CEP6186/CEB6186 N-Channel Enhancement Mode Field Effect Transistor FEATURES 60V, 33A, RDS(ON) = 25mΩ @VGS = 10V. RDS(ON) = 32mΩ @VGS = 4.5V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-220 & TO-263 package. D G S CEB SERIES TO-263(DD-PAK) G G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 Tc = 25 C unless otherwise notedz Symbol Limit 60 Units V VGS ±20 V ID 33 A IDM 132 A 43 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed S a Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C 0.28 W/ C TJ,Tstg -55 to 175 C Symbol Limit Units Operating and Store Temperature Range Thermal Characteristics Parameter Thermal Resistance, Junction-to-Case RθJC 3.5 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W Rev 4. 2011.Feb http://www.cetsemi.com Details are subject to change without notice . 1 CEP6186/CEB6186 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 60 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 60V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance Dynamic Characteristics c VGS(th) RDS(on) Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VGS = VDS, ID = 250µA 3 V VGS = 10V, ID = 19A 19 25 mΩ VGS = 4.5V, ID = 10A 25 32 mΩ VDS = 25V, VGS = 0V, f = 1.0 MHz 1 1120 pF 125 pF 75 pF Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 30V, ID = 19A, VGS = 10V, RGEN = 4.7Ω 15 30 ns 5 10 ns ns 38 76 Turn-Off Fall Time tf 10 20 ns Total Gate Charge Qg 24 31 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 48V, ID = 28A, VGS = 10V 6 nC 6 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 33A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. 2 33 A 1.5 V CEP6186/CEB6186 VGS=4V 16 12 8 4 VGS=3V 0.5 1.0 1.5 2.0 2.5 10 TJ=125C 1 2 -55 C 3 4 5 6 Figure 1. Output Characteristics Figure 2. Transfer Characteristics Ciss 400 Coss Crss 200 0 5 10 15 20 25 2.2 1.9 ID=19A VGS=10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS IS, Source-drain current (A) ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 25 C 20 VGS, Gate-to-Source Voltage (V) 600 1.2 30 3.0 800 1.3 40 0 1000 0 50 VDS, Drain-to-Source Voltage (V) 1200 C, Capacitance (pF) ID, Drain Current (A) 20 0 0.0 VTH, Normalized Gate-Source Threshold Voltage 60 VGS=10,8,7V RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) ID, Drain Current (A) 24 -25 0 25 50 75 100 125 VGS=0V 10 2 10 1 10 0 0.6 150 0.8 1.0 1.2 1.4 1.6 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 VDS=48V ID=28A 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP6186/CEB6186 6 4 2 0 0 5 10 15 20 10 3 10 2 100ms 1ms 10ms 10 10 25 RDS(ON)Limit DC 1 TC=25 C TJ=175 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on V IN RL D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms Figure 9. Switching Test Circuit r(t),Normalized Effective Transient Thermal Impedance 10 0 D=0.5 10 0.2 0.1 -1 0.05 0.02 0.01 10 10 PDM t1 Single Pulse -2 -3 10 t2 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 -5 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 0 10 1 2