CEP6186/CEB6186

CEP6186/CEB6186
N-Channel Enhancement Mode Field Effect Transistor
FEATURES
60V, 33A, RDS(ON) = 25mΩ @VGS = 10V.
RDS(ON) = 32mΩ @VGS = 4.5V.
Super high dense cell design for extremely low RDS(ON).
High power and current handing capability.
D
Lead free product is acquired.
TO-220 & TO-263 package.
D
G
S
CEB SERIES
TO-263(DD-PAK)
G
G
D
S
ABSOLUTE MAXIMUM RATINGS
Parameter
CEP SERIES
TO-220
Tc = 25 C unless otherwise notedz
Symbol
Limit
60
Units
V
VGS
±20
V
ID
33
A
IDM
132
A
43
W
Drain-Source Voltage
VDS
Gate-Source Voltage
Drain Current-Continuous
Drain Current-Pulsed
S
a
Maximum Power Dissipation @ TC = 25 C
PD
- Derate above 25 C
0.28
W/ C
TJ,Tstg
-55 to 175
C
Symbol
Limit
Units
Operating and Store Temperature Range
Thermal Characteristics
Parameter
Thermal Resistance, Junction-to-Case
RθJC
3.5
C/W
Thermal Resistance, Junction-to-Ambient
RθJA
62.5
C/W
Rev 4. 2011.Feb
http://www.cetsemi.com
Details are subject to change without notice .
1
CEP6186/CEB6186
Electrical Characteristics
Parameter
Tc = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
60
Zero Gate Voltage Drain Current
IDSS
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
Typ
Max
Units
VDS = 60V, VGS = 0V
1
µA
IGSSF
VGS = 20V, VDS = 0V
100
nA
IGSSR
VGS = -20V, VDS = 0V
-100
nA
Off Characteristics
V
On Characteristics b
Gate Threshold Voltage
Static Drain-Source
On-Resistance
Dynamic Characteristics c
VGS(th)
RDS(on)
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
VGS = VDS, ID = 250µA
3
V
VGS = 10V, ID = 19A
19
25
mΩ
VGS = 4.5V, ID = 10A
25
32
mΩ
VDS = 25V, VGS = 0V,
f = 1.0 MHz
1
1120
pF
125
pF
75
pF
Switching Characteristics c
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
VDD = 30V, ID = 19A,
VGS = 10V, RGEN = 4.7Ω
15
30
ns
5
10
ns
ns
38
76
Turn-Off Fall Time
tf
10
20
ns
Total Gate Charge
Qg
24
31
nC
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
VDS = 48V, ID = 28A,
VGS = 10V
6
nC
6
nC
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current
IS
Drain-Source Diode Forward Voltage b
VSD
VGS = 0V, IS = 33A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
c.Guaranteed by design, not subject to production testing.
2
33
A
1.5
V
CEP6186/CEB6186
VGS=4V
16
12
8
4
VGS=3V
0.5
1.0
1.5
2.0
2.5
10
TJ=125C
1
2
-55 C
3
4
5
6
Figure 1. Output Characteristics
Figure 2. Transfer Characteristics
Ciss
400
Coss
Crss
200
0
5
10
15
20
25
2.2
1.9
ID=19A
VGS=10V
1.6
1.3
1.0
0.7
0.4
-100
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
VDS=VGS
IS, Source-drain current (A)
ID=250µA
1.1
1.0
0.9
0.8
0.7
0.6
-50
25 C
20
VGS, Gate-to-Source Voltage (V)
600
1.2
30
3.0
800
1.3
40
0
1000
0
50
VDS, Drain-to-Source Voltage (V)
1200
C, Capacitance (pF)
ID, Drain Current (A)
20
0
0.0
VTH, Normalized
Gate-Source Threshold Voltage
60
VGS=10,8,7V
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
ID, Drain Current (A)
24
-25
0
25
50
75
100
125
VGS=0V
10
2
10
1
10
0
0.6
150
0.8
1.0
1.2
1.4
1.6
TJ, Junction Temperature( C)
VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
3
10
VDS=48V
ID=28A
8
ID, Drain Current (A)
VGS, Gate to Source Voltage (V)
CEP6186/CEB6186
6
4
2
0
0
5
10
15
20
10
3
10
2
100ms
1ms
10ms
10
10
25
RDS(ON)Limit
DC
1
TC=25 C
TJ=175 C
Single Pulse
0
10
-1
10
0
10
1
10
Qg, Total Gate Charge (nC)
VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
V IN
RL
D
VGS
RGEN
toff
tr
td(on)
td(off)
tf
90%
90%
VOUT
VOUT
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
Figure 9. Switching Test Circuit
r(t),Normalized Effective
Transient Thermal Impedance
10
0
D=0.5
10
0.2
0.1
-1
0.05
0.02
0.01
10
10
PDM
t1
Single Pulse
-2
-3
10
t2
1. RθJC (t)=r (t) * RθJC
2. RθJC=See Datasheet
3. TJM-TC = P* RθJC (t)
4. Duty Cycle, D=t1/t2
-5
10
-4
10
-3
10
-2
10
-1
Square Wave Pulse Duration (sec)
Figure 11. Normalized Thermal Transient Impedance Curve
4
10
0
10
1
2