RT9403 I2C Programmable High Precision Reference Voltage Generator General Description Features The RT9403 is a high precision reference voltage generating console consisting of three I2C programmable DACs. Each z 5V Supply Voltage z DAC output voltage is controlled by 7 digital bits that are programmed by the I2C interface. The RT9403 features adjustable output slew rate, low switching glitch and adequate driving capability. The RT9403 is available in SOT-23-8 package. z Provide 3 Precise Voltage DACs I2C Programmable 128-Steps Output Voltage Output Range and Resolution ` DAC1 & DAC2 : 0.6V to 2.1875V, 12.5mV/Step ` DAC3 : 1.2V to 3.375V, 12.5mV (or 25mV)/Step for Different Segments High Output Accuracy Up to 1% (VOUT ≥ 1V) Low External Component Count Small Footprint SOT-23-8 Package RoHS Compliant and Halogen Free z z Ordering Information z RT9403 z Package Type V8 : SOT-23-8 z Lead Plating System G : Green (Halogen Free and Pb Free) Applications z Note : Richtek products are : z RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. Pin Configurations Suitable for use in SnPb or Pb-free soldering processes. VOUT2 VOUT1 8 7 6 5 2 3 4 SDA VDD For marking information, contact our sales representative directly or through a Richtek distributor located in your area. SCL Marking Information VOUT3 (TOP VIEW) GND ` S3/EN ` Power Supply Adjustment for Motherboard and Graphic Card Low Voltage, High Accuracy Reference Voltage Circuit SOT-23-8 Typical Application Circuit VIN1 REFIN 3.3V/5V 5V Data Bus Line Clock Bus Line S3/EN COUT1 RT9403 1 VDD VOUT1 5 CIN VOUT2 6 4 SDA VOUT3 7 3 SCL 2 GND 8 S3/EN V1 VIN2 REFIN COUT2 DC/DC Converter V2 VIN3 REFIN COUT3 DS9403-01 April 2011 DC/DC Converter DC/DC Converter V3 www.richtek.com 1 RT9403 Functional Pin Description Pin No. Pin Name Pin Function 1 VDD Power Supply Input. Default connected to 5V. 2 GND Ground. 3 SCL Serial Clock Input. This pin receives I C serial bus clock signal. 4 SDA Serial Data Input. This pin is input or output of I C serial bus data signal. 5 VOUT1 I C Programmed VTT Output Voltage. Default = 1.1V 6 VOUT2 I C Programmed PCH_CORE Output Voltage. Default = 1.05V 7 VOUT3 I C Programmed DDR Output Voltage. Default = 1.5V 8 S3/EN 2 2 2 2 2 ACPI S3 State/Enable. Active low for entering ACPI S3 State(suspend to RAM), VOUT1/VOUT2 are internally pulled down to zero, only VOUT3 is active. Function Block Diagram VDD POR DAC1 7 bit VOUT1 DAC2 7 bit VOUT2 DAC3 7 bit VOUT3 S3/EN 2 I C Interface SCL Control and Monitoring Unit SDA GND www.richtek.com 2 DS9403-01 April 2011 RT9403 Table 1. DAC1/DAC2 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 0 0 0 0 0 0 0 2.1875 0 0 0 0 0 0 1 2.1750 0 0 0 0 0 1 