ROHM UMF22N

EMF22 / UMF22N
Transistors
Power management (dual transistors)
EMF22 / UMF22N
2SC5585 and DTC114E are housed independently in a EMT6 or UMT6 package.
zExternal dimensions (Units : mm)
zApplication
Power management circuit
(3)
(4)
(5)
(2)
(6)
(1)
1.2
1.6
0.5
0.13
zFeatures
1) Power switching circuit in a single package.
2) Mounting cost and area can be cut in half.
0.5 0.5
1.0
1.6
0.22
EMF22
Each lead has same dimensions
Abbreviated symbol : F22
ROHM : EMT6
1.3
0.65
(1)
1.25
2.0
(3)
(2)
(4)
(6)
(5)
0.2
zEquivalent circuits
0.65
UMF22N
zStructure
Silicon epitaxial planar transistor
0.1Min.
DTr2
Tr1
R1
ROHM : UMT6
EIAJ : SC-88
R2
(4)
(5)
0.9
0.7
(1)
0 to 0.1
(2)
0.15
2.1
(3)
Each lead has same dimensions
Abbreviated symbol :F22
(6)
R1=10kΩ
R2=10kΩ
zPackaging specifications
Type
EMF22
UMF22N
Package
EMT6
UMT6
Marking
F22
F22
Code
T2R
TR
Basic ordering unit(pieces)
8000
3000
1/4
EMF22 / UMF22N
Transistors
zAbsolute maximum ratings (Ta=25°C)
Tr1
Limits
Symbol
15
VCBO
VCEO
12
VEBO
6
IC
500
Collector current
ICP
1.0
PC
150(TOTAL)
Power dissipation
Tj
150
Junction temperature
Tstg
−55~+150
Range of storage temperature
Parameter
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Unit
V
V
V
mA
A
mW
°C
°C
∗1
∗2
∗1 Single pulse PW=1ms
∗2 120mW per element must not be exceeded.
Each terminal mounted on a recommended land.
DTr2
Parameter
Supply voltage
Input voltage
Collector current
Output current
Power dissipation
Junction temperature
Range of storage temperature
Limits
Symbol
50
VCC
−10~+40
VIN
100
IC
50
IO
150(TOTAL)
PC
Tj
150
Tstg
−55~+150
Unit
V
V
mA
mA
mW
°C
°C
∗1
∗2
∗1 Characteristics of built-in transistor.
∗2 120mW per element must not be exceeded.
Each terminal mounted on a recommended land.
zElectrical characteristics (Ta=25°C)
Tr1
Parameter
Collector-emitter breakdown voltage
Collector-base breakdown voltage
Emitter-base breakdown voltage
Collector cut-off current
Emitter cut-off current
Collector-emitter saturation voltage
DC current gain
Transition frequency
Collector output capacitance
Symbol
BVCEO
BVCBO
BVEBO
ICBO
IEBO
VCE(sat)
hFE
fT
Cob
Min.
12
15
6
−
−
−
270
−
−
Typ.
−
−
−
−
−
90
−
320
7.5
Max.
−
−
−
100
100
250
680
−
−
Unit
V
V
V
nA
nA
mV
−
MHz
pF
Conditions
IC=1mA
IC=10µA
IE=10µA
VCB=15V
VEB=6V
IC=200mA, IB=10mA
VCE=2V, IC=10mA
VCE=2V, IE=−10mA, f=100MHz
VCB=10V, IE=0mA, f=1MHz
Symbol
VI(off)
VI(on)
VO(on)
II
IO(off)
GI
Min.
−
3
−
−
−
30
Typ.
−
−
0.1
−
−
−
Max.
