-MOSFET Current > 3A N-MOSFET off, P-MOSFET off. Automatic reset at next clock 100ms cycle. PVDD2 OVP PVDD2 > 6V N-MOSFET off, P-MOSFET off. No-delay PVDD2 UVP PVDD2 < (BAT − 0.8V) or PVDD2 < 1.28V after N-MOSFET off, P-MOSFET off. 100ms soft-start end. FB2 UVP FB2 < 0.4V after soft-start end. N-MOSFET off, P-MOSFET off. No-delay FB2 Over Load FB2 < 0.7V IC Shutdown when OL occur each cycle until 100ms. Current Limit P-MOSFET Current > 1.6A N-MOSFET off, P-MOSFET off. Automatic reset at next clock 100ms cycle. FB2 < 0.4V after soft-start end. N-MOSFET off, P-MOSFET off. No-delay FB2 < 0.7V IC Shutdown when OL occur each cycle until 100ms. CH2 FB2 UVP Step-Down FB2 Over Load 100ms 100ms 100ms VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low To be continued www.richtek.com 22 DS9986-00 May 2011 RT9986 Protection type 100ms FB3 < 0.4V after soft-start end. N-MOSFET off, P-MOSFET off. No-delay FB3 Over Load FB3 < 0.7V IC Shutdown when OL occur each cycle until 100ms. 100ms Current Limit P-MOSFET Current > 1.6A N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle. 100ms FB4 < 0.4V after soft-start end. N-MOSFET off, P-MOSFET off. No-delay FB4 Over Load FB4 < 0.7V IC Shutdown when OL occur each cycle until 100ms. 100ms Current Limit N-MOSFET Current > 1.2A N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle. 100ms PVDD5 OVP PVDD5 > 21V N-MOSFET off, P-MOSFET off. No-delay FB5 UVP FB5 < 0.6V after soft-start end. N-MOSFET off, P-MOSFET off. No-delay FB5 Over Load FB5 < 1.1V IC Shutdown when OL occur each cycle until 100ms. 100ms Current Limit P-MOSFET Current > 1.5A P-MOSFET off. Automatic reset at next clock cycle. 100ms VOUT6 OVP VOUT6 < −13V P-MOSFET off. No-delay FB6 UVP FB6 >1.2V P-MOSFET off. No-delay FB6 Over Load FB6 > 0.74V IC Shutdown when OL occur each cycle until 100ms. 100ms Current Limit N-MOSFET Current > 0.8A N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle. 100ms PVDD7 OVP PVDD7 > 15V Shutdown CH7 Not applicable Thermal Shutdown Temperature > 160°C All channels stop switching No-delay CH4 FB4 UVP Step-Down CH7 WLED Thermal IC Shutdown Delay time N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle. CH3 FB3 UVP Step-Down CH6 Inverter Protection methods P-MOSFET Current > 1.6A Current Limit CH5 Step-Up Threshold (typical) Refer to Electrical spec DS9986-00 May 2011 Reset method VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low VDDM power reset or all enable pins set to low www.richtek.com 23 RT9986 Outline Dimension 1 1 2 2 DETAIL A Pin #1 ID and Tie Bar Mark Options Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated. Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 0.700 0.800 0.028 0.031 A1 0.000 0.050 0.000 0.002 A3 0.175 0.250 0.007 0.010 b 0.150 0.250 0.006 0.010 D 3.900 4.100 0.154 0.161 D2 2.650 2.750 0.104 0.108 E 3.900 4.100 0.154 0.161 E2 2.650 2.750 0.104 0.108 e L 0.400 0.300 0.016 0.400 0.012 0.016 W-Type 32L QFN 4x4 Package Richtek Technology Corporation Richtek Technology Corporation Headquarter Taipei Office (Marketing) 5F, No. 20, Taiyuen Street, Chupei City 5F, No. 95, Minchiuan Road, Hsintien City Hsinchu, Taiwan, R.O.C. Taipei County, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 Tel: (8862)86672399 Fax: (8862)86672377 Email: [email protected] Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek. www.richtek.com 24 DS9986-00 May 2011