0 2.1625 0 0 0 0 0 1 1 2.1500 0 0 0 0 1 0 0 2.1375 0 0 0 0 1 0 1 2.1250 0 0 0 0 1 1 0 2.1125 0 0 0 0 1 1 1 2.1000 0 0 0 1 0 0 0 2.0875 0 0 0 1 0 0 1 2.0750 0 0 0 1 0 1 0 2.0625 0 0 0 1 0 1 1 2.0500 0 0 0 1 1 0 0 2.0375 0 0 0 1 1 0 1 2.0250 0 0 0 1 1 1 0 2.0125 0 0 0 1 1 1 1 2.0000 0 0 1 0 0 0 0 1.9875 0 0 1 0 0 0 1 1.9750 0 0 1 0 0 1 0 1.9625 0 0 1 0 0 1 1 1.9500 0 0 1 0 1 0 0 1.9375 0 0 1 0 1 0 1 1.9250 0 0 1 0 1 1 0 1.9125 0 0 1 0 1 1 1 1.9000 0 0 1 1 0 0 0 1.8875 0 0 1 1 0 0 1 1.8750 0 0 1 1 0 1 0 1.8625 0 0 1 1 0 1 1 1.8500 0 0 1 1 1 0 0 1.8375 0 0 1 1 1 0 1 1.8250 0 0 1 1 1 1 0 1.8125 0 0 1 1 1 1 1 1.8000 0 1 0 0 0 0 0 1.7875 0 1 0 0 0 0 1 1.7750 0 1 0 0 0 1 0 1.7625 0 1 0 0 0 1 1 1.7500 0 1 0 0 1 0 0 1.7375 0 1 0 0 1 0 1 1.7250 0 1 0 0 1 1 0 1.7125 0 1 0 0 1 1 1 1.7000 To be continued DS9403-01 April 2011 www.richtek.com 3 RT9403 Table 1. DAC1/DAC2 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 0 1 0 1 0 0 0 1.6875 0 1 0 1 0 0 1 1.6750 0 1 0 1 0 1 0 1.6625 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1.6375 0 1 0 1 1 0 1 1.6250 0 1 0 1 1 1 0 1.6125 0 1 0 1 1 1 1 1.6000 0 1 1 0 0 0 0 1.5875 0 1 1 0 0 0 1 1.5750 0 1 1 0 0 1 0 1.5625 0 1 1 0 0 1 1 1.5500 0 1 1 0 1 0 0 1.5375 0 1 1 0 1 0 1 1.5250 0 1 1 0 1 1 0 1.5125 0 1 1 0 1 1 1 1.5000 0 1 1 1 0 0 0 1.4875 0 1 1 1 0 0 1 1.4750 0 1 1 1 0 1 0 1.4625 0 1 1 1 0 1 1 1.4500 0 1 1 1 1 0 0 1.4375 0 1 1 1 1 0 1 1.4250 0 1 1 1 1 1 0 1.4125 0 1 1 1 1 1 1 1.4000 1 0 0 0 0 0 0 1.3875 1 0 0 0 0 0 1 1.3750 1 0 0 0 0 1 0 1.3625 1 0 0 0 0 1 1 1.3500 1 0 0 0 1 0 0 1.3375 1 0 0 0 1 0 1 1.3250 1 0 0 0 1 1 0 1.3125 1 0 0 0 1 1 1 1.3000 1 0 0 1 0 0 0 1.2875 1 0 0 1 0 0 1 1.2750 1 0 0 1 0 1 0 1.2625 1 0 0 1 0 1 1 1.2500 1 0 0 1 1 0 0 1.2375 1 0 0 1 1 0 1 1.2250 1 0 0 1 1 1 0 1.2125 1 0 0 1 1 1 1 1.2000 1.6500 To be continued www.richtek.com 4 DS9403-01 April 2011 RT9403 Table 1. DAC1/DAC2 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 1 0 1 0 0 0 0 1.1875 1 0 1 0 0 0 1 1.1750 1 0 1 0 0 1 0 1.1625 1 0 1 0 0 1 1 1.1500 1 0 1 0 1 0 0 1.1375 1 0 1 0 1 0 1 1.1250 1 0 1 0 1 1 0 1.1125 1 0 1 0 1 1 1 1.1000 1 0 1 1 0 0 0 1.0875 1 0 1 1 0 0 1 1.0750 1 0 1 1 0 1 0 1.0625 1 0 1 1 0 1 1 1.0500 1 0 1 1 1 0 0 1.0375 1 0 1 1 1 0 1 1.0250 1 0 1 1 1 1 0 1.0125 1 0 1 1 1 1 1 1.0000 1 1 0 0 0 0 0 0.9875 1 1 0 0 0 0 1 0.9750 1 1 0 0 0 1 0 0.9625 1 1 0 0 0 1 1 0.9500 1 1 0 0 1 0 0 0.9375 1 1 0 0 1 0 1 0.9250 1 1 0 0 1 1 0 0.9125 1 1 0 0 1 1 1 0.9000 1 1 0 1 0 0 0 0.8875 1 1 0 1 0 0 1 0.8750 1 1 0 1 0 1 0 0.8625 1 1 0 1 0 1 1 0.8500 1 1 0 1 1 0 0 0.8375 1 1 0 1 1 0 1 0.8250 1 1 0 1 1 1 0 0.8125 1 1 0 1 1 1 1 0.8000 1 1 1 0 0 0 0 0.7875 1 1 1 0 0 0 1 0.7750 1 1 1 0 0 1 0 0.7625 1 1 1 0 0 1 1 0.7500 1 1 1 0 1 0 0 0.7375 