ROHM QSZ1

QSZ1
Transistors
General purpose transistor
QSZ1
A 2SB1690 and a 2SD2653 are housed independently in a TSMT5 package.
zExternal dimensions (Unit : mm)
zApplications
DC / DC converter
Motor driver
QSZ1
zStructure
Silicon epitaxial planar transistor
ROHM : TSMT5
(5)
0.95 0.95
1.9
2.9
0.85
0∼0.1
0.3∼0.6
0.7
0.16
(3)
(4)
(2)
zFeatures
1) Low VCE(sat)
2) Small package
(1)
0.4
2.8
1.6
Each lead has same dimensions
Abbreviated symbol : Z01
zEquivalent circuit
(5)
(4)
Tr1
Tr2
(1)
(2)
(3)
zPackaging specifications
Type
QSZ1
Package
TSMT5
Marking
Z01
Code
TR
Basic ordering unit(pieces)
3000
1/4
QSZ1
Transistors
zAbsolute maximum ratings (Ta=25°C)
Tr1
Parameter
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Symbol
VCBO
VCEO
VEBO
IC
ICP
Collector power dissipation
Limits
−15
−12
−6
−2
−4
500
1.25
0.9
150
−55 to +150
PC
Junction temperature
Storage temperature
Tj
Tstg
Unit
V
V
V
A
A
∗1
mW/Total ∗2
W/Total ∗3
W/Element ∗3
°C
°C
∗1 Single pulse Pw=1ms.
∗2 Each terminal mounted on a recommended land.
∗3 Mounted on a 25mm+ 25mm+ t0.8mm ceramic substrate.
Tr2
Parameter
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Symbol
VCBO
VCEO
VEBO
IC
ICP
Limits
15
12
6
2
4
500
1.25
0.9
150
−55 to +150
PC
Power dissipation
Unit
V
V
V
A
A
∗1
mW/Total ∗2
W/Total ∗3
W/Element ∗3
°C
°C
+
+
Junction temperature
Tj
Range of storage temperature
Tstg
∗1 Single pulse Pw=1ms.
∗2 Each terminal mounted on a recommended land.
∗3 Mounted on a 25mm 25mm t0.8mm ceramic substrate.
zElectrical characteristics (Ta=25°C)
Tr1
Symbol
Min.
Typ.
Max.
Unit
Collector-base breakdown voltage
BVCBO
−15
−
−
V
IC= −10µA
Collector-emitter breakdown viltage
BVCEO
−12
−
−
V
IC= −1mA
Emitter-base breakdown voltage
BVEBO
−6
−
−
V
IE= −10µA
Collector cutoff current
ICBO
−
−
−100
nA
VCB= −15V
Emitter cutoff current
IEBO
−
−
−100
nA
VEB= −6V
VCE(sat)
−
−120
−180
mV
IC= −1mA, IB= −50mA
hFE
270
−
680
−
VCE= −2V, IC= −200mA
fT
−
360
−
MHz
Cob
−
15
−
pF
Parameter
Collerctor-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
∗ Pulsed
Conditions
∗
VCE= −2V, IE=200mA, f=100MHz
∗
VCB= −10V, IE=0mA, f=1MHz
Tr2
Parameter
Collector-base breakdown voltage
Collector-emitter breakdown voltage
Emitter-base breakdown voltage
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current gain
Transition frequency
Corrector output capacitance
Symbol
BVCBO
BVCEO
BVEBO
ICBO
IEBO
VCE(sat)
hFE
fT
Cob
Min.
15
12
6
−
−
−
270
−
−
Typ.
−
−
−
−
−
90
−
360
20
Max.