0.5
−
0.3
0.88
0.5
−
Unit
7
10
kΩ
0.8
−
1
250
13
1.2
−
Conditions
VCC=5V, IO=100µA
VO=0.3V, IO=10mA
IO/II=10mA/0.5mA
VI=5V
VCC=50V, VI=0V
VO=5V, IO=5mA
−
DTr2
Parameter
Input voltage
Output voltage
Input current
Output current
DC current gain
Input resistance
Resistance ratio
Transition frequency
R1
R2/R1
fT
V
V
mA
µA
−
−
MHz
−
VCE=10V, IE=−5mA, f=100MHz ∗
∗Transition frequency of the device
2/4
EMF22 / UMF22N
Transistors
0.6
DC CURRENT GAIN : hFE
0.8
1.0
1.2
10
1
1.4
1
10
10000
IC/IB=20
Pulsed
Ta=125°C
100
Ta=25°C
Ta=−40°C
10
1
100
10
100
1000
1000
Ta=25°C
Pulsed
100
IC/IB=50
10
1
1000
Ta=25°C
Ta=−40°C
Ta=125°C
100
10
1
10
100
1
10
100
1000
1000
VCE=2V
Ta=25°C
Pulsed
100
10
1
1
10
100
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : IC (mA)
EMITTER CURRENT : IE (mA)
Fig.4 Collector-emitter saturation voltage
Fig.5 Base-emitter saturation voltage
Fig.6 Gain bandwidth product
EMITTER INPUT CAPACITANCE : Cib (pF)
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
vs. collector current ( ΙΙ )
1000
vs. collector current
1000
COLLECTOR CURRENT : IC (mA)
vs. collector current ( Ι )
IC/IB=20
Pulsed
1000
IC/IB=20
IC/IB=10
collector current
BASER SATURATION VOLTAGE : VBE (sat) (mV)
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
Fig.1 Grounded emitter propagation
characteristics
1
Fig.3 Collector-emitter saturation voltage
Ta=−40°C
100
BASE TO EMITTER VOLTAGE : VBE (V)
1000
Fig.2 DC current gain vs.
Ta=25°C
TRANSITION FREQUENCY : fT (MHz)
0.4
Ta= −40°
C
5°C
0.2
Ta=25°
C
10
0
VCE=2V
Pulsed
Ta=125°C
100
1
COLLECTOR CURRENT : IC (mA)
1000
VCE=2V
Pulsed
Ta=12
COLLECTOR CURRENT : IC (mA)
1000
COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV)
zElectrical characteristic curves
Tr1
1000
vs. emitter current
IE=0A
f=1MHz
Ta=25°C
100
Cib
Cob
10
1
0.1
1
10
100
EMITTER TO BASE VOLTAGE : VEB(V)
Fig.7 Collector output capacitance
vs. collector-base voltage
Emitter input capacitance
vs. emitter-base voltage
3/4
EMF22 / UMF22N
Transistors
DTr2
10m
5m
VO=0.3V
OUTPUT CURRENT : Io (A)
INPUT VOLTAGE : VI(on) (V)
50
20
10
Ta=−40°C
25°C
100°C
5
2
1
500m
200m
100m
100µ 200µ
500µ 1m
2m
5m 10m 20m 50m 100m
OUTPUT CURRENT : IO (A)
Fig.1 Input voltage vs. output current
(ON characteristics)
1
2m
1m
500µ
1k
VCC=5V
Ta=100°C
25°C
−40°C
200µ
100µ
50µ
20µ
10µ
5µ
2µ
1µ
0
VO=5V
500
DC CURRENT GAIN : GI
100
200
Ta=100°C
25°C
−40°C
100
50
20
10
5
2
0.5
1.0
1.5
2.0
2.5
3.0
INPUT VOLTAGE : VI(off) (V)
Fig.2 Output current vs. input voltage
(OFF characteristics)
1
100µ 200µ 500µ1m 2m
5m 10m 20m 50m100m
OUTPUT CURRENT : IO (A)
Fig.3 DC current gain vs. output
current
lO/lI=20
OUTPUT VOLTAGE : VO(on) (V)
500m
Ta=100°C
25°C
−40°C
200m
100m
50m
20m
10m
5m
2m
1m
100µ 200µ
500µ 1m
2m
5m 10m 20m 50m 100m
OUTPUT CURRENT : IO (A)
Fig.4 Output voltage vs. output
current
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document use silicon as a basic material.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.0