1 1 1 0 1 0 1 0.7250 1 1 1 0 1 1 0 0.7125 1 1 1 0 1 1 1 0.7000 To be continued DS9403-01 April 2011 www.richtek.com 5 RT9403 Table 1. DAC1/DAC2 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 1 1 1 1 0 0 0 0.6875 1 1 1 1 0 0 1 0.6750 1 1 1 1 0 1 0 0.6625 1 1 1 1 0 1 1 0.6500 1 1 1 1 1 0 0 0.6375 1 1 1 1 1 0 1 0.6250 1 1 1 1 1 1 0 0.6125 1 1 1 1 1 1 1 0.6000 Note: (1) 0 : Pull Low to GND (2) 1 : Open www.richtek.com 6 DS9403-01 April 2011 RT9403 Table 2. DAC3 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 0 0 0 0 0 0 0 3.3750 0 0 0 0 0 0 1 3.3500 0 0 0 0 0 1 0 3.3250 0 0 0 0 0 1 1 3.3000 0 0 0 0 1 0 0 3.2750 0 0 0 0 1 0 1 3.2500 0 0 0 0 1 1 0 3.2250 0 0 0 0 1 1 1 3.2000 0 0 0 1 0 0 0 3.1750 0 0 0 1 0 0 1 3.1500 0 0 0 1 0 1 0 3.1250 0 0 0 1 0 1 1 3.1000 0 0 0 1 1 0 0 3.0750 0 0 0 1 1 0 1 3.0500 0 0 0 1 1 1 0 3.0250 0 0 0 1 1 1 1 3.0000 0 0 1 0 0 0 0 2.9750 0 0 1 0 0 0 1 2.9500 0 0 1 0 0 1 0 2.9250 0 0 1 0 0 1 1 2.9000 0 0 1 0 1 0 0 2.8750 0 0 1 0 1 0 1 2.8500 0 0 1 0 1 1 0 2.8250 0 0 1 0 1 1 1 2.8000 0 0 1 1 0 0 0 2.7750 0 0 1 1 0 0 1 2.7500 0 0 1 1 0 1 0 2.7250 0 0 1 1 0 1 1 2.7000 0 0 1 1 1 0 0 2.6750 0 0 1 1 1 0 1 2.6500 0 0 1 1 1 1 0 2.6250 0 0 1 1 1 1 1 2.6000 0 1 0 0 0 0 0 2.5750 0 1 0 0 0 0 1 2.5500 0 1 0 0 0 1 0 2.5250 0 1 0 0 0 1 1 2.5000 0 1 0 0 1 0 0 2.4750 0 1 0 0 1 0 1 2.4500 0 1 0 0 1 1 0 2.4250 0 1 0 0 1 1 1 2.4000 To be continued DS9403-01 April 2011 www.richtek.com 7 RT9403 Table 2. DAC3 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 0 1 0 1 0 0 0 2.3750 0 1 0 1 0 0 1 2.3625 0 1 0 1 0 1 0 2.3500 0 1 0 1 0 1 1 2.3375 0 1 0 1 1 0 0 2.3250 0 1 0 1 1 0 1 2.3125 0 1 0 1 1 1 0 2.3000 0 1 0 1 1 1 1 2.2875 0 1 1 0 0 0 0 2.2750 0 1 1 0 0 0 1 2.2625 0 1 1 0 0 1 0 2.2500 0 1 1 0 0 1 1 2.2375 0 1 1 0 1 0 0 2.2250 0 1 1 0 1 0 1 2.2125 0 1 1 0 1 1 0 2.2000 0 1 1 0 1 1 1 2.1875 0 1 1 1 0 0 0 2.1750 0 1 1 1 0 0 1 2.1625 0 1 1 1 0 1 0 2.1500 0 1 1 1 0 1 1 2.1375 0 1 1 1 1 0 0 2.1250 0 1 1 1 1 0 1 2.1125 0 1 1 1 1 1 0 2.1000 0 1 1 1 1 1 1 2.0875 1 0 0 0 0 0 0 2.0750 1 0 0 0 0 0 1 2.0625 1 0 0 0 0 1 0 2.0500 1 0 0 0 0 1 1 2.0375 1 0 0 0 1 0 0 2.0250 1 0 0 0 1 0 1 2.0125 1 0 0 0 1 1 0 2.0000 1 0 0 0 1 1 1 1.9875 1 0 0 1 0 0 0 1.9750 1 0 0 1 0 0 1 1.9625 1 0 0 1 0 1 0 1.9500 1 0 0 1 0 1 1 1.9375 1 0 0 1 1 0 0 1.9250 1 0 0 1 1 0 1 1.9125 1 0 0 1 1 1 0 1.9000 1 0 0 1 1 1 1 1.8875 To be continued www.richtek.com 8 DS9403-01 April 2011 RT9403 Table 2. DAC3 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 1 0 1 0 0 0 0 1.8750 1 0 1 0 0 0 1 1.8625 1 0 1 0 0 1 0 1.8500 1 0 1 0 0 1 1 1.8375 1 0 1 0 1 0 0 1.8250 1 0 1 0 1 0 1 1.8125 1 0 1 0 1 1 0 1.8000 1 0 1 0 1 1 1 1.7875 1 0 1 1 0 0 0 1.7750 1 0 1 1 0 0 1 1.7625 1 0 1 1 0 1 0 1.7500 