CEP73A3G/CEB73A3G

CEP73A3G/CEB73A3G
N-Channel Enhancement Mode Field Effect Transistor
PRELIMINARY
FEATURES
30V, 62A, RDS(ON) = 9mΩ @VGS = 10V.
RDS(ON) = 16mΩ @VGS = 4.5V.
Super high dense cell design for extremely low RDS(ON).
High power and current handing capability.
D
Lead free product is acquired.
TO-220 & TO-263 package.
D
G
S
CEB SERIES
TO-263(DD-PAK)
G
G
D
S
ABSOLUTE MAXIMUM RATINGS
Parameter
CEP SERIES
TO-220
Tc = 25 C unless otherwise noted
Symbol
Limit
30
Units
V
VGS
±20
V
ID
62
A
IDM
248
A
75
W
Drain-Source Voltage
VDS
Gate-Source Voltage
Drain Current-Continuous
Drain Current-Pulsed
S
a
Maximum Power Dissipation @ TC = 25 C
PD
- Derate above 25 C
0.52
W/ C
TJ,Tstg
-55 to 175
C
Symbol
Limit
Units
Operating and Store Temperature Range
Thermal Characteristics
Parameter
Thermal Resistance, Junction-to-Case
RθJC
2
C/W
Thermal Resistance, Junction-to-Ambient
RθJA
62.5
C/W
Rev 1. 2009.June
http://www.cetsemi.com
Details are subject to change without notice .
1
CEP73A3G/CEB73A3G
Electrical Characteristics
Parameter
Tc = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
30
Zero Gate Voltage Drain Current
IDSS
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
Typ
Max
Units
VDS = 30V, VGS = 0V
1
µA
IGSSF
VGS = 20V, VDS = 0V
100
nA
IGSSR
VGS = -20V, VDS = 0V
-100
nA
Off Characteristics
V
On Characteristics b
Gate Threshold Voltage
Static Drain-Source
On-Resistance
Gate input resistance
Dynamic Characteristics c
VGS(th)
RDS(on)
Rg
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
VGS = VDS, ID = 250µA
3
V
7.5
9
mΩ
VGS = 4.5V, ID = 15A
11
16
mΩ
f=1MHz,open Drain
1.6
Ω
1005
pF
265
pF
170
pF
VGS = 10V, ID = 30A
VDS = 15V, VGS = 0V,
f = 1.0 MHz
1
Switching Characteristics c
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
VDD = 15V, ID = 10A,
VGS = 10V, RGEN = 1Ω
16
32
ns
9
18
ns
35.5
71
ns
Turn-Off Fall Time
tf
9
18
ns
Total Gate Charge
Qg
22
28.6
nC
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
VDS = 15V, ID = 10A,
VGS = 10V
3
nC
7
nC
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current
IS
Drain-Source Diode Forward Voltage b
VSD
VGS = 0V, IS = 30A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
c.Guaranteed by design, not subject to production testing.
2
62
A
1.2
V
CEP73A3G/CEB73A3G
75
VGS=10,8,6,5V
40
ID, Drain Current (A)
ID, Drain Current (A)
50
30
VGS=4V
20
VGS=3V
10
60
45
30
25 C
15
-55 C
TJ=125 C
0
0
1
2
3
0
4
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
600
400
Coss
200
Crss
0
5
10
15
20
25
5
2.2
1.9
ID=30A
VGS=10V
1.6
1.3
1.0
0.7
0.4
-100
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
VDS=VGS
ID=250µA
IS, Source-drain current (A)
C, Capacitance (pF)
VTH, Normalized
Gate-Source Threshold Voltage
4
Figure 2. Transfer Characteristics
Ciss
1.1
1.0
0.9
0.8
0.7
0.6
-50
3
Figure 1. Output Characteristics
800
1.2
2
VGS, Gate-to-Source Voltage (V)
1000
1.3
1
VDS, Drain-to-Source Voltage (V)
1200
0
0
-25
0
25
50
75
100
125
150
VGS=0V
10
2
10
1
10
0
0.4
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C)
VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
3
10
10 V =15V
DS
ID=10A
8
6
4
2
0
0
3
4
RDS(ON)Limit
ID, Drain Current (A)
VGS, Gate to Source Voltage (V)
CEP73A3G/CEB73A3G
6
12
18
10
100ms
1ms
10
10
24
2
10ms
DC
1
TC=25 C
TJ=150 C
Single Pulse
0
10
-1
10
0
10
1
10
Qg, Total Gate Charge (nC)
VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
RL
V IN
D
VGS
RGEN
toff
tr
td(on)
VOUT
td(off)
tf
90%
90%
VOUT
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
r(t),Normalized Effective
Transient Thermal Impedance
Figure 9. Switching Test Circuit
10
0
D=0.5
0.2
10
PDM
0.1
-1
0.05
0.02
t1
0.01
1. RθJC (t)=r (t) * RθJC
2. RθJC=See Datasheet
3. TJM-TC = P* RθJC (t)
4. Duty Cycle, D=t1/t2
Single Pulse
10
-2
10
-2
t2
10
-1
10
0
10
1
10
2
Square Wave Pulse Duration (msec)
Figure 11. Normalized Thermal Transient Impedance Curve
4 - 97
10
3
10
4
2