−
−
−
100
100
180
680
−
−
Unit
V
V
V
nA
nA
mV
−
MHz
pF
Conditions
IC=10µA
IC=1mA
IE=10µA
VCB=15V
VEB=6V
IC=1A, IB=50mA
VCE=2V, IC=200mA ∗
VCE=2V, IE=−200mA, f=100MHz ∗
VCB=10V, IE=0A, f=1MHz
∗ Pulsed
2/4
QSZ1
Transistors
zElectrical characteristic curves
25°C
−40°C
100
0.001
0.01
0.1
1
10
IC/IB=20
PULSED
1
0.1
−40°C
25°C
Ta=100°C
Ta=100°C
25°C
−40°C
0.01
0.001
0.001
TRANSITION FREQUENCY : fT : (MHz)
COLLECTOR CURRENT IC : (A)
1
Ta=100°C
25°C
−40°C
0.1
0.01
0.001
1
BASE TO EMITTER VOLTAGE : VBE (V)
Fig.4 Grounded emitter propagation
characteristics
EMITTER INPUT CAPACITANCE:Cib (pF)
COLLECTOR OUTPUT CAPACITANCE:Cob(pF)
10
IC/IB=10/1
0.01
0.001
0.001
0.1
1
1
10
1000
IC=20 IB1=-20IB2
Ta=25°C
tstg f=100MHz
100
0.01
0.1
Fig.3 Collector-emitter saturation voltage
vs. collector current
Ta=25°C
VCE= −2V
f=100MHz
10
0.001
0.01
COLLECTOR CURRENT : IC (A)
1000
VCE= −2V
PULSED
0.5
1
IC/IB=50/1
IC/IB=20/1
Fig.2 Collector-emitter saturation voltage
base-emitter saturation voltage
vs.collector current
Fig.1 DC current gain
vs. collector current
0
0.1
Ta=25°C
PULSED
0.1
COLLECTOR CURRENT : IC (A)
COLLECTOR CURRENT : IC (A)
10
0.01
1
SWITCHING TIME : (ns)
DC CURRENT GAIN : hFE
10
VCE= −2V
PULSED
Ta=100°C
BASE SATURATION VOLTAGE : VBE(sat) : (V)
COLLECTOR SATURATION VOLTAGE : VCE(sat)(V)
1000
COLLECTOR SATURATION VOLTAGE : VCE(sat): (V)
Tr1
10
tr
100
tf
tdon
10
1
0.001
0.01
0.1
EMITTER CURRENT : IE (A)
COLLECTOR CURRENT : IC (A)
Fig.5 Gain bandwidth product
vs. emitter current
Fig.6 Switching time
1
1000
Ta=25°C
IE=0mA
f=1MHz
cib
100
cob
10
0.1
1
10
EMITTER TO BASE VOLTAGE : VEB (V)
Fig.7 Collector output capacitance
vs. collector-base voltage
Emitter input capacitance
vs. emitter-base voltage
3/4
QSZ1
Transistors
1
1000
Ta=25°C
Ta= −40°C
100
10
0.001
0.01
0.1
1
10
IC/IB=20/1
VCE=2V
Pulsed
0.1
Ta=100°C
Ta= −40°C
0.01
0.001
0.001
0.1
1
10
Fig.9 Base-emitter saturation voltage
vs. collector current
Fig.8 DC current gain
vs. collector current
Ta=25°C
Pulsed
0.1
IC/IB=50/1
0.01
TRANSITION FREQUENCY : fT (MHz)
VCE=2V
Pulsed
1
Ta=100°C
Ta=25°C
0.1
Ta=−40°C
0.01
0
0.5
1
1.5
0.001
0.001
0.01
0.1
1
10
COLLECTOR CURRENT : IC (A)
Fig.10 Collector-emitter saturation voltage
vs. collector current
1000
Ta=25°C
Ta=25°C
VCE=2V
f=100MHz
VCE=5V
f=100MHz
100
10
0.001
IC/IB=20/1
IC/IB=10/1
1000
10
COLLECTOR CURRENT : IC (A)
0.01
COLLECTOR CURRENT : IC (A)
COLLECTOR CURRENT : IC (A)
0.001
Ta=25°C
1
SWITCHING TIME : (ns)
DC CURRENT GAIN : hFE
COLLECTOR TO EMITTER
SATURATION VOLTAGE : VCE(sat) (V)
VCE=2V
Pulsed
Ta=100°C
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
Tr2
0.01
0.1
1
10
tstg
100
10
tdon
tf
1
0.01
tr
0.1
1
EMITTER CURRENT : IE (A)
COLLECTOR CURRENT : IC (A)
Fig.11 Grounded emitter propagation
characteristics
Fig.12 Gain bandwidth product
vs. emitter current
Fig.13 Switching time
EMITTER INPUT CAPACITANCE : Cib (pF)
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
BASE TO EMITTER CURRENT : VBE (V)
10
1000
Ta=25˚C
IC=0A
f=1MHz
Cib
100
10
Cob
1
0.1
1
10
100
EMITTER TO BASE VOLTAGE : VEB(V)
COLLECTOR TO BASE VOLTAGE : VCB(V)
Fig.14 Collector output capacitance
vs. collector-base voltage
Emitter input capacitance
vs. emitter-base voltage
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.1