1 0 1 1 0 1 1 1.7375 1 0 1 1 1 0 0 1.7250 1 0 1 1 1 0 1 1.7125 1 0 1 1 1 1 0 1.7000 1 0 1 1 1 1 1 1.6875 1 1 0 0 0 0 0 1.6750 1 1 0 0 0 0 1 1.6625 1 1 0 0 0 1 0 1.6500 1 1 0 0 0 1 1 1.6375 1 1 0 0 1 0 0 1.6250 1 1 0 0 1 0 1 1.6125 1 1 0 0 1 1 0 1.6000 1 1 0 0 1 1 1 1.5875 1 1 0 1 0 0 0 1.5750 1 1 0 1 0 0 1 1.5625 1 1 0 1 0 1 0 1.5500 1 1 0 1 0 1 1 1.5375 1 1 0 1 1 0 0 1.5250 1 1 0 1 1 0 1 1.5125 1 1 0 1 1 1 0 1.5000 1 1 0 1 1 1 1 1.4875 1 1 1 0 0 0 0 1.4750 1 1 1 0 0 0 1 1.4625 1 1 1 0 0 1 0 1.4500 1 1 1 0 0 1 1 1.4375 1 1 1 0 1 0 0 1.4250 1 1 1 0 1 0 1 1.4125 1 1 1 0 1 1 0 1.4000 1 1 1 0 1 1 1 1.3875 To be continued DS9403-01 April 2011 www.richtek.com 9 RT9403 Table 2. DAC3 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 1 1 1 1 0 0 0 1.3750 1 1 1 1 0 0 1 1.3500 1 1 1 1 0 1 0 1.3250 1 1 1 1 0 1 1 1.3000 1 1 1 1 1 0 0 1.2750 1 1 1 1 1 0 1 1.2500 1 1 1 1 1 1 0 1.2250 1 1 1 1 1 1 1 1.2000 Note : (1) VOUT = 1.2V to 1.375V and VOUT = 2.375V to 3.375V, Step = 25mV. (2) VOUT = 1.375V to 2.375V, Step = 12.5mV. www.richtek.com 10 DS9403-01 April 2011 RT9403 Absolute Maximum Ratings z z z z z z z z z (Note 1) Supply Voltage, VDD ------------------------------------------------------------------------------------------------------ 6.5V Input Voltage, SCL, SDA, S3/EN -------------------------------------------------------------------------------------- 6.5V Output Voltage, VOUT1, VOUT2, VOUT3 --------------------------------------------------------------------------------------------------------------------- 4V Power Dissipation, PD @ TA = 25°C SOT-23-8 -------------------------------------------------------------------------------------------------------------------Package Thermal Resistance (Note 2) SOT-23-8, θJA --------------------------------------------------------------------------------------------------------------Junction Temperature ----------------------------------------------------------------------------------------------------Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------Storage Temperature Range -------------------------------------------------------------------------------------------ESD Susceptibility (Note 3) HBM (Human Body Mode) ---------------------------------------------------------------------------------------------MM (Machine Mode) ------------------------------------------------------------------------------------------------------ Recommended Operating Conditions z z z 0.4W 250°C/W 150°C 260°C −65°C to 150°C 2kV 200V (Note 4) Supply Voltage, VDD ------------------------------------------------------------------------------------------------------ 5V ± 5% Junction Temperature Range -------------------------------------------------------------------------------------------- −40°C to 125°C Ambient Temperature Range -------------------------------------------------------------------------------------------- −40°C to 85°C Electrical Characteristics (VDD = 5V, TA = 25°C, unless otherwise specification) Parameter Supply Input Voltage Symbol VDD POR Threshold Test Conditions Min 4.75 Typ 5 Max 5.25 Unit V VPOR_TH 4 4.25 4.4 V POR Hysteresis VPOR_HYS -- 250 -- mV Supply Input Current IVDD -- 0.65 -- mA VOUT ≥ 1V, IOUT = 0A −1 -- +1 % VOUT < 1V, IOUT = 0A −10 -- +10 mV Capacitive Load Only -- 70 -- dB GBW CL = 1nF -- 1.64 -- MHz Slew Rate SR CL = 0.1μF -- 11 -- mV/μs Impedance ROUT -- 90 -- Ω Output Driving Capability IOUT -- 1.1 -- mA −0.002 -- 0.002 %/μA VREF & DAC DAC Output Accuracy Under−Voltage Lockout Hysteresis Output Buffer DC Gain Bandwidth Loading Effect Regulation 2 I C Signal Input High Threshold VIH 2.4 -- -- V Input Low Threshold VIL -- -- 0.8 V -- -- 400 k/bit/s SCL Clock Speed EN High Threshold VEN_H VDD − 0.3 -- -- V EN Low Threshold VEN_L -- -- 0.3 V DS9403-01 April 2011 www.richtek.com 11 RT9403 Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. θJA is measured in the natural convection at TA = 25°C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Note 3. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions. www.richtek.com 12 DS9403-01 April 2011 RT9403 Typical Operating Characteristics VOUT2 vs. Temperature 1.062 1.110 1.060 1.108 1.058 1.106 1.056 1.104 1.054 VOUT2 (V) VOUT1 (V) VOUT1 vs. Temperature 1.112 1.102 1.100 1.098 1.052 1.050 1.048 1.096 1.046 1.094 1.044 1.092 VDD = 5V, S3/EN = H, SDA = SCL = H 1.090 1.042 VDD = 5V. S3/EN = H, SDA = SCL = H 1.040 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Temperature (°C) Temperature (°C) VOUT3 vs. Temperature Star Up from VDD 1.514 1.512 VDD (5V/Div) 1.510 VOUT3 (V) 1.508 VOUT1 (1V/Div) 1.506 1.504 1.502 VOUT2 (1V/Div) 1.500 1.498 VOUT3 (1V/Div) 1.496 1.494 COUT = 0.1μF VDD = 5V, S3/EN = H, SDA = SCL = H 1.492 -50 -25 0 25 50 75 100 125 Time (40μs/Div) Temperature (°C) S3 State Power Off from VDD VDD (5V/Div) S3/EN (5V/Div) VOUT1 (1V/Div) VOUT1 (1V/Div) VOUT2 (1V/Div) VOUT2 (1V/Div) VOUT3 (1V/Div) COUT = 0.1μF Time (4μs/Div) DS9403-01 April 2011 VOUT3 (1V/Div) COUT = 0.1μF, S3/EN = H to L Time (4μs/Div) www.richtek.com 13 RT9403 VOUT1 Ramp-Up by VID VOUT1 (1V/Div) VOUT1 Ramp-Down by VID VOUT1 (1V/Div) VOUT1 = 1 to 1.325V, COUT = 0.1μF VOUT1 = 1.325 to 1V, COUT = 0.1μF Time (10μs/Div) Time (10μs/Div) VOUT2 Ramp-Up by VID VOUT2 Ramp-Down by VID VOUT2 (1V/Div) VOUT2 (1V/Div) VOUT2 = 0.925 to 1.25V, COUT = 0.1μF Time (10μs/Div) Time (10μs/Div) VOUT3 Ramp-Up by VID VOUT3 Ramp-Down by VID VOUT3 (1V/Div) VOUT3 (1V/Div) VOUT3 = 1.5 to 1.825V, COUT = 0.1μF Time (10μs/Div) www.richtek.com 14 VOUT2 = 1.25 to 0.925V, COUT = 0.1μF VOUT3 = 1.825 to 1.5V, COUT = 0.1μF Time (10μs/Div) DS9403-01 April 2011 RT9403 Applications Information Output Capacitor S3/EN Function The output capacitance value determines the slew rate of output voltage during voltage transition. For example, if COUT = 0.1μF and the voltage step is 1.1V, the rising slew The RT9403 can be enabled or set to S3 state by the voltage of S3/EN pin. If the applied voltage of S3/EN pin is greater than enable threshold, the RT9403 will be enabled and all outputs ramp up to its own default preset voltage (VOUT1 = 1.1V, VOUT2 = 1.05V, VOUT3 = 1.5V). Then the RT9403 is available to decode the SCL and SDA inputs to determine the programmed voltage for each output. Pulling down this pin below the enable threshold will set the RT9403 in S3 state. In the S3 state, both VOUT1 and VOUT2 will be turned off, only VOUT3 is active. If S3/EN goes high again, VOUT1 and VOUT2 will return to its previous active level. Table 3 shows the S3/EN state and output status. rate can be calculated as the following. I 1.1× 10 −3 Slew Rate = OUT = = 11mV/ μs COUT 0.1× 10 − 6 For stability consideration, the recommended minimum output capacitance is 10nF. This capacitor should be located as close to the output pin as possible to minimize the PCB trace parasitic inductance and resistance. I2C Interface The RT9403 receives and decodes the SCL and SDA inputs from the master using the standard I2C 2-wire interface to program each output voltage. SCL and SDA must be pulled-up to typically 3.3V or 5V by external pull-up resistors with value is between 10kΩ and 20kΩ. Figure 1 shows the data format of the RT9403. After the START bit, the I2C master sends an address byte. This address byte includes a 7-bits long address code followed by an eighth bit which is a data direction bit (R/W).The RT9403's address is 01100xx and is a write-only (slave) device. After the address byte, the following 1st Data byte determines which DAC's output voltage will be programmed. Then, the 2nd Data byte is written to set the target output voltage of that selected DAC according to the VID table1 and table2. After the STOP bit, the output voltage of the selected DAC ramps up/down to the programmed target level. 0 1 1 0 0 S3/EN VOUT1 VOUT2 VOUT3 H (Enable) Active Active Active L (S3 State) OFF OFF Active The 1st Data Byte Address Byte START Table 3. S3/EN State and Output Status X X 0 AC K 0 0 0 X X X G1 G0 The 2nd Data Byte ACK X E06 E05 E04 E03 E02 E01 E00 ACK Stop Fixed for Write G1 0 0 1 1 G0 0 1 0 1 Rail to be Programmed VOUT1 VOUT2 VOUT3 None Note : 1. X = Don't Care 2. E [6:0] : Follow Serial Code Table Figure 1. RT9403 Data Transfer Format DS9403-01 April 2011 www.richtek.com 15 RT9403 Thermal Considerations Layout Considerations For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula : For best performance of the RT9403, the following layout guideline should be strictly followed ` The input capacitor should be placed as close to VDD pin as possible. ` The output capacitor should be placed as close to VOUT pin as possible. Place the input and output capacitors as close to the IC possible PD(MAX) = (TJ(MAX) − TA ) / θJA Where T J(MAX) is the maximum operation junction temperature, TA is the ambient temperature and the θJA is the junction to ambient thermal resistance. For recommended operating conditions specification of RT9403, the maximum junction temperature is 125°C and TA is the maximum ambient temperature. The junction to ambient thermal resistance θJA is layout dependent. For SOT-23-8 package, the thermal resistance θJA is 250°C/W on the standard JEDEC 51-3 single layer thermal test board. The maximum power dissipation at TA = 25°C can be calculated by following formula: 5V GND CIN VDD 1 8 S3/EN GND 2 7 VOUT3 SCL 3 6 VOUT2 SDA 4 5 VOUT1 COUT3 COUT2 COUT1 3.3V5V GND Figure 3. PCB Layout Guide PD(MAX) = (125°C − 25°C ) / (250°C/W) = 0.4W for SOT-23-8 package The maximum power dissipation depends on operating ambient temperature for fixed TJ(MAX) and thermal resistance θJA. For RT9403 package, the Figure 2 of derating curve allows the designer to see the effect of rising ambient temperature on the maximum power dissipation allowed. Maximum Power Dissipation (W) 0.50 Single Layer PCB 0.45 0.40 0.35 SOT-23-8 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 25 50 75 100 125 Ambient Temperature (°C) Figure 2. Derating Curve for RT9403 Package www.richtek.com 16 DS9403-01 April 2011 RT9403 Outline Dimension H D L C B b A A1 e Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 1.000 1.450 0.039 0.057 A1 0.000 0.150 0.000 0.006 B 1.500 1.700 0.059 0.067 b 0.220 0.500 0.009 0.020 C 2.600 3.000 0.102 0.118 D 2.800 3.000 0.110 0.118 e 0.585 0.715 0.023 0.028 H 0.100 0.220 0.004 0.009 L 0.300 0.600 0.012 0.024 SOT-23-8 Surface Mount Package Richtek Technology Corporation Richtek Technology Corporation Headquarter Taipei Office (Marketing) 5F, No. 20, Taiyuen Street, Chupei City 5F, No. 95, Minchiuan Road, Hsintien City Hsinchu, Taiwan, R.O.C. Taipei County, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 Tel: (8862)86672399 Fax: (8862)86672377 Email: [email protected] Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek. DS9403-01 April 2011 www.richtek